JPS6253929B2 - - Google Patents

Info

Publication number
JPS6253929B2
JPS6253929B2 JP54007472A JP747279A JPS6253929B2 JP S6253929 B2 JPS6253929 B2 JP S6253929B2 JP 54007472 A JP54007472 A JP 54007472A JP 747279 A JP747279 A JP 747279A JP S6253929 B2 JPS6253929 B2 JP S6253929B2
Authority
JP
Japan
Prior art keywords
particles
magnetic field
parallel
raw material
external magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54007472A
Other languages
Japanese (ja)
Other versions
JPS5599712A (en
Inventor
Kyoto Ushama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANRITSU KIKAKU KK
Original Assignee
SANRITSU KIKAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANRITSU KIKAKU KK filed Critical SANRITSU KIKAKU KK
Priority to JP747279A priority Critical patent/JPS5599712A/en
Publication of JPS5599712A publication Critical patent/JPS5599712A/en
Publication of JPS6253929B2 publication Critical patent/JPS6253929B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【発明の詳細な説明】 本発明は、異方性永久磁石の圧粉成形方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a powder compacting method for anisotropic permanent magnets.

従来の異方性永久磁石の製造方法は、まず所定
の組成の原料を溶解し、鋳造することにより原料
インゴツトを作成する。永久磁石は、用途に応じ
て種々の形状、寸法のものが要求されるので、所
望の形状および寸法にするため、この原料インゴ
ツトをボールミルなどで粉砕して所定の粒度の粒
子とし、この粒子を成形型内に充填し、磁界を印
加して各粒子の磁気異方性方向を磁界と平行な方
向にそろえながら圧粉成形するものである。この
時粉砕によつて得られる粒子は、第1図に示すよ
うに、ランダムな形状をしており、粒子1と結晶
の磁気異方性方向2との間には何の相関関係もな
い。
In a conventional method for manufacturing an anisotropic permanent magnet, a raw material ingot is first created by melting and casting a raw material having a predetermined composition. Permanent magnets are required to have various shapes and dimensions depending on the application, so in order to obtain the desired shape and dimensions, this raw material ingot is ground into particles with a predetermined particle size using a ball mill, etc. The particles are filled into a mold and compacted by applying a magnetic field to align the magnetic anisotropy direction of each particle in a direction parallel to the magnetic field. The particles obtained by this pulverization have a random shape, as shown in FIG. 1, and there is no correlation between the particles 1 and the magnetic anisotropy direction 2 of the crystal.

このような粒子1を磁場中圧粉成形する場合
は、第2図に示すように、粒子1を成形型内に充
填して成形パンチ4によつて圧力を加える前は、
結晶の磁気異方性方向2は、外部磁界3の方向と
平行になるが、第3図に示すように、矢印5のよ
うに圧力を加えると、粒子間の形状の相互作用に
よつて粒子1が回転や移動し、結晶の磁気異方性
方向2は粒子によつてさまざまな方向を向き、必
ずしも外部磁界3の方向と平行にならない。ま
た、粒子1の形状がランダムなため、必然的に粒
子間にすき間6が生じ、成形後の充填密度が低下
してしまうといつた理由により、磁気性能が理論
値の50〜70%程度のものしか得られないという欠
点を有していた。
When such particles 1 are compacted in a magnetic field, as shown in FIG.
The magnetic anisotropy direction 2 of the crystal is parallel to the direction of the external magnetic field 3, but as shown in Fig. 3, when pressure is applied as indicated by the arrow 5, the particles are 1 rotates or moves, and the magnetic anisotropy direction 2 of the crystal is oriented in various directions depending on the particle, and is not necessarily parallel to the direction of the external magnetic field 3. In addition, because the shape of the particles 1 is random, gaps 6 inevitably occur between the particles, which reduces the packing density after molding. This is why the magnetic performance is about 50 to 70% of the theoretical value. It had the disadvantage that it could only give you something.

さらに、このように粒子間に生ずるすき間6の
ために、粒子どうしの結合力が低下し、永久磁石
の機械的強度が低下して割れやヒビが発生しやす
くなるという欠点も有していた。
Furthermore, due to the gaps 6 formed between the particles, the bonding force between the particles is reduced, the mechanical strength of the permanent magnet is reduced, and cracks and cracks are more likely to occur.

このような欠点を解決する方法としては、ゾー
ンメルトにより結晶の磁気異方性方向が一方向に
そろうように鋳造し、得られた原料インゴツトを
切削、研削あるいは研磨して所望の形状および寸
法に加工する方法や、最初から所望の形状となる
ように、所望の形状の鋳造を用いてゾーンメルト
を行う方法などが考えられるが、前者の方法は、
所望の形状が複雑になるほど、鋳造後の加工が難
しくなり、製造コストの大巾な上昇を招くという
欠点があり、後者の方法は、鋳造の形状が複雑と
なり、寸法が小さくなると、結晶の磁気異方性方
向を一方向にそろえることが極めて難しくなり、
かつ従来のように大量の原料を一度に溶解、鋳造
するのに比べて、製品の数だけ溶解、鋳造を行な
わなければならないため、やはり製造コストの大
巾な上昇を招くという欠点がある。
A method to solve these drawbacks is to cast the crystals using zone melting so that their magnetic anisotropy is aligned in one direction, and then cut, grind, or polish the resulting raw material ingot into the desired shape and dimensions. Possible methods include processing, or zone melting using casting in the desired shape so that the desired shape is obtained from the beginning, but the former method is
The disadvantage of this method is that the more complex the desired shape, the more difficult the post-casting processing becomes, leading to a significant increase in manufacturing costs. It becomes extremely difficult to align the anisotropy direction in one direction.
Moreover, compared to the conventional method in which a large amount of raw material is melted and cast at one time, melting and casting must be performed for the number of products, which also has the disadvantage of causing a significant increase in manufacturing costs.

本発明は、かかる欠点を除去し、結晶の磁気異
方性方向を一方向にそろえ、かつ粒子間のすき間
を生じさせない圧粉成形法を提供し、磁気性能お
よび機械的強度にすぐれた永久磁石を実現するこ
とを目的とするものである。
The present invention eliminates such drawbacks, provides a powder compacting method that aligns the magnetic anisotropy direction of crystals in one direction, and does not create gaps between particles, and provides a permanent magnet with excellent magnetic performance and mechanical strength. The purpose is to realize the following.

すなわち本発明の製造方法は、従来原料インゴ
ツトを粉砕して粒子を作成していたのに代えて、
原料インゴツトを結晶の磁気異方性方向が、外部
磁界と平行になる最長辺もしくは最短辺と平行と
なるように平板状に切断して粒子を作成するもの
である。
In other words, in the production method of the present invention, instead of the conventional method of creating particles by pulverizing a raw material ingot,
Particles are created by cutting a raw material ingot into flat plates so that the magnetic anisotropy direction of the crystal is parallel to the longest side or the shortest side that is parallel to the external magnetic field.

原料インゴツトの切断は、従来鉱石、コンクリ
ートなどの硬くて脆い材料の精密切断に用いられ
ていた、ダイヤモンドカツターなどの周知の切断
手段により行なうことができる。
The raw material ingot can be cut by a well-known cutting means such as a diamond cutter, which has been conventionally used for precision cutting of hard and brittle materials such as ore and concrete.

また従来の粋砕による方法では、粒子間のすき
間をできるだけ小さくするため、粒度をできるだ
け小さくする必要があつたが、本発明によれば、
粒子間のすき間がほとんどなくなるため、所望の
形状が得られる程度に小さければ良く、用途に応
じて最適な寸法となるように切断すれば良い。
In addition, in the conventional crushing method, it was necessary to reduce the particle size as much as possible in order to minimize the gaps between particles, but according to the present invention,
Since there are almost no gaps between particles, it is only necessary that the gaps are as small as possible to obtain the desired shape, and the particles may be cut to the optimum size depending on the purpose.

以下実施例により、詳細に説明する。 This will be explained in detail below using examples.

実施例 1 第4図は、外部磁界3の方向と矢印5で示す圧
力の方向が直交する磁場中成形(以下横磁場成形
と言う)時の粒子1の状態を示す図である。粒子
1は、第5図に示すように原料インゴツトにおい
てゾーンメルトを行ない、結晶の磁気異方性方向
2を一方向にそろえた原料インゴツト7を、第6
図に示すように、結晶の磁気異方性方向2が粒子
1の最長辺の方向と平行となるように平板状に切
断して作成した。
Example 1 FIG. 4 is a diagram showing the state of particles 1 during magnetic field forming (hereinafter referred to as transverse magnetic field forming) in which the direction of external magnetic field 3 and the direction of pressure indicated by arrow 5 are orthogonal. Particles 1 are obtained by subjecting a raw material ingot to zone melting, as shown in FIG.
As shown in the figure, the particles were cut into flat plates so that the magnetic anisotropy direction 2 of the crystal was parallel to the direction of the longest side of the particles 1.

粒子1の寸法比率は、結晶の磁気異方性方向2
を長さ方向とし、巾:厚み:長さ=3:1:10と
した。
The size ratio of particle 1 is the magnetic anisotropy direction of the crystal 2
is taken as the length direction, and width:thickness:length=3:1:10.

この平板状粒子1を成形型内に充填し、外部磁
界3を印加すると、第4図に示すように平板状粒
子1の最長辺すなわち長さ方向が、一様に外部磁
界3と平行になる。
When this tabular grain 1 is filled into a mold and an external magnetic field 3 is applied, the longest side of the tabular grain 1, that is, the length direction, becomes uniformly parallel to the external magnetic field 3, as shown in FIG. .

この状態で圧力を加えると、長さ方向は外部磁
界3に平行なままに保たれるが、巾方向が圧力の
方向に平行となつている粒子は、隣接する粒子に
押されて回転し、すべての粒子が厚み方向が圧力
の方向に平行となるように徐々に整列され、最終
的には第7図に示すように、すべての粒子の結晶
の磁気異方性方向2が外部磁界の方向と平行にな
り、かつ粒子間にすき間のない永久磁石に成形さ
れる。
When pressure is applied in this state, the length direction remains parallel to the external magnetic field 3, but the particles whose width direction is parallel to the direction of pressure are pushed by adjacent particles and rotate. All particles are gradually aligned so that the thickness direction is parallel to the direction of pressure, and finally, as shown in Figure 7, the magnetic anisotropy direction 2 of the crystal of all particles is in the direction of the external magnetic field. The particles are parallel to each other and formed into a permanent magnet with no gaps between the particles.

この結果、磁気性能は従来のランダム形状の粒
子を用いたものに比べて1.2〜1.5倍に向上し、機
械的強度も同様に1.2〜1.5倍に向上し、割れやヒ
ビの発生を防止することができた。
As a result, the magnetic performance is improved by 1.2 to 1.5 times compared to the conventional method using random-shaped particles, and the mechanical strength is also improved by 1.2 to 1.5 times, preventing the occurrence of cracks and cracks. was completed.

実施例 2 第8図は、外部磁界3の方向と圧力の方向が平
行な磁場中成形(以下縦磁場成形と言う)時の粒
子1の状態を示す図である。粒子1は、実施例1
と同じように、結晶の磁気異方性方向が一方向に
そろつている原料インゴツトを切断し、第9図に
示すように、結晶の磁気異方性方向2が粒子1の
最短辺の方向と平行となるように作成した。
Example 2 FIG. 8 is a diagram showing the state of the particles 1 during compaction in a magnetic field (hereinafter referred to as longitudinal magnetic field compaction) in which the direction of the external magnetic field 3 and the direction of pressure are parallel. Particle 1 is Example 1
In the same way as above, a raw ingot in which the magnetic anisotropy direction of the crystal is aligned in one direction is cut, and as shown in FIG. 9, the magnetic anisotropy direction 2 of the crystal is the direction of the shortest side of the particle 1. Made to be parallel.

粒子1の寸法比率は、結晶の磁気異方性方向2
を長さ方向とし、巾:厚み:長さ=1:1:0.2
とした。
The size ratio of particle 1 is the magnetic anisotropy direction of the crystal 2
is the length direction, width:thickness:length=1:1:0.2
And so.

この平板状粒子1を成形型内に充填し、外部磁
界3を印加すると、第8図に示すように平板状粒
子1の最短辺すなわち長さ方向が、一様に外部磁
界3と平行になる。
When this tabular grain 1 is filled into a mold and an external magnetic field 3 is applied, the shortest side, that is, the length direction, of the tabular grain 1 becomes uniformly parallel to the external magnetic field 3, as shown in FIG. .

この状態で圧力を加えると、長さ方向が外部磁
界3と平行な状態に保たれたままで、隣接する粒
子どうしが押し合い、巾あるいは長さ方向の辺全
体が接触するように徐々に整列され、第10図に
示すように、すべての粒子の結晶の磁気異方性方
向2が外部磁界の方向と平行になり、かつ粒子間
にすき間のない永久磁石が成形できた。
When pressure is applied in this state, while the length direction remains parallel to the external magnetic field 3, adjacent particles are pushed together and gradually aligned so that their entire width or length sides are in contact. As shown in FIG. 10, a permanent magnet was formed in which the magnetic anisotropy direction 2 of the crystals of all particles was parallel to the direction of the external magnetic field and there were no gaps between the particles.

特に従来の縦磁場成形の場合は、結晶の磁気異
方性方向に圧力が加わるため、磁気異方性が破壊
されやすいといら欠点を有していたが、本実施例
では、粒子が平板状でかつ圧力の方向が最短辺に
なつているため、破壊されにくく、実施例1と同
様の効果が得られた。
In particular, in the case of conventional longitudinal magnetic field forming, pressure is applied in the direction of the magnetic anisotropy of the crystal, which has the disadvantage of easily destroying the magnetic anisotropy. Since the shortest side was in the direction of the pressure, it was difficult to break, and the same effect as in Example 1 was obtained.

以上述べた如く、本発明によれば、外部磁界の
方向に合わせて原料インゴツトを平板状に切断し
て粒子を作成し、これを磁場中成形しているの
で、磁気性能を向上させることができると共に、
粒子間にすき間のない機械的強度にすぐれた永久
磁石を提供できるものであり、多大の効果を有す
るものである。
As described above, according to the present invention, the raw material ingot is cut into flat plates according to the direction of the external magnetic field to create particles, and the particles are formed in a magnetic field, so that magnetic performance can be improved. With,
It is possible to provide a permanent magnet with excellent mechanical strength without gaps between particles, and it has many effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の粒子の形状を示す図である。第
2図は従来の磁場中成形時の圧力を加える前の粒
子の状態を示す図である。第3図は従来の磁場中
成形時の圧力を加えた時の粒子の状態を示す図で
ある。第4図は本発明による横磁場成形時の粒子
の状態を示す図である。第5図は本発明で用いた
原料インゴツトを示す図である。第6図は本発明
による横磁場成形に用いた平板状粒子を示す図で
ある。第7図は本発明の横磁場成形により成形さ
れた永久磁石を示す図である。第8図は本発明に
よる縦磁場成形時の粒子の状態を示す図である。
第9図は本発明による縦磁場成形に用いた平板状
粒子を示す図である。第10図は本発明の縦磁場
成形により成形された永久磁石を示す図である。 1……平板状粒子、2……結晶の磁気異方性方
向、3……外部磁界、4……成形パンチ、5……
圧力の方向を示す矢印、6……粒子間のすき間、
7……原料インゴツト。
FIG. 1 is a diagram showing the shape of conventional particles. FIG. 2 is a diagram showing the state of particles before pressure is applied during conventional molding in a magnetic field. FIG. 3 is a diagram showing the state of particles when pressure is applied during conventional molding in a magnetic field. FIG. 4 is a diagram showing the state of particles during transverse magnetic field forming according to the present invention. FIG. 5 is a diagram showing the raw material ingot used in the present invention. FIG. 6 is a diagram showing tabular grains used in transverse magnetic field shaping according to the present invention. FIG. 7 is a diagram showing a permanent magnet formed by transverse magnetic field forming according to the present invention. FIG. 8 is a diagram showing the state of particles during longitudinal magnetic field molding according to the present invention.
FIG. 9 is a diagram showing tabular grains used in longitudinal magnetic field shaping according to the present invention. FIG. 10 is a diagram showing a permanent magnet formed by vertical magnetic field forming according to the present invention. DESCRIPTION OF SYMBOLS 1... Tabular grain, 2... Magnetic anisotropy direction of crystal, 3... External magnetic field, 4... Shaping punch, 5...
Arrow indicating the direction of pressure, 6... gaps between particles,
7...Raw material ingot.

Claims (1)

【特許請求の範囲】[Claims] 1 磁場中圧粉成形による異方性永久磁石の製造
方法において、結晶の磁気異方性方向が一方向に
そろつている原料インゴツトを切断して結晶の磁
気異方性方向が外部磁界の方向と平行になる最長
辺もしくは最短辺と平行な平板状粒子を作成し、
該平板粒子を成形型内に充填して外部磁界を印加
しながら圧粉成形することを特徴とする異方性永
久磁石の製造方法。
1. In a method for manufacturing anisotropic permanent magnets by powder compaction in a magnetic field, a raw material ingot in which the magnetic anisotropy direction of the crystals is aligned in one direction is cut, and the magnetic anisotropy direction of the crystals is aligned in the direction of the external magnetic field. Create tabular grains with parallel longest or shortest sides,
A method for producing an anisotropic permanent magnet, comprising filling the tabular grains into a mold and compacting them while applying an external magnetic field.
JP747279A 1979-01-24 1979-01-24 Preparation of anisotropic permanent magnet Granted JPS5599712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP747279A JPS5599712A (en) 1979-01-24 1979-01-24 Preparation of anisotropic permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP747279A JPS5599712A (en) 1979-01-24 1979-01-24 Preparation of anisotropic permanent magnet

Publications (2)

Publication Number Publication Date
JPS5599712A JPS5599712A (en) 1980-07-30
JPS6253929B2 true JPS6253929B2 (en) 1987-11-12

Family

ID=11666722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP747279A Granted JPS5599712A (en) 1979-01-24 1979-01-24 Preparation of anisotropic permanent magnet

Country Status (1)

Country Link
JP (1) JPS5599712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321174A (en) * 1993-05-14 1994-11-22 Hanikamu Internatl:Kk Assembling and carrying device for hull block

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117282U (en) * 1983-01-26 1984-08-08 東京パ−ツ工業株式会社 Field magnet for axial gap type coreless motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321174A (en) * 1993-05-14 1994-11-22 Hanikamu Internatl:Kk Assembling and carrying device for hull block

Also Published As

Publication number Publication date
JPS5599712A (en) 1980-07-30

Similar Documents

Publication Publication Date Title
JPS62291904A (en) Mafufacture of permanent magnet
DE112013004376T5 (en) Permanent magnet manufacturing method, permanent magnet manufacturing device, permanent magnet and rotary electric device
WO2003086687A1 (en) Method for press molding rare earth alloy powder and method for producing sintered object of rare earth alloy
JPS6253929B2 (en)
US3141050A (en) Mechanical orientation of magnetically anisotropic particles
JPH07320918A (en) Parmanent magnet and manufacturing method thereof
JP4089212B2 (en) Method for producing granulated powder of rare earth alloy and method for producing sintered rare earth alloy
KR100642218B1 (en) A magnetic field press apparatus
CN1047683C (en) Producing method for microcrystal rare-earth permanent-magnet with high performance
JP5704186B2 (en) Rare earth magnet manufacturing method
JPH06112028A (en) Sintered magnet
Mukai et al. New method of hot rolling for fabricating anisotropic Pr‐Fe‐B‐based magnets
JPH01228106A (en) R-fe-b magnet and manufacture thereof
JP3399056B2 (en) Manufacturing method of anisotropic magnet
JPH0821497B2 (en) Anisotropic magnet and manufacturing method thereof
JPH08260112A (en) Alloy thin strip for permanent magnet, alloy powder obtained from the same, magnet and production of alloy thin strip for permanent magnet
JPH0935977A (en) Manufacture of anisotropic sintered magnet
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JPS6245685B2 (en)
JPH01180943A (en) Sintered magnetostrictive alloy
JPH0568841B2 (en)
JPH04114409A (en) Manufacture of bonded magnet
JPH01245503A (en) Manufacture of rare-earth magnet
JPS62124702A (en) Manufacture of rare earth magnet
JPH0734206A (en) Rare earth magnet and method and device for manufacturing it