JPH07320918A - Parmanent magnet and manufacturing method thereof - Google Patents

Parmanent magnet and manufacturing method thereof

Info

Publication number
JPH07320918A
JPH07320918A JP6111086A JP11108694A JPH07320918A JP H07320918 A JPH07320918 A JP H07320918A JP 6111086 A JP6111086 A JP 6111086A JP 11108694 A JP11108694 A JP 11108694A JP H07320918 A JPH07320918 A JP H07320918A
Authority
JP
Japan
Prior art keywords
permanent magnet
step
particles
magnet
manufacturing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6111086A
Other languages
Japanese (ja)
Inventor
Wakahiro Kawai
Seijiro Maki
Masao Nakamura
雅勇 中村
若浩 川井
清二郎 牧
Original Assignee
Omron Corp
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, オムロン株式会社 filed Critical Omron Corp
Priority to JP6111086A priority Critical patent/JPH07320918A/en
Publication of JPH07320918A publication Critical patent/JPH07320918A/en
Application status is Pending legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/093Compacting only using vibrations or friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

PURPOSE: To improve the magnetic characteristics and high temperature strength by using a low melting point metal as a binder for avoiding the volumic contraction during heat molding step.
CONSTITUTION: As for the magnetic material, samarium cobalt (Sm-Co) and as for a rare earth magnet, zinc as a low melting point metal is used. Next, weighed Sm-Co particles, Zn particles are agitated in a ball mill so as to be mixed while being crushed. Next, these materials are pressure-molded by a pressure-molding machine to manufacture a large aniso-tropical magnet in a magnetic field. At this time, these materials are heated through the electric heating wire by actuating a vibrator for giving microvibration. Through these procedures, the title permanent magnet having excellent dimensional precision, magnetic characteristics and high temperature strength can be manufactured.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、永久磁石及びその製造方法に関する。 The present invention relates to a permanent magnet and a manufacturing method thereof.

【0002】 [0002]

【従来の技術】電子機器に使用される永久磁石は、アルニコ等の鋳造磁石から焼結晶のフェライト磁石へ移行、 Permanent magnets used in the Background of the Invention electronic equipment, the transition from a cast magnet such as alnico to baked crystal of ferrite magnets,
その後機器の軽薄短小化に伴って小型で強力な磁石が要求されるようになり、Sm−Co、Nd−Fe磁石といった希土類磁石が登場した。 Then compact and become strong magnet is required with the miniaturization of appliances, Sm-Co, rare earth magnet such as Nd-Fe magnet appeared.

【0003】この内、フェライト磁石は酸化物、希土類磁石は金属間化合物であって、融点が非常に高いためにその製造は粉末冶金法で行っており、硬く、脆いという性質から成形加工時に樹脂材等のバインダを必要としている。 [0003] Among them, ferrite magnets oxides, rare earth magnet is a intermetallic compound, its production due to the very high melting point is carried out by powder metallurgy, hard resin during molding the nature brittle It is in need of a binder of wood and the like.

【0004】通常、焼結磁石といわれているものは、このバインダを高温により気化消滅させ、1000℃以上の高温で長時間加熱することにより、粉末粒子間を焼結、結合させたもので、ボンド磁石とは、このバインダを粒子間の接着剤として利用、残存させたものである。 [0004] Usually, what is said sintered magnet, the binder was vaporized extinguished by high temperature, by prolonged heating at a high temperature of at least 1000 ° C., between the powder particles sinter, which was allowed to bind, the bonded magnet, utilizing the binder as an adhesive between the particles, in which is left.

【0005】 [0005]

【発明が解決しようとする課題】従って、前者焼結磁石では、成形の後に高温による焼結工程を行うので製造に手間がかかるとともに、気化消滅したバインダ体積当量及び焼結による体積縮小により寸法精度が悪化して後加工を必要とするという問題があり、ボンド磁石では残存させた樹脂が原因で磁気特性が悪化する、また、高温強度が小さい等の問題があった。 [SUMMARY OF THE INVENTION] Accordingly, in the former sintered magnet, dimensional accuracy since the sintering process at a high temperature after forming troublesome with the production, by the volume reduction due to vaporization disappeared binder volume equivalents and sintering There has a problem that it requires a post-machining deteriorated, the resin obtained by remaining magnetic characteristics deteriorate due in bonded magnet also had a high temperature strength is small and the like problems.

【0006】本発明は、上記の事情に鑑みて行ったもので、上記焼結磁石、ボンド磁石のそれぞれの問題点がともに解消される永久磁石を提供することを目的とする。 [0006] The present invention has conducted in view of the above circumstances, and an object thereof is to provide a permanent magnet in which the sintered magnet, each of problems of the bonded magnet are both eliminated.

【0007】 [0007]

【課題を解決するための手段】上記目的を達成するために、本発明は次のような構成を採る。 To achieve the above object of the Invention The present invention adopts the following configuration.

【0008】請求項1記載の発明では、磁性素材とバインダとが一体に焼結されて構成される永久磁石において、前記バインダとして低融点金属を用いてなる構成とした。 [0008] In the present invention of claim 1, wherein, in the permanent magnet consists magnetic material and a binder is sintered together, was obtained by using the low melting point metal constituting as the binder.

【0009】請求項2記載の発明では、永久磁石の製造方法を、所定量の磁性素材粒子粉と低融点金属粒子粉とを混合する第1の工程と、前記第1の工程で得られた混合材料を加熱成形する第2の工程とを備えてなる構成とした。 [0009] In a second aspect of the present invention, a manufacturing method of a permanent magnet, a first step of mixing a predetermined amount of the magnetic material particles powder and the low melting point metal particles powder obtained in the first step the mixed material was a second step of heating the molding and provided comprising configure.

【0010】請求項3記載の発明では、請求項2記載の発明において、前記第1の工程を、粉砕を伴って行う構成とした。 [0010] In the invention of claim 3, wherein, in the invention of claim 2, wherein said first step, and configured to perform with a grinding. 請求項4記載の発明では、請求項2記載の発明において、前記第1の工程を、こすり合わせを伴って行う構成とした。 In the invention of claim 4, wherein, in the invention described in claim 2, the first step was configured to perform with a Kosuriawase.

【0011】請求項5記載の発明では、請求項2記載の発明において、前記第2の工程を、微振動を伴って行う構成とした。 [0011] In a fifth aspect of the present invention is the invention of claim 2, wherein said second step, and configured to perform with a micro-vibration.

【0012】請求項6記載の発明では、請求項2記載の発明において、前記第2の工程を、磁場中において行う構成とした。 [0012] In the invention of claim 6 is the invention of claim 2, wherein said second step, and configured to perform in a magnetic field.

【0013】請求項7記載の発明では、請求項2記載の発明において、前記第1の工程を粉砕もしくはこすり合わせを伴って行い、前記第2の工程を磁場中において微振動を伴って行う構成とした。 [0013] In the invention of claim 7, wherein the configuration in the second aspect of the invention, performs the first step with a grinding Moshikuwakosuriawase, it performs the second step with a slight vibration in a magnetic field and the.

【0014】 [0014]

【作用】請求項1記載の発明によれば、バインダとして低融点金属を用いているので、永久磁石は、加熱成形時における体積収縮がなく、磁気特性も良好に維持されものとなる。 SUMMARY OF According to the first aspect of the invention, because of the use of low melting point metal as a binder, the permanent magnet has no volume shrinkage during heat molding, it becomes also be maintained satisfactorily magnetic properties.

【0015】請求項2記載の発明によれば、バインダとして低融点金属粒子粉を用いて永久磁石を製造するので、低温で加熱成形できることで体積収縮がなく、磁気特性も良好に維持される永久磁石が得られる。 According to the second aspect of the present invention, since the production of permanent magnets with a low melting point metal particles powder as a binder, without volumetric shrinkage in can be heated molding at a low temperature, the magnetic properties permanently, also well maintained magnet can be obtained.

【0016】請求項3記載の発明によれば、請求項2記載の発明において、粉砕により磁性素材粒子が粒子臨界寸法にされるとともに、磁性素材粒子に活性な新生面が形成されることで、その新生面へ低融点金属が付着しやすくなり、これにより混合が促進される。 According to the third aspect of the present invention, in the invention described in claim 2, together with the magnetic material particles is the particle critical dimension by grinding, that the active new surface is formed on the magnetic material particle, the likely the low melting point metal adheres to the new surface, thereby mixing is promoted.

【0017】請求項4記載の発明によれば、請求項2記載の発明において、こすり合わせの摩擦により磁性素材粒子に活性な新生面が形成されることで、その新生面へ低融点金属が付着しやすくなり、これにより混合が促進される。 According to the invention of claim 4, wherein, in the second aspect of the present invention, that the active new surface is formed on the magnetic material particle by friction Kosuriawase, easily adheres low melting point metal to the newly-formed surface becomes, thereby mixing is promoted.

【0018】請求項5記載の発明によれば、請求項2記載の発明において、加熱されて液状となった低融点金属が微振動によって磁性素材粒子の粒子界面にくまなく浸透し、さらに、粒子間の空間を縮小し密度を向上させる。 According to the invention of claim 5, wherein, in the second aspect of the invention, permeates throughout the particle interface between the magnetic material particles low melting metal was heated to a liquid state by slight vibration, further, the particles reducing the space between improving density.

【0019】請求項6記載の発明によれば、請求項2記載の発明において、加熱成形が磁場中において行われることで、磁性素材粒子の配向が行われる。 According to the sixth aspect of the present invention, in the invention described in claim 2, heating molding that is performed in a magnetic field, the orientation of the magnetic material particles is performed.

【0020】請求項7の記載の発明によれば、請求項2 According to the invention described in claim 7, claim 2
記載の発明において、請求項3もしくは請求項4、請求項5、請求項6記載の発明の作用がともに発揮される。 In the invention according to claim 3, or claim 4, claim 5, effects of the invention of claim 6, wherein are both exerted.

【0021】 [0021]

【実施例】図1は本発明における製造工程の概略を示す図であり、この図に沿って以下本発明の永久磁石の製造工程の説明を行う。 DETAILED DESCRIPTION FIG. 1 is a diagram schematically showing a manufacturing process of the present invention will be described the manufacturing process of the permanent magnet of the present invention below along Fig. この実施例では、磁性素材として希土類磁石であるサマリュウム・コバルト(以下Sm−C In this embodiment, Samaryuumu cobalt is a rare earth magnet as a magnetic material (hereinafter Sm-C
o)を、低融点金属として亜鉛(以下Zn)を用いた場合の例を説明する。 The o), only explained an example of using zinc as the low melting point metal (hereinafter Zn).

【0022】(1)[秤量工程] まず、Sm−Co粒子粉、Zn粒子粉それぞれを適量秤量する。 [0022] (1) [weighing Step] First, Sm-Co particles powder, an appropriate amount weighed respectively Zn particles powder.

【0023】(2)[粉砕、混合工程] この工程が本発明の第1の工程を構成する。 [0023] (2) [milling, mixing step] This step constitutes the first step of the present invention.

【0024】秤量したSm−Co粒子粉、Zn粒子粉をボールミルにより長時間撹拌する。 [0024] Weighed Sm-Co particles powder, the Zn particle powder to prolonged stirring in a ball mill. 図2はこのボールミル1の概略を示した図で、大きさの異なるステンレスボール2を適当数入れた、例えば容積410cm 3のステンレス容器4にそれぞれの粒子粉を入れ、容器4を2本の平行な回転軸5の上で長時間回転させて撹拌を行う。 Figure 2 is a diagram showing the outline of the ball mill 1 was placed an appropriate number of different stainless ball 2 sizes, for example, put each particle powder stainless steel container 4 volume 410cm 3, parallel to the container 4 of the two performing agitation by rotating a long time on the Do rotary shaft 5.
この撹拌によりSm−Co粒子粉、Zn粒子粉は粉砕されながら混合される。 Sm-Co particles powder by this stirring, Zn particle powder are mixed while being crushed.

【0025】一般的に強磁性体は粒子サイズにより磁気特性が変化することが知られているが、粒子形状、粒子間距離、結晶粒の配向度等から得られる粒子臨界寸法に、Sm−Co粒子径をこの工程で粉砕して調整する。 [0025] Generally, the ferromagnetic body is known to vary the magnetic properties by the particle size, particle shape, particle distance, the particle critical dimension resulting from the orientation of such crystal grains, Sm-Co adjusted by grinding particle size in this step.

【0026】また、ここにおけるSm−Co粒子の粉砕は、混合が良好になされるように行われる。 Further, grinding here definitive Sm-Co particles is performed such mixing is performed satisfactorily. すなわち、 That is,
Sm−Co粒子が粉砕されてそれらに活性な新生面が形成されることで、その新生面へZn粒子が付着しやすくなり、図3に示すように、全てのSm−Co粒子31の活性面にZn粒子32が付着するようになることで、S Sm-Co particles are comminuted by the active new surface is formed on them, tends to adhere Zn particles to the new surface, as shown in FIG. 3, Zn in the active surfaces of all of the Sm-Co particles 31 by particles 32 becomes attached, S
m−Co粒子31間にZn粒子32を均一に分散させることができるようになる。 It is possible to uniformly disperse the Zn particles 32 between m-Co particles 31.

【0027】図4は上記のようにボールミルを使用した場合の、得られる永久磁石のせん断強度の処理時間に沿った推移を示すグラフ図であり、5時間のボールミル処理で十分な大きさのせん断強度が得られている。 [0027] Figure 4 is a case of using a ball mill as described above, is a graph showing the changes along the processing time of the shear strength of the resulting permanent magnet, shear large enough with a ball mill for 5 hours strength is obtained. なお、 It should be noted that,
後に説明する加熱成形時に超音波を付加しない場合を比較例として示している。 During heat molding to be described later is shown as comparative example in which no additional ultrasound.

【0028】なお、この実施例では上記のようにボールミル1のみを用いて粉砕を行いながら混合を行ったが、 [0028] Note that in this example were mixed while grinding using only the ball mill 1 as described above,
粒子の過度な粉砕を懸念する場合は、ボールミルにより必要な粉砕を実施した後、乳鉢等粉同士がこすれ合う工法を採ることでその問題は解消される。 If concerned about excessive crushing of the particles, after performing the necessary grinding by a ball mill, the problem is solved by adopting a method in which rub against the mortar powder together. この場合、こすり合わせによる摩擦によってもSm−Co粒子31に活性な新生面を形成され、両粒子の混合が促進される。 In this case, also formed an active new surface to Sm-Co particles 31 by friction by Kosuriawase, mixing of both particles is promoted.

【0029】また、上記の実施例では、Sm−Co粒子31とZn粒子32との混合を基本的にボールミル1において粉砕することで行うようにしたが、乳鉢においてそれぞれの粒子をこすり合わせ、このこすり合わせによる摩擦のみによってSm−Co粒子31に活性な新生面を形成するようにして両粒子の混合を行うこともできる。 [0029] In the above embodiment has been to perform by grinding in essentially ball mill 1 mixing of the Sm-Co particles 31 and Zn particles 32, rubbing each particle in a mortar, the may be by friction only by Kosuriawase for mixing of a manner both particles to form an active new surface to Sm-Co particles 31. この場合は、こすり合わせに先立ってSm−Co粒子31のみをボールミルにおいて適正な大きさに粉砕しておく。 In this case, previously milled only Sm-Co particles 31 to a proper size in a ball mill prior to Kosuriawase.

【0030】(3)[加熱、成形工程] この工程が本発明の第2の工程を構成する。 [0030] (3) [heated molding step] This step constitutes the second step of the present invention.

【0031】この工程の説明に先立ち、図5を参照してこの工程において用いる加熱成形機10の構成を説明する。 [0031] Prior to the description of this process, with reference to FIG. 5 illustrating the configuration of a hot forming machine 10 used in this step.

【0032】筒状の金型11内の上部ポンチ12下端と下部ホーン13上端との間に成形品の装填部14が形成され、この装填部14は金型11外周表面に巻装された電熱線15によって加熱され、さらに上部ポンチ12を通して圧力が負荷されるようになっている。 The loading section 14 of the molded article between the upper punch 12 the lower end and the lower horn 13 the upper end of the cylindrical mold 11 is formed, conductive the loading unit 14 wound around the mold 11 the outer peripheral surface It is heated by hot wire 15, and further so that the pressure through the upper punch 12 is loaded. また、この装填部14には、上部ポンチ12及び下部ホーン13を鉄芯とした電磁石によって発生される磁場が与えられるとともに、振動子16にブースターホーン17を取り付け、ブースターホーン17の先端に下部ホーン13を接続することによって超音波振動が与えられるようになっている。 Further, this loading section 14, together with the magnetic field generated by electromagnets upper punch 12 and lower horn 13 and the iron core is given, a booster horn 17 attached to the vibrator 16, the lower horn to the tip of the booster horn 17 so that the ultrasonic vibration is given by connecting 13. 19は上部ポンチ12及び下部ホーン13を磁化させる磁化コイルである。 19 is a magnetization coil for magnetizing the upper punch 12 and lower horn 13.

【0033】なお、ブースターホーン17のプレス台1 [0033] It should be noted that the press table 1 of the booster horn 17
8での支持具20それぞれを介しての支持によって振動が阻害されることが懸念されるが、ブースターホーン1 Support 20 at 8 but the vibration by the support through the respectively concerned to be inhibited, booster horn 1
7の密度をρ、ヤング率をEとすれば、軸方向に伸縮する縦振動の音速度cは、 c=√E/ρ で表され、縦波の波長λは、共振周波数fとすれば、 λ=c/f となり、振動子16とブースターホーン17の接続部から支持部までの距離をλ/4として、支持部での振動をOとすることによって、上記阻害を防止することができるようになっている。 7 density of [rho, if the Young's modulus and E, the sound velocity c in the longitudinal oscillation which expands and contracts in the axial direction, is expressed by c = √E / ρ, the wavelength λ of the longitudinal wave, if the resonance frequency f , next to lambda = c / f, as lambda / 4 the distance to the supporting portion from the connecting portion of the vibrator 16 and the booster horn 17, by the vibration of the support portion and O, it is possible to prevent the inhibition It has become way.

【0034】上記のような構成の加熱成形機10において、加圧による成形は粒子の方向をC軸方向にそろえB [0034] In the heating molding machine 10 of the above configuration, forming by pressurization align the direction of the particle in the C axis direction B
r(残留磁束密度)の大きい異方性磁石を得るように磁場中で行う。 So as to obtain a large anisotropic magnet of r (residual magnetic flux density) performed in a magnetic field. この時、電熱線15により加熱するとともに、振動子16を作動することで微振動を与えるもので、図6はそれぞれの作動のタイミングを示している。 At this time, along with heating by heating wire 15, but to provide a micro-vibration by actuating the vibrator 16, Fig. 6 shows the timing of each operation.

【0035】すなわち、加熱は2分経過後ぐらいに開始され、17分経過後ぐらいに停止され、これにより、金型温度は5分経過後あたりから17分経過後ぐらいまで約500℃に維持される。 [0035] That is, the heating is started about two minutes after being stopped around after 17 minutes, by which, the mold temperature is maintained at about 500 ° C. from per 5 minutes after until about after 17 minutes that. 加圧は加熱前に低圧(10K Pressure is low pressure prior to heating (10K
g/mm 2 )において、加熱の停止前において高圧(6 In g / mm 2), high pressure before stopping the heating (6
0Kg/mm 2 )において行われる。 0 kg / mm 2) is carried out in. 磁場形成は初めから15分経過後ぐらいまで継続して行われる。 Magnetic field formation is continued until about 15 minutes after from the beginning. 超音波の付加は、加熱前と500℃なった初期の段階で行われる。 The addition of ultrasound is performed at the initial stage became heated before and 500 ° C..

【0036】上記の加熱によってSm−Co粒子表面のZn粒子が液状化し、さらに超音波による微振動によって液状のZnがSm−Co粒子界面にくまなく浸透し、 The Zn particles Sm-Co particle surfaces by heating the above liquefied, Zn liquid penetrates throughout the Sm-Co particle interface by further fine ultrasonic vibration,
また、磁場の付加によりSm−Co粒子の配向がなされる。 The alignment of the Sm-Co particles is made by the addition of a magnetic field. この配向は超音波の微振動により促進される。 This orientation is promoted by the micro-vibration of ultrasound.

【0037】図7は磁束密度に及ぼす超音波振動付加の効果を表すグラフ図であり、超音波振動が付加された場合の方が磁束密度が高くなることを表している。 FIG. 7 is a graph showing the effect of ultrasonic vibrations added on the magnetic flux density, towards the case where the ultrasonic vibration is added indicates that the magnetic flux density increases.

【0038】この実施例では圧縮圧力として10〜60 [0038] As compression pressure in this example 10-60
Kg/mm 2を、磁場は最大で17kOe、加熱はZn 17kOe the kg / mm 2, the magnetic field is maximum, heating Zn
の融点上500℃、振動は周波数18kHz、振幅10 Mp on 500 ° C., the oscillation frequency 18 kHz, amplitude 10
μmを設定して実施した。 It was carried out by setting the μm.

【0039】(4)[冷却工程] 図6において、17分経過後に加熱が終了することで金型14温度は下降し、それにより成形品の冷却がなされ、製品の取り出しが行われる。 [0039] (4) in Cooling Step] FIG 6, the mold 14 temperature is lowered by heating the after 17 minutes ended, it molded article cooling is performed by the retrieval of the product takes place.

【0040】(5)[熱処理工程] 上記成形品を、200℃で1時間ぐらい加熱する。 [0040] (5) the heat treatment step] The above molded article is heated for about 1 hour at 200 ° C.. これにより、永久磁石の保持力を高める。 Thereby increasing the holding force of the permanent magnet.

【0041】図8は成形品である永久磁石30の断面構成を示し、Sm−Co粒子31間にZn32が充填された状態となっている。 [0041] Figure 8 shows a cross-sectional structure of the permanent magnet 30 is a molded article, Zn32 between Sm-Co particles 31 is in the state of being filled.

【0042】図9は本発明の製造によって得られた永久磁石の性能を従来の焼結磁石とボンド磁石と比較するもので、本発明の永久磁石は、せん断強度、残留磁束密度とも焼結磁石と同等の十分な値が得られている。 [0042] Figure 9 is intended to be compared with the conventional sintered magnet and a bonded magnet performance of the permanent magnet obtained by the production of the present invention, the permanent magnet of the present invention, shear strength, both remanence sintered magnet sufficient value is obtained equal with.

【0043】なお、上記実施例では、磁性素材としてS [0043] It should be noted that, in the above-described embodiment, S as the magnetic material
m−Coを、バインダ金属としてZnを用いた例を説明したが、Nd−Fe等の磁性素材を用いてもよく、バインダ金属としてAl,Su,Feあるいはその合金等を用いてもよい。 The m-Co, an example has been described using Zn as a binder metal, may be a magnetic material such as Nd-Fe, Al as a binder metal, Su, it may be used Fe or an alloy thereof.

【0044】図10(A)は、本発明によって得られる永久磁石60の他の実施例を示すものであり、一方面側でバインダ61の割合を多方面側で磁性材62の割合をRichとした、いわゆる傾斜機能を持った構成としている。 [0044] FIG. 10 (A) show another embodiment of the permanent magnet 60 obtained by the present invention, and Rich the proportion of magnetic material 62 the proportion of binder 61 in many fields side one side was, it has a configuration with a so-called tilt function. この永久磁石60は磁性素材粒子粉と低融点金属粒子粉との混合比が異なる複数の混合粉を多層に積層して成形加熱することで得られる。 The permanent magnet 60 is obtained by molding heated by stacking a plurality of mixing powder mixing ratios are different between the magnetic material particles powder and the low melting point metal particles powder multilayer.

【0045】図10(B)は、本発明によって得られる永久磁石71と異種材料72との複合材料70を示すものであり、本発明では低融点金属を用いることで成形温度を低くできることにより、永久磁石71と適宜の異種材料72との複合材料を容易に得ることができるようになる。 [0045] FIG. 10 (B), which shows the composite material 70 with the permanent magnet 71 and the different material 72 obtained by the present invention, by being able to the present invention lower the molding temperature by using a low-melting metal, the composite material of suitable different materials 72 and the permanent magnet 71 will be able to be easily obtained.

【0046】 [0046]

【発明の効果】請求項1記載の発明によれば、バインダとして低融点金属を用いているので、加熱成形時における体積収縮がないとともに、磁気特性、高温強度も良好に維持されるようになり、これにより、寸法精度、磁気特性、高温強度がともに優れる永久磁石が得られるようになった。 Effects of the Invention According to the first aspect of the invention, because of the use of low melting point metal as a binder, with no volume shrinkage during heat molding, magnetic properties, high-temperature strength will be well maintained , This enables to dimensional accuracy, the magnetic properties, a permanent magnet high-temperature strength is excellent both obtained.

【0047】請求項2記載の発明によれば、バインダとして低融点金属粒子粉を用いて永久磁石を製造するので、低温で加熱成形できることで体積収縮がないとともに、磁気特性、高温強度も良好に維持され、これにより、寸法精度、磁気特性、高温強度がともに優れる永久磁石が得られるようになった。 [0047] According to the second aspect of the present invention, since the production of permanent magnets with a low melting point metal particles powder as a binder, with no volume shrinkage by heatable molded at a low temperature, the magnetic properties, high-temperature strength satisfactorily It is maintained, thereby, became dimensional accuracy, the magnetic properties, a permanent magnet high-temperature strength is excellent both obtained.

【0048】とくに、本発明では、加熱成形が同時に行われて永久磁石が得られる構成としていて、従来の焼結磁石に比べて製造が短時間において簡単に行われるもので、言い換えるならば、従来におけるボンド磁石と同様の簡単な製造工程において、焼結磁石と同等の優れた性能を持つ永久磁石が得られるようになった。 [0048] Particularly, in the present invention, heat molding have a configuration in which a permanent magnet is obtained simultaneously performed, those produced in comparison with the conventional sintered magnet is easily performed in a short time, in other words, the conventional in a similar simple manufacturing process and bonded magnets in the permanent magnet having a sintered magnet comparable excellent performance it has come to be obtained.

【0049】請求項3記載の発明によれば、請求項2記載の発明において、さらに、粉砕により磁性素材粒子が粒子臨界寸法にされるとともに、より混合が促進されるようになるので、これにより、さらに磁気特性に優れ、 [0049] According to the third aspect of the present invention, in the invention of claim 2, further together with the magnetic material particles is the particle critical dimension by grinding, since more mixing is to be promoted, thereby further excellent magnetic characteristics,
かつ、せん断強度が大きい永久磁石が得られるようになった。 And it began to shear strength is large permanent magnet is obtained.

【0050】請求項4記載の発明によれば、請求項2記載の発明において、さらに、こすり合わせにより混合が促進されるようになるので、これにより、さらに磁気特性に優れ、かつ、せん断強度が大きい永久磁石が得られるようになった。 [0050] According to a fourth aspect of the present invention, in the invention of claim 2, further, the mixed by Kosuriawase is to be promoted, thereby further excellent magnetic characteristics, and the shear strength large permanent magnet is now obtained.

【0051】請求項5記載の発明によれば、請求項2記載の発明において、さらに、成形に際し液状の低融点金属が磁性素材粒子の粒子界面にくまなく浸透するとともに、粒子間の空間を縮小し密度をも向上させるので、これにより、さらにせん断強度が大きく、磁気特性に優れる永久磁石が得られるようになった。 [0051] According to the invention of claim 5, wherein, in the invention of claim 2, further together with a low melting point metal in liquid upon molding penetrates throughout the particle interface between the magnetic material particles, reducing the space between the particles since thereby also improved density, thereby further shear strength is large, it has become a permanent magnet having excellent magnetic characteristics can be obtained.

【0052】請求項6記載の発明によれば、請求項2記載の発明において、成形に際し磁性素材粒子の配向が行われ、磁気特性に優れる永久磁石が得られるようになった。 [0052] According to the sixth aspect of the present invention, in the invention described in claim 2, the orientation of the magnetic material particles is performed upon molding, it became a permanent magnet having excellent magnetic characteristics can be obtained.

【0053】請求項7記載の発明によれば、請求項2記載の発明において、請求項3または請求項4、請求項5、請求項6記載の発明の作用がともに発揮される、製造が容易で、寸法精度、磁気特性、強度がともに優れる永久磁石が得られるようになった。 [0053] According to the invention of claim 7, wherein, in the invention described in claim 2, claim 3 or claim 4, claim 5, effects of the invention of claim 6, wherein are both exhibited, easy to manufacture in began to dimensional accuracy, magnetic properties, strength both excellent permanent magnets are obtained.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の製造工程を示す簡略図 Simplified diagram showing a manufacturing process of the present invention; FIG

【図2】ボールミルを示す簡略図 FIG. 2 is a simplified diagram showing a ball mill

【図3】Sm−Co粒子とZn粒子との混合を示す図 Figure 3 illustrates the mixing of the Sm-Co particles and Zn particles

【図4】ボールミル処理の時間経過にによるせん断強度の推移を示すグラフ図 Figure 4 is a graph showing the transition of the shear strength due to the time course of ball milling

【図5】圧縮整形機の構成図。 FIG. 5 is a block diagram of a compression shaper.

【図6】加熱成形時のそれぞれの動作タイミングを説明する図 6A to 6C illustrate respective operation timing when thermoforming

【図7】本発明によって得られる永久磁石の実施例断面図 [7] Example sectional view of a permanent magnet obtained by the present invention

【図8】磁束密度におよぼす超音波振動付加の効果を示すグラフ図 Figure 8 is a graph showing the effect of ultrasonic vibrations added on the magnetic flux density

【図9】本発明によって得られる永久磁石の特性の説明図 Figure 9 is an explanatory view of characteristics of permanent magnets obtained by the present invention

【図10】本発明によって得られる永久磁石の他の実施例の断面図 Cross-sectional view of another embodiment of a permanent magnet obtained by the present invention; FIG

【符号の説明】 DESCRIPTION OF SYMBOLS

30 永久磁石 31 Sm−Co粒子(磁性材) 32 Zn(低融点金属) 30 permanent magnet 31 Sm-Co particles (magnetic material) 32 Zn (low melting point metal)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 6識別記号 庁内整理番号 FI 技術表示箇所 B22F 3/093 C22C 38/00 303 D // C22C 19/07 E B22F 3/02 J ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 identification symbol Agency in Docket No. FI art display portion B22F 3/093 C22C 38/00 303 D // C22C 19/07 E B22F 3/02 J

Claims (7)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 磁性素材とバインダとが一体に成形されて構成される永久磁石において、 前記バインダとして低融点金属を用いてなることを特徴とする永久磁石。 1. A magnetic material and a binder and is in a permanent magnet constructed integrally formed, the permanent magnet characterized by using the low melting point metal as the binder.
  2. 【請求項2】 所定量の磁性素材粒子粉と低融点金属粒子粉とを混合する第1の工程と、 前記第1の工程で得られた混合材料を加熱成形する第2 Wherein a first step of mixing a predetermined amount of the magnetic material particles powder and the low melting point metal particles powder, the heat molding the mixed material obtained in the first step 2
    の工程と、 を備えることを特徴とする永久磁石の製造方法。 Manufacturing method of a permanent magnet, characterized in that it comprises between step.
  3. 【請求項3】 前記第1の工程を、粉砕を伴って行うことを特徴とする請求項2記載の永久磁石の製造方法。 Wherein the first step, the manufacturing method of a permanent magnet of claim 2, wherein the performed with grinding.
  4. 【請求項4】 前記第1の工程を、こすり合わせを伴って行うことを特徴とする請求項2記載の永久磁石の製造方法。 Wherein said first step, the manufacturing method of the permanent magnet according to claim 2, characterized in that with a Kosuriawase.
  5. 【請求項5】 前記第2の工程を、微振動を伴って行うことを特徴とする請求項2記載の永久磁石の製造方法。 Wherein said second step, the manufacturing method of the permanent magnet according to claim 2, characterized in that with a slight vibration.
  6. 【請求項6】 前記第2の工程を、磁場中において行うことを特徴とする請求項2記載の永久磁石の製造方法。 Wherein said second step, the manufacturing method of the permanent magnet according to claim 2, characterized in that in a magnetic field.
  7. 【請求項7】 前記第1の工程を粉砕もしくはこすり合わせを伴って行い、前記第2の工程を磁場中において微振動を伴って行うことを特徴とする請求項2記載の永久磁石の製造方法。 7. conducted with a grinding Moshikuwakosuriawase the first step, the manufacturing method of the permanent magnet according to claim 2, wherein the second step and performing with a micro-vibrating in a magnetic field .
JP6111086A 1994-05-25 1994-05-25 Parmanent magnet and manufacturing method thereof Pending JPH07320918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6111086A JPH07320918A (en) 1994-05-25 1994-05-25 Parmanent magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6111086A JPH07320918A (en) 1994-05-25 1994-05-25 Parmanent magnet and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH07320918A true JPH07320918A (en) 1995-12-08

Family

ID=14552035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6111086A Pending JPH07320918A (en) 1994-05-25 1994-05-25 Parmanent magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07320918A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100509A (en) * 2001-09-27 2003-04-04 Nec Tokin Corp Magnetic core and inductance part using the same
US8518194B2 (en) 2008-10-01 2013-08-27 Vacuumschmelze Gmbh & Co. Kg Magnetic article and method for producing a magnetic article
US8551210B2 (en) 2007-12-27 2013-10-08 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
US8938872B2 (en) 2008-10-01 2015-01-27 Vacuumschmelze Gmbh & Co. Kg Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
US9175885B2 (en) 2007-02-12 2015-11-03 Vacuumschmelze Gmbh & Co. Kg Article made of a granular magnetocalorically active material for heat exchange
US9524816B2 (en) 2010-08-18 2016-12-20 Vacuumschmelze Gmbh & Co. Kg Method of fabricating a working component for magnetic heat exchange
JP2017523586A (en) * 2015-04-29 2017-08-17 エルジー エレクトロニクス インコーポレイティド Manganese bismuth thermal stability was improved sintered magnet and a method for their preparation
US9773591B2 (en) 2009-05-06 2017-09-26 Vacuumschmelze Gmbh & Co. Kg Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100509A (en) * 2001-09-27 2003-04-04 Nec Tokin Corp Magnetic core and inductance part using the same
US9175885B2 (en) 2007-02-12 2015-11-03 Vacuumschmelze Gmbh & Co. Kg Article made of a granular magnetocalorically active material for heat exchange
US8551210B2 (en) 2007-12-27 2013-10-08 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
US9666340B2 (en) 2007-12-27 2017-05-30 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
US8518194B2 (en) 2008-10-01 2013-08-27 Vacuumschmelze Gmbh & Co. Kg Magnetic article and method for producing a magnetic article
US8938872B2 (en) 2008-10-01 2015-01-27 Vacuumschmelze Gmbh & Co. Kg Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
US9773591B2 (en) 2009-05-06 2017-09-26 Vacuumschmelze Gmbh & Co. Kg Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange
US9524816B2 (en) 2010-08-18 2016-12-20 Vacuumschmelze Gmbh & Co. Kg Method of fabricating a working component for magnetic heat exchange
JP2017523586A (en) * 2015-04-29 2017-08-17 エルジー エレクトロニクス インコーポレイティド Manganese bismuth thermal stability was improved sintered magnet and a method for their preparation

Similar Documents

Publication Publication Date Title
EP0239031B1 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
EP0125752B1 (en) Bonded rare earth-iron magnets
US7498080B2 (en) Ferromagnetic powder for dust core
EP0418304B1 (en) Method of forming a permanent magnet rotor
US5565043A (en) Rare earth cast alloy permanent magnets and methods of preparation
EP0483423A1 (en) Composite member and method for making the same
CN1129151C (en) Method for manufacturing magnetic anisotropic resin mating-type magnetic body
US2964793A (en) Method of making permanent magnets
EP0538073A2 (en) Process for producing sintered body and magnet base
US5039292A (en) Device for manufacturing magnetically anisotropic magnets
US5223759A (en) DC brushless motor with solid rotor having permanent magnet
US8039998B2 (en) Rotor for motor and method for producing the same
CN1134029C (en) Bound magnet
CN1302489C (en) Radial anisotropic sintered magnet, its production method, and rotor and motor therewith
CN101521068A (en) Rare earth permanent magnet and method of manufacturing the same
JPWO2008123251A1 (en) Permanent magnet type rotating machine and a method for producing
CN1757148A (en) Rotor and process for manufacturing the same
CN1061162C (en) Method for manufacturing hot-pressed iron-rare earth permanent-magnet
CN101401282B (en) A method of manufacturing a radial anisotropic magnet and a radial anisotropic magnet of the permanent magnet motor has a core and a permanent magnet motor
JPH0974006A (en) Magnetic material and bonded magnet
US4536233A (en) Columnar crystal permanent magnet and method of preparation
JPH05315175A (en) Manufacture of magnetic circuit component and mold therefor
US5049203A (en) Method of making rare earth magnets
JPH05318085A (en) Method for impregnating hard wear resistant surface layer into metal product and article produced by the method
CN1331169C (en) Soft magnetic powder composite material, method for the production thereof and use of the same