【発明の詳細な説明】[Detailed description of the invention]
産業上の利用分野
本発明はマグネシウム及びその合金の表面処理
法、さらに詳しくいえば、特定のアルカリ性浴を
用いて陽極酸化処理を施すことにより、該表面に
硬質でかつ耐食性に優れた白色皮膜を形成させる
方法に関するものである。
一般に、マグネシウムやその合金は実用金属の
中では比重が小さく、かつ比強度が鋼やアルミニ
ウム合金などに比べて大きく、その上吸音特性も
優れていることから、工業材料用の重要な金属と
して、例えば自動車部品、レジヤー用品、音響部
品さらには宇宙機器部品などの分野で実用に供さ
れており、その需要は今後さらに拡大する傾向に
ある。
従来の技術
ところで、マグネシウムは周知のように化学的
にはアルミニウムよりもさらに大気中で不安定で
マグネシウムやその合金はアルミニウムなどに比
べて腐食される傾向があり、実用上これを防止す
る必要があるため、これまで種々の表面処理法が
提案されている。例えばクロム酸塩、マンガン
塩、フツ化物などの単体又はこれらを組み合せた
浴中で化成処理を行う方法、浴中で鋼やステンレ
ス鋼などによるガルバニツク法で表面処理を行う
方法、アルミニウムなどの表面処理において実用
に供されている陽極酸化を施す方法などが提案さ
れている。
しかしながら、前記のクロム酸塩などによる化
成処理法については、短期間の仮防食には有効で
あるとしても、長期間にわたる防食効果は期待で
きず、しかも処理浴が有害であるために、公害防
止の諸設備を必要とし経済的にも不利である。ま
たガルバニツク法については、得られた表面皮膜
が化学的に不安定な低級酸化物であるために、そ
のもののみでは耐食性は期待できず塗装などの処
理を併用する必要があるがこのようにしても、長
期間にわたる使用に際してブリスター(ふくれ)
が発生するなどの欠点がある。さらに比較的安定
な酸化物から成る表面皮膜が得られる陽極酸化法
については、処理面の粗化が著しく、しかも形成
される塩のみによつては一様な色調が得にくいな
どの欠点を有するため、実際には塗装用の下地処
理に用いられているにすぎない。
このように、従来のマグネシウムやその合金の
表面処理法は、その効果について必ずしも満足し
うるものではなく、優れた表面処理法の開発が要
望されていた。
発明が解決しようとする問題点
本発明者らは、このような要望にこたえ、マグ
ネシウムやその合金の表面に、一様な白色を有
し、硬質でかつ耐食性に優れたち密な被覆を効率
よく施す方法を開発するために種々研究を行つて
きた。
しかしながら、アルミニウムの場合は金属アル
ミニウムに対するアルミニウム酸化物の容積比が
1.28と大きいため、陽極酸化によりアルミニウム
素地の表面にち密な被覆を形成させることは容易
であるのに対し、マグネシウムの場合は金属マグ
ネシウムに対するマグネシウム酸化物の容積比が
0.81と小さいため、陽極酸化によつて生じる酸化
物皮膜でマグネシウム素地の表面を完全に被覆す
ることができず、ち密な被覆を形成することは困
難である。
したがつて、本発明の目的は、陽極酸化により
マグネシウム又はその合金の表面に保護皮膜を形
成させるに当り、表面全体にわたつてち密な、硬
質で耐食性の良好な白色皮膜を設けるための新規
な表面処理法を提供することである。
問題点を解決するための手段
本発明者らは、アルカリ浴で安定なアルミン酸
塩を用いて陽極酸化を行い、マグネシウム及びそ
の合金の表面に形成される皮膜の特性について研
究を重ねた結果、電流−電圧曲線における過不働
領域で、火花放電を伴つて皮膜が形成されるこ
と、この領域で得られた皮膜は、X線回折による
と、MgAl2O4とMgOとの混合体、すなわちスピ
ネル構造を有する化合物と酸化マグネシウムとか
ら構成されており、HV750を有する硬質なもので
あること、しかしながら、この皮膜はその色調が
白色状であるものの、表面の粗化が著しく、5%
塩化ナトリウム水溶液による塩水噴霧試験では短
時間で白色の発錆が認められること、したがつ
て、アルミン酸塩の他に、酸化物で白色を呈する
周期表第b族や第b族の両性金属の酸化物、
水酸化物又は塩を添加したアルカリ性浴を用いて
陽極酸化処理を行い、これらの酸化物を皮膜表面
に電気化学的に複合被覆させれば、素地表面がち
密になつて皮膜の粗度や耐食性が著しく改善され
ることを見出し、この知見に基づいて本発明をな
すに至つた。
すなわち、本発明に従えば、陽極酸化によりマ
グネシウム又はその合金の表面に耐食性皮膜を形
成させるに当り、周期表第b族及び第b族に
属する両性金属の酸化物、水酸化物及び塩の中か
ら選ばれた少なくとも1種の化合物とアルミン酸
塩とを含有するアルカリ性浴中で陽極酸化処理を
行うことにより、ち密な耐食性硬質白色皮膜を形
成させることができる。
本発明において用いるアルカリ性浴は、アルミ
ン酸塩と周期表第b族及び第b族に属する両
性金属の酸化物、水酸化物又は塩の中から選ばれ
た少なくとも1種とを含有することが必要であ
り、PHは11.5以上が望ましい。このようなアルカ
リ性浴は、例えば水酸化ナトリウムや水酸化カリ
ウムなどのアルカリ金属水酸化物を含有する濃度
2N以上の水溶液に、水酸化アルミニウム若しく
は単体アルミニウムを溶解させるか、又は
NaAlO2やKAlO2などのアルミン酸塩適量を水に
溶解させ、次いで水酸化ナトリウムが水酸化カリ
ウムを用いてPHを11.5以上に調整したのち、周期
表第b族及びb族の両性金属の酸化物、水酸
化物又は塩の中から選ばれた少なくとも1種を添
加することによつて調製される。
前記の周期表第b族及びb族に属する両性
金属の酸化物、水酸化物、塩としては、例えば亜
鉛及びスズの酸化物や水酸化物、亜鉛酸ナトリウ
ム、亜鉛酸カリウム、スズ酸ナトリウム、スズ酸
カリウムなどが挙げられる。これらの化合物はそ
れぞれ単独で用いてもよいし、2種以上組み合わ
せて用いてもよい。また、前記両性金属化合物の
他に、鉛化合物も有効であるが、このもののは若
干黄味状の白色皮膜を与える。
本発明で用いるアルカリ性浴におけるアルミン
酸塩の含有量は5〜50g/、両性金属化合物の
含有量は1〜20g/の範囲であることが望まし
く、両性金属化合物/アルミン酸塩重量比は0.05
〜0.3の範囲であることが好ましい。
また、該アルカリ性浴には、前記のアルミン酸
塩及び両性金属化合物の他に、電導性を改善する
ために、アルカリ金属のフツ化物、リン酸塩及び
炭酸塩を添加してもよいし、また陽極酸化処理に
おける酸化反応を促進させるために、過マンガン
酸カリウムなどの酸性酸化物を添加してもよい。
本発明における陽極酸化処理法については、例
えば、電源として直流を用いる場合、マグネシウ
ム又はその合金を陽極とし、ステンレス鋼板が鉛
板を陰極とし、前記アルカリ性浴を用いて、浴温
−10〜80℃、電流密度0.1〜20A/dm2の範囲で
電解することにより、陽極酸化処理を行う。また
交流を用いる場合、対極にマグネシウム又はその
合金を用い、前記と同様に処理する。
このような陽極酸化処理により、マグネシウム
又はその合金の表面に、厚さ0.5〜50μm程度の
ち密な白色皮膜が形成される。
発明の効果
本発明のマグネシウム及びその合金の表面処理
法によると、それらの表面に一様な白色を有し、
硬質でかつ耐食性に優れたち密な皮膜が形成さ
れ、本発明の表面処理法は実用的価値の高い優れ
た方法である。
実施例
次に実施例によつて本発明をさらに詳細に説明
する。
実施例 1
純マグネシウムMI材を陽極とし、ステンレス
鋼板(SUS304)を陰極として、KOH150g/
、Al(OH)335g/、KF35g/及びZnO5
g/から成るアルカリ性浴を用い、浴温10℃、
直流電流密度0.5A/dm2の電解条件で30分間陽
極酸化処理を行つた。その結果、純マグネシウム
MI材の表面に、厚さ約12μmのち密な白色皮膜
が形成された。
また、対極に純マグネシウムMI材を2枚用
い、交流を用いて電流密度を1A/dm2とする以
外は、前記と同様の条件で30分間陽極酸化処理を
施したところ、厚さ18μmのち密な白色皮膜が形
成された。
実施例 2
実施例1における純マグネシウムMI材の代り
に、マグネシウム合金AZ31及びAZ91材をそれぞ
れ用いる以外は、実施例1と同様にして陽極酸化
処理を施したところ、直流、交流いずれにおいて
もち密な白色皮膜が形成された。
実施例 3
実施例1におけるアルカリ性浴のZnOの代り
に、Na2ZnO2及びK2ZnO2をそれぞれ用いる以外
は、実施例1と同様にして陽極酸化処理を施した
ところ、直流、交流いずれにおいてもち密な白色
皮膜が形成された。
実施例 4
実施例1における浴温度を−10〜50℃に変化さ
せる以外は、実施例1と同様にして陽極酸化処理
を施したところ、直流、交流いずれにおいてもち
密な白色皮膜が形成された。
次表に、直流の場合における浴温度と白色度と
の関係を示す。
Industrial Application Field The present invention relates to a method for surface treatment of magnesium and its alloys, and more specifically, by anodizing using a specific alkaline bath, a hard white film with excellent corrosion resistance is formed on the surface. The present invention relates to a method of forming the present invention. In general, magnesium and its alloys have a low specific gravity among practical metals, a high specific strength compared to steel and aluminum alloys, and they also have excellent sound absorption properties, so they are important metals for industrial materials. For example, they are used in fields such as automobile parts, leisure goods, audio parts, and even space equipment parts, and demand for them is likely to grow further in the future. Conventional Technology By the way, as is well known, magnesium is chemically more unstable than aluminum in the atmosphere, and magnesium and its alloys tend to corrode more than aluminum, so it is necessary to prevent this from a practical standpoint. Therefore, various surface treatment methods have been proposed. For example, a method of chemical conversion treatment in a bath containing chromate, manganese salt, fluoride, etc. alone or a combination of these, a method of surface treatment using a galvanic method using steel or stainless steel in a bath, a method of surface treatment of aluminum, etc. A method of performing anodic oxidation has been proposed, which is currently in practical use. However, although the above-mentioned chemical conversion treatment using chromates, etc. is effective for short-term temporary corrosion protection, long-term corrosion prevention effects cannot be expected, and furthermore, the treatment bath is harmful, so it is necessary to prevent pollution. It is economically disadvantageous as it requires various equipment. Furthermore, regarding the galvanic method, since the surface film obtained is a chemically unstable lower-grade oxide, corrosion resistance cannot be expected by itself, and treatment such as painting must be used in conjunction with it. , blisters after long-term use.
There are disadvantages such as the occurrence of Furthermore, the anodic oxidation method, which produces a surface film made of relatively stable oxides, has disadvantages such as significant roughening of the treated surface and difficulty in obtaining a uniform color tone due only to the salt formed. Therefore, it is actually only used as a base preparation for painting. As described above, conventional surface treatment methods for magnesium and its alloys are not necessarily satisfactory in terms of their effects, and there has been a demand for the development of superior surface treatment methods. Problems to be Solved by the Invention In response to these demands, the inventors of the present invention have developed a method to efficiently coat the surface of magnesium or its alloy with a dense coating that is uniformly white, hard, and has excellent corrosion resistance. Various studies have been conducted to develop methods for applying this method. However, in the case of aluminum, the volume ratio of aluminum oxide to metal aluminum is
1.28, it is easy to form a dense coating on the surface of an aluminum substrate by anodizing, whereas in the case of magnesium, the volume ratio of magnesium oxide to magnesium metal is
Since it is as small as 0.81, the surface of the magnesium substrate cannot be completely covered with the oxide film produced by anodic oxidation, making it difficult to form a dense coating. Therefore, the object of the present invention is to provide a novel method for forming a protective film on the surface of magnesium or its alloy by anodic oxidation, to provide a dense, hard, and corrosion-resistant white film over the entire surface. An object of the present invention is to provide a surface treatment method. Means for Solving the Problems The present inventors carried out anodization using an aluminate that is stable in an alkaline bath, and as a result of repeated research on the characteristics of the film formed on the surface of magnesium and its alloys. According to X-ray diffraction, a film is formed with spark discharge in the overpassive region of the current-voltage curve, and the film obtained in this region is a mixture of MgAl 2 O 4 and MgO, i.e. It is composed of a compound with a spinel structure and magnesium oxide, and is hard with an HV of 750. However, although this film is white in color, the surface is significantly roughened, and the coating has a roughness of 5%.
In a salt spray test using an aqueous sodium chloride solution, white rust is observed in a short period of time. oxide,
If anodizing is performed using an alkaline bath containing hydroxides or salts, and these oxides are electrochemically composite coated on the surface of the film, the surface of the base material becomes dense, improving the roughness and corrosion resistance of the film. The present inventors have found that this is significantly improved, and based on this knowledge, they have completed the present invention. That is, according to the present invention, when forming a corrosion-resistant film on the surface of magnesium or its alloy by anodic oxidation, oxides, hydroxides, and salts of amphoteric metals belonging to Groups B and B of the Periodic Table are used. By carrying out the anodizing treatment in an alkaline bath containing at least one compound selected from the following and an aluminate, a dense, corrosion-resistant hard white film can be formed. The alkaline bath used in the present invention must contain an aluminate and at least one selected from oxides, hydroxides, or salts of amphoteric metals belonging to Group B and Group B of the Periodic Table. , and the pH is preferably 11.5 or higher. Such alkaline baths contain concentrations of alkali metal hydroxides, such as sodium hydroxide or potassium hydroxide.
Dissolve aluminum hydroxide or simple aluminum in an aqueous solution of 2N or more, or
Dissolve an appropriate amount of aluminate such as NaAlO 2 or KAlO 2 in water, then adjust the pH to 11.5 or higher using sodium hydroxide and potassium hydroxide, and then oxidize the amphoteric metals of Group B and Group B of the periodic table. It is prepared by adding at least one selected from compounds, hydroxides, and salts. Examples of the oxides, hydroxides, and salts of amphoteric metals belonging to Groups B and B of the Periodic Table include oxides and hydroxides of zinc and tin, sodium zincate, potassium zincate, sodium stannate, Examples include potassium stannate. These compounds may be used alone or in combination of two or more. In addition to the amphoteric metal compounds, lead compounds are also effective, but these give a slightly yellowish white film. The content of aluminate in the alkaline bath used in the present invention is preferably in the range of 5 to 50 g/, the content of amphoteric metal compound in the range of 1 to 20 g/, and the weight ratio of amphoteric metal compound/aluminate is 0.05.
It is preferably in the range of ~0.3. Furthermore, in addition to the aluminates and amphoteric metal compounds mentioned above, alkali metal fluorides, phosphates, and carbonates may be added to the alkaline bath in order to improve conductivity. An acidic oxide such as potassium permanganate may be added to promote the oxidation reaction in the anodizing process. Regarding the anodizing treatment method of the present invention, for example, when using direct current as a power source, magnesium or its alloy is used as an anode, a stainless steel plate is used as a lead plate as a cathode, and the alkaline bath is used at a bath temperature of -10 to 80°C. The anodizing treatment is performed by electrolyzing at a current density of 0.1 to 20 A/dm 2 . When alternating current is used, magnesium or an alloy thereof is used as the counter electrode, and the same treatment as above is performed. By such anodic oxidation treatment, a dense white film with a thickness of about 0.5 to 50 μm is formed on the surface of magnesium or its alloy. Effects of the Invention According to the surface treatment method for magnesium and its alloy of the present invention, the surface thereof has a uniform white color,
A hard, dense film with excellent corrosion resistance is formed, and the surface treatment method of the present invention is an excellent method with high practical value. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples. Example 1 Pure magnesium MI material was used as an anode, stainless steel plate (SUS304) was used as a cathode, and KOH150g/
, Al(OH) 3 35g/, KF35g/ and ZnO5
Using an alkaline bath consisting of
Anodizing was performed for 30 minutes under electrolytic conditions at a DC current density of 0.5 A/dm 2 . As a result, pure magnesium
A dense white film with a thickness of approximately 12 μm was formed on the surface of the MI material. In addition, when two sheets of pure magnesium MI material were used as the counter electrode and anodized for 30 minutes under the same conditions as above, except that the current density was 1A/ dm2 using alternating current, the result was a 18μm thick layer. A white film was formed. Example 2 Anodizing was performed in the same manner as in Example 1, except that magnesium alloys AZ31 and AZ91 were used instead of the pure magnesium MI material in Example 1. A white film was formed. Example 3 Anodizing treatment was carried out in the same manner as in Example 1 except that Na 2 ZnO 2 and K 2 ZnO 2 were used instead of ZnO in the alkaline bath in Example 1. A dense white film was formed. Example 4 When anodizing treatment was performed in the same manner as in Example 1 except that the bath temperature in Example 1 was changed to -10 to 50°C, a dense white film was formed in both direct current and alternating current. . The following table shows the relationship between bath temperature and whiteness in the case of direct current.
【表】
なお、白色度はMgOを100とした場合の値であ
る。
実施例 5
電解浴組成をKOH150g/、K2SnO310g/
、AlNaO240g/、KF20g/とし、マグネ
シウムMI材及びマグネシウム合金Az31、Az91材
をそれぞれ用い、浴温30℃、電流密度2A/dm2
とし、直流の場合は対極に鉛板を用い、交流の場
合は対極に試料を2枚用い、それぞれ20分間電解
を施したところ、いずれの場合もち密な白色皮膜
が形成された。
また、前記アルカリ性浴を用いて、放電を伴う
浴電圧と電流密度との関係を調べたところ、40V
から放電が認められ、このときの電流密度は
0.5A/dm2で一定となつた。
さらに電圧を上昇させたところ、電流密度も上
昇し、80Vのとき5A/dm2でほぼ一定となつた。
浴電圧を上昇させることにより、電流が増加し、
それに伴つて浴温度も上昇するが、電流密度の小
さい0.5〜1.0A/dm2では浴温度はほとんど上昇
せず、2A/dm2以上では浴温は若干上昇した。
実施例 6
実施例5におけるK2SnO3及びAlNaO2の代り
に、それぞれSnO2及びAlKO2を用いる以外は、
実施例5と同様にして陽極酸化処理を行つたとこ
ろ、ち密な白色皮膜が形成された。
実施例 7
実施例5におけるK2SnO310g/の代りに、
45%ホウフツ化鉛5c.c./を用い、実施例5と同
様にして陽極酸化処理を施したところ、形成され
た皮膜の色調は実施例5のものと同様であつた
が、45%ホウフツ化鉛7c.c./以上を用いた場
合、形成された皮膜は若干黄味を帯びていた。し
かし耐食性や皮膜の硬度は実施例5のものと同様
であつた。
実施例 8
実施例5におけるアルカリ性浴に、陽極酸化処
理における酸化反応を促進するためにKMnO4を
添加し、実施例5と同様にして陽極酸化処理を施
したところ、KMnO4の添加量が5g/までは
白色皮膜が形成されたが、7g/以上添加する
と一部褐色を呈する皮膜が形成された。[Table] Note that the whiteness is the value when MgO is taken as 100. Example 5 Electrolytic bath composition: KOH 150g/, K 2 SnO 3 10g/
, AlNaO 2 40g/, KF20g/, using magnesium MI material and magnesium alloy Az31 and Az91 materials respectively, bath temperature 30℃, current density 2A/dm 2
A lead plate was used as the counter electrode in the case of direct current, and two samples were used as the counter electrode in the case of alternating current. When electrolysis was performed for 20 minutes each, a dense white film was formed in both cases. In addition, when we investigated the relationship between the bath voltage accompanied by discharge and the current density using the alkaline bath, we found that 40 V
Discharge is observed from , and the current density at this time is
It became constant at 0.5A/ dm2 . When the voltage was further increased, the current density also increased and became almost constant at 5 A/dm 2 at 80 V.
By increasing the bath voltage, the current increases,
Along with this, the bath temperature also increases, but at a low current density of 0.5 to 1.0 A/dm 2 , the bath temperature hardly increases, and at 2 A/dm 2 or more, the bath temperature slightly increases. Example 6 Except for using SnO 2 and AlKO 2 instead of K 2 SnO 3 and AlNaO 2 in Example 5, respectively.
When anodizing was carried out in the same manner as in Example 5, a dense white film was formed. Example 7 Instead of K 2 SnO 3 10g/in Example 5,
When anodizing was performed in the same manner as in Example 5 using 5 c.c./45% lead borofluoride, the color tone of the formed film was similar to that in Example 5, but with 45% lead borofluoride. When lead oxide of 7 c.c./or more was used, the formed film was slightly yellowish. However, the corrosion resistance and hardness of the film were similar to those of Example 5. Example 8 KMnO 4 was added to the alkaline bath in Example 5 in order to promote the oxidation reaction in the anodizing treatment, and the anodizing treatment was performed in the same manner as in Example 5. The amount of KMnO 4 added was 5 g. A white film was formed up to /, but when 7 g/ or more was added, a partly brown film was formed.