JP5595874B2 - Magnesium alloy surface treatment method - Google Patents

Magnesium alloy surface treatment method Download PDF

Info

Publication number
JP5595874B2
JP5595874B2 JP2010247925A JP2010247925A JP5595874B2 JP 5595874 B2 JP5595874 B2 JP 5595874B2 JP 2010247925 A JP2010247925 A JP 2010247925A JP 2010247925 A JP2010247925 A JP 2010247925A JP 5595874 B2 JP5595874 B2 JP 5595874B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
ion
chemical conversion
treatment method
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010247925A
Other languages
Japanese (ja)
Other versions
JP2012097340A (en
Inventor
光夫 鈴木
武 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2010247925A priority Critical patent/JP5595874B2/en
Publication of JP2012097340A publication Critical patent/JP2012097340A/en
Application granted granted Critical
Publication of JP5595874B2 publication Critical patent/JP5595874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は耐食性及び塗装密着性に優れた表面を有するマグネシウム合金を得るためのマグネシウム合金の表面処理方法に関する。   The present invention relates to a magnesium alloy surface treatment method for obtaining a magnesium alloy having a surface excellent in corrosion resistance and paint adhesion.

マグネシウム合金は実用金属のなかでは密度が最も小さく、比強度が高く、リサイクル性、電磁波シールド性等に優れた特性を有しているため、プラスチックに代わる素材としてデジタルカメラ、ノートパソコン、携帯電話、ビデオカメラ等の筐体や部品、自動車部品に実用されてきている。しかしながら、マグネシウム合金は耐食性が劣るため、従来からマグネシウム合金部材の多くは化学的浸漬処理によって化成皮膜を生成させ、これによって耐食性を付与している。また、この化成皮膜は有機質皮膜との密着性が優れているので、化成処理後に塗装処理を施せば、一般的な腐食環境においても十分に耐食性を維持することができる。   Magnesium alloy has the lowest density among practical metals, high specific strength, and excellent properties such as recyclability and electromagnetic wave shielding, so digital cameras, laptop computers, mobile phones, It has been put into practical use for housings and parts such as video cameras and automobile parts. However, since magnesium alloys are inferior in corrosion resistance, conventionally, many magnesium alloy members have formed chemical conversion films by chemical immersion treatment, thereby imparting corrosion resistance. Moreover, since this chemical conversion film is excellent in adhesiveness with the organic film, if the coating treatment is performed after the chemical conversion treatment, the corrosion resistance can be sufficiently maintained even in a general corrosive environment.

以前には、マグネシウム合金用の化成処理としては、JIS H 8651やMIL−M−3171等のクロム系化成処理が主流であった。しかしながら、これらのクロム系化成処理液は、いずれも6価クロムイオンを含有しており、人体及び地球環境にとって有害性を伴うものであった。このため近年では、ノンクロム系の化成処理液が研究され、実用化されるようになってきた。ノンクロム系化成処理液としてはリン酸−マンガン系化成処理液(例えば、特許文献1参照。)、リン酸−マンガン−カルシウム系化成処理液(例えば、特許文献2参照。)、リン酸−マンガン−カルシウム−バナジウム系化成処理液(例えば、特許文献3参照。)等がある。   Previously, as a chemical conversion treatment for a magnesium alloy, chromium-based chemical conversion treatment such as JIS H8651 and MIL-M-3171 has been mainstream. However, these chromium-based chemical conversion treatment solutions all contain hexavalent chromium ions and are harmful to the human body and the global environment. Therefore, in recent years, non-chromium chemical conversion treatment liquids have been studied and put into practical use. As the non-chromium chemical conversion treatment liquid, a phosphoric acid-manganese chemical conversion treatment liquid (for example, see Patent Document 1), a phosphoric acid-manganese-calcium chemical conversion treatment liquid (for example, see Patent Document 2), and phosphoric acid-manganese- There is a calcium-vanadium chemical conversion treatment solution (for example, see Patent Document 3).

特開平07−126858号公報Japanese Patent Application Laid-Open No. 07-126858 特開平11−131255号公報JP-A-11-131255 特開2002−121681号公報JP 2002-121681 A

耐食性及び塗装密着性が更に改善された表面を有するマグネシウム合金が引き続き求められている。本発明もまた耐食性及び塗装密着性に優れた表面を有するマグネシウム合金を得るためのマグネシウム合金の表面処理方法を提供することを目的としている。   There is a continuing need for magnesium alloys having surfaces with further improved corrosion resistance and paint adhesion. Another object of the present invention is to provide a surface treatment method of a magnesium alloy for obtaining a magnesium alloy having a surface excellent in corrosion resistance and paint adhesion.

本発明者らは上記の目的を達成するために種々検討した結果、特定組成の電解液を用いて陽極酸化処理し、次いで特定組成の化成処理液を用いて化成処理することにより耐食性及び塗装密着性に優れた表面を有するマグネシウム合金が得られることを見出し、本発明を完成した。   As a result of various investigations to achieve the above object, the present inventors have conducted anodizing treatment using an electrolytic solution having a specific composition, and then performing chemical conversion treatment using a chemical conversion treatment solution having a specific composition. The present invention was completed by finding that a magnesium alloy having a surface with excellent properties can be obtained.

即ち、本発明のマグネシウム合金の表面処理方法は、
マグネシウム合金の表面を
リン酸イオン 3〜15g/L
アルミン酸イオン 1〜6g/L
フッ化物イオン 1〜10g/L
水酸化アルカリ金属 1〜8g/L(水酸化ナトリウム換算で)
を含む電解液中に浸漬し、好ましくは30〜60℃で好ましくは電流密度0.5〜2A/dmで好ましくは3〜10分間、陽極酸化処理して陽極酸化皮膜を形成し、次いで
ピロリン酸イオン 1〜100g/L
リン酸イオン 1〜60g/L
フッ化物イオン 0.5〜10g/L
スズ酸イオン 0.1〜10g/L
メタバナジン酸イオン 0.1〜10g/L
を含む化成処理液で、好ましくは20〜60℃で好ましくは0.5〜5分間、化成処理して皮膜を形成することを特徴とする。
That is, the surface treatment method of the magnesium alloy of the present invention,
The surface of the magnesium alloy is phosphate ion 3-15g / L
Aluminate ion 1-6g / L
Fluoride ion 1-10g / L
Alkali metal hydroxide 1-8g / L (in terms of sodium hydroxide)
And anodized to form an anodized film , preferably at 30 to 60 ° C., preferably at a current density of 0.5 to 2 A / dm 2 and preferably for 3 to 10 minutes, and then pyrroline Acid ion 1-100g / L
Phosphate ion 1-60g / L
Fluoride ion 0.5-10g / L
Stannate ion 0.1 ~ 10g / L
Metavanadate ion 0.1-10g / L
And a chemical conversion treatment solution, preferably at 20 to 60 ° C., preferably for 0.5 to 5 minutes, to form a film .

また、本発明のマグネシウム合金の表面処理方法は、
マグネシウム合金の表面を
フッ化アンモニウム 0.4〜10g/L
を含む溶液中に浸漬して、好ましくは20〜50℃で好ましくは2〜10分間表面調整し、次いで
リン酸イオン 3〜15g/L
アルミン酸イオン 1〜6g/L
フッ化物イオン 1〜10g/L
水酸化アルカリ金属 1〜8g/L(水酸化ナトリウム換算で)
を含む電解液中に浸漬し、30〜60℃で好ましくは電流密度0.5〜2A/dmで3〜10分間陽極酸化処理して陽極酸化皮膜を形成し、更に
ピロリン酸イオン 1〜100g/L
リン酸イオン 1〜60g/L
フッ化物イオン 0.5〜10g/L
スズ酸イオン 0.1〜10g/L
メタバナジン酸イオン 0.1〜10g/L
を含む化成処理液で、20〜60℃で0.5〜5分間化成処理して皮膜を形成することを特徴とする。
The surface treatment method of the magnesium alloy of the present invention,
The surface of the magnesium alloy is 0.4 to 10 g / L ammonium fluoride.
So that the surface is preferably adjusted at 20 to 50 ° C., preferably for 2 to 10 minutes, and then phosphate ions 3 to 15 g / L
Aluminate ion 1-6g / L
Fluoride ion 1-10g / L
Alkali metal hydroxide 1-8g / L (in terms of sodium hydroxide)
And anodized at 30-60 ° C., preferably at a current density of 0.5-2 A / dm 2 for 3-10 minutes to form an anodized film, and further pyrophosphate ions 1-100 g / L
Phosphate ion 1-60g / L
Fluoride ion 0.5-10g / L
Stannate ion 0.1 ~ 10g / L
Metavanadate ion 0.1-10g / L
The film is formed by chemical conversion treatment at 20 to 60 ° C. for 0.5 to 5 minutes.

本発明のマグネシウム合金の表面処理方法で得られるマグネシウム合金の表面は耐食性及び塗装密着性に優れている。   The surface of the magnesium alloy obtained by the magnesium alloy surface treatment method of the present invention is excellent in corrosion resistance and paint adhesion.

本発明の表面処理方法で処理できるマグネシウム合金はその組成については特に限定されず、産業上使用される何れのマグネシウム合金にも適用できる。そのマグネシウム合金の具体例としては、AZ92、AZ91、AZ80、AZ63、AZ61、AZ31、AM100、AM60、AM50、AM20、AS41、AS21、AE42、ACM522(Mg−5Al−2Ca−2RE)等が挙げられる。また、本発明の表面処理方法の対象となる部材としては、これらのマグネシウム合金の鋳造品、ダイカスト品、射出成形品(半溶融鋳造またはチキソモールド)、展伸材(押出材、圧延材、鍛造材)の板及びプレス品等が挙げられる。   The composition of the magnesium alloy that can be treated by the surface treatment method of the present invention is not particularly limited, and can be applied to any magnesium alloy used in the industry. Specific examples of the magnesium alloy include AZ92, AZ91, AZ80, AZ63, AZ61, AZ31, AM100, AM60, AM50, AM20, AS41, AS21, AE42, ACM522 (Mg-5Al-2Ca-2RE) and the like. Further, as a member to be subjected to the surface treatment method of the present invention, these magnesium alloy castings, die-casting products, injection-molded products (semi-molten casting or thixo mold), wrought materials (extruded materials, rolled materials, forged materials) Material) plates and pressed products.

本発明の表面処理方法で用いる化成処理液はピロリン酸イオン、リン酸イオン、フッ化物イオン、スズ酸イオン及びメタバナジン酸イオンを含む。ピロリン酸イオン源としてピロリン酸や、ピロリン酸ナトリウム、ピロリン酸水素ナトリウム、ピロリン酸カリウム、ピロリン酸水素カリウム、ピロリン酸アンモニウム等の水溶性ピロリン酸塩を用いることができる。リン酸イオン源としてリン酸や、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム等の水溶性リン酸塩を用いることができる。フッ化物イオン源としてフッ化水素酸や、アルカリ金属フッ化物であるフッ化ナトリウム、フッ化カリウム等やフッ化アンモニウム等の水溶性フッ化水素酸塩を用いることができる。スズ酸イオン源としてスズ酸や、スズ酸ナトリウム、スズ酸カリウム、スズ酸アンモニウム等の水溶性スズ酸塩を用いることができる。また、メタバナジン酸イオン源としてメタバナジン酸や、メタバナジン酸ナトリウム、メタバナジン酸カリウム、メタバナジン酸アンモニウム等の水溶性メタバナジン酸塩を用いることができる。   The chemical conversion treatment solution used in the surface treatment method of the present invention contains pyrophosphate ions, phosphate ions, fluoride ions, stannate ions, and metavanadate ions. As the pyrophosphate ion source, pyrophosphoric acid, or a water-soluble pyrophosphate such as sodium pyrophosphate, sodium hydrogen pyrophosphate, potassium pyrophosphate, potassium hydrogen pyrophosphate, or ammonium pyrophosphate can be used. Phosphoric acid as a phosphate ion source and water-soluble phosphates such as sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate Can be used. As the fluoride ion source, hydrofluoric acid or water-soluble hydrofluoric acid salt such as sodium fluoride, potassium fluoride or ammonium fluoride which is an alkali metal fluoride can be used. As a stannate ion source, water-soluble stannates such as stannic acid, sodium stannate, potassium stannate, and ammonium stannate can be used. Moreover, water-soluble metavanadates, such as metavanadate, sodium metavanadate, potassium metavanadate, ammonium metavanadate, can be used as a metavanadate ion source.

本発明の表面処理方法で用いる化成処理液においては、ピロリン酸イオン濃度は1〜100g/L、好ましくは5〜50g/Lであり(ピロリン酸ナトリウム濃度として1.5〜153g/L、好ましくは7.6〜76g/L、他の成分についての同様)、リン酸イオン濃度は1〜60g/L、好ましくは3〜30g/Lであり、フッ化物イオン濃度は0.5〜10g/L、好ましくは1〜8g/Lであり、スズ酸イオン濃度は0.1〜10g/L、好ましくは0.5〜8g/Lであり、メタバナジン酸イオン濃度は0.1〜10g/L、好ましくは0.5〜8g/Lである。   In the chemical conversion treatment solution used in the surface treatment method of the present invention, the pyrophosphate ion concentration is 1 to 100 g / L, preferably 5 to 50 g / L (sodium pyrophosphate concentration is 1.5 to 153 g / L, preferably 7.6 to 76 g / L, the same for other components), the phosphate ion concentration is 1 to 60 g / L, preferably 3 to 30 g / L, and the fluoride ion concentration is 0.5 to 10 g / L, Preferably, it is 1-8 g / L, the stannate ion concentration is 0.1-10 g / L, preferably 0.5-8 g / L, and the metavanadate ion concentration is 0.1-10 g / L, preferably 0.5 to 8 g / L.

本発明の表面処理方法で採用する化成処理として上記の化成処理液を用い、化成処理液のpHをNaOH等のアルカリで好ましくは9〜11、実際には9.5程度に調整し、化成処理液の温度を好ましくは20〜60℃、より好ましくは30〜55℃に維持し、好ましくは0.5〜5分間、より好ましくは1〜4分間処理する。化成処理液の温度が20℃よりも低い場合には反応速度が小さく、皮膜生成までに長時間を要し、また60℃よりも高い場合には皮膜の生成速度は大きいが、皮膜に肌ムラが発生し易くなる傾向がある。   As the chemical conversion treatment employed in the surface treatment method of the present invention, the chemical conversion treatment solution is used, and the pH of the chemical conversion treatment solution is preferably adjusted to 9 to 11, preferably about 9.5 with an alkali such as NaOH. The temperature of the liquid is preferably maintained at 20 to 60 ° C., more preferably 30 to 55 ° C., preferably 0.5 to 5 minutes, more preferably 1 to 4 minutes. When the temperature of the chemical conversion treatment liquid is lower than 20 ° C., the reaction rate is low, and it takes a long time until the film is formed. Tends to occur.

マグネシウム合金の表面を上記のように化成処理することにより耐食性及び塗装密着性が改善された表面を有するマグネシウム合金を得ることができる。しかしながら、上記のような化成処理に先立ってマグネシウム合金の表面を陽極酸化処理することにより、即ち、表面を陽極酸化処理したマグネシウム合金の表面を上記のように化成処理することにより、耐食性及び塗装密着性に一層優れた表面を有するマグネシウム合金を得ることができる。   By subjecting the surface of the magnesium alloy to chemical conversion treatment as described above, a magnesium alloy having a surface with improved corrosion resistance and paint adhesion can be obtained. However, by anodizing the surface of the magnesium alloy prior to the chemical conversion treatment as described above, that is, by subjecting the surface of the magnesium alloy anodized to the chemical conversion treatment as described above, the corrosion resistance and paint adhesion A magnesium alloy having a surface with even better properties can be obtained.

本発明の表面処理方法で用いる陽極酸化処理のための電解液はリン酸イオン、アルミン酸イオン、フッ化物イオン及び水酸化アルカリ金属を含む。リン酸イオン源としてリン酸や、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム等の水溶性リン酸塩を用いることができる。アルミン酸イオン源としてアルミン酸や、アルミン酸ナトリウム、アルミン酸カリウム等の水溶性アルミン酸塩を用いることができる。フッ化物イオン源としてフッ化水素酸や、アルカリ金属フッ化物であるフッ化ナトリウム、フッ化カリウム等やフッ化アンモニウム等の水溶性フッ化水素酸塩を用いることができる。水酸化アルカリ金属として水酸化ナトリウム、水酸化カリウム等の水溶性水酸化アルカリ金属を用いることができる。   The electrolytic solution for anodizing treatment used in the surface treatment method of the present invention contains phosphate ions, aluminate ions, fluoride ions, and alkali metal hydroxide. Phosphoric acid as a phosphate ion source and water-soluble phosphates such as sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate Can be used. As the aluminate ion source, aluminate, water-soluble aluminate such as sodium aluminate and potassium aluminate can be used. As the fluoride ion source, hydrofluoric acid or water-soluble hydrofluoric acid salt such as sodium fluoride, potassium fluoride or ammonium fluoride which is an alkali metal fluoride can be used. As the alkali metal hydroxide, a water-soluble alkali metal hydroxide such as sodium hydroxide or potassium hydroxide can be used.

本発明の表面処理方法で陽極酸化処理に用いる電解液においては、リン酸イオン濃度は3〜15g/L、好ましくは5〜12g/Lであり、アルミン酸イオン濃度は1〜6g/L、好ましくは2〜5g/Lであり、フッ化物イオン濃度は1〜10g/L、好ましくは3〜8g/Lであり、水酸化アルカリ金属濃度は水酸化ナトリウム換算で1〜8g/L、好ましくは2〜6g/Lである。   In the electrolytic solution used for the anodizing treatment in the surface treatment method of the present invention, the phosphate ion concentration is 3 to 15 g / L, preferably 5 to 12 g / L, and the aluminate ion concentration is 1 to 6 g / L, preferably Is 2 to 5 g / L, fluoride ion concentration is 1 to 10 g / L, preferably 3 to 8 g / L, and alkali metal hydroxide concentration is 1 to 8 g / L in terms of sodium hydroxide, preferably 2 ~ 6 g / L.

本発明の表面処理方法で採用する陽極酸化処理は上記の電解液を用い、電解液のpHをNaOH等のアルカリで好ましくは10〜13.5、実際には12〜13前後に調整し、電解液の温度を好ましくは30〜60℃、より好ましくは35〜55℃に維持し、電流密度を好ましくは0.5〜2A/dmに維持して、好ましくは3〜10分間、より好ましくは4〜8分間処理する。 The anodizing treatment employed in the surface treatment method of the present invention uses the above-described electrolytic solution, and the pH of the electrolytic solution is preferably adjusted to 10 to 13.5 with an alkali such as NaOH, and actually adjusted to about 12 to 13 for electrolysis. The temperature of the liquid is preferably maintained at 30 to 60 ° C., more preferably 35 to 55 ° C., and the current density is preferably maintained at 0.5 to 2 A / dm 2 , preferably 3 to 10 minutes, more preferably Process for 4-8 minutes.

マグネシウム合金の表面を上記のように陽極酸化処理し、次いで化成処理することにより、耐食性及び塗装密着性に一層優れた表面を有するマグネシウム合金を得ることができる。   By subjecting the surface of the magnesium alloy to anodization treatment as described above and then chemical conversion treatment, a magnesium alloy having a surface with further excellent corrosion resistance and coating adhesion can be obtained.

マグネシウム合金の表面への陽極酸化皮膜の密着性、耐剥離性を改善するために陽極酸化処理に先立ってマグネシウム合金の表面をフッ化アンモニウム含む溶液中に浸漬して表面調整する(MgFの膜を形成させる)ことが好ましい。即ち、表面にMgFの膜を形成させたマグネシウム合金の表面を上記のように陽極酸化処理することが好ましい。 In order to improve the adhesion and peel resistance of the anodic oxide film to the surface of the magnesium alloy, the surface of the magnesium alloy is dipped in a solution containing ammonium fluoride prior to the anodizing treatment (MgF 2 film) Is preferably formed). That is, it is preferable to anodize the surface of the magnesium alloy having the MgF 2 film formed on the surface as described above.

本発明の表面処理方法で表面調整(MgF膜の形成)に用いる溶液はフッ化アンモニウムを含む。フッ化アンモニウムの代わりにフッ化ナトリウムやフッ化カリウムを用いた場合には目的とする効果が得られない。表面調整に用いる溶液中のフッ化アンモニウム濃度は0.4〜10g/L、好ましくは0.7〜8g/Lである。 The solution used for surface adjustment (formation of MgF 2 film) in the surface treatment method of the present invention contains ammonium fluoride. When sodium fluoride or potassium fluoride is used instead of ammonium fluoride, the intended effect cannot be obtained. The ammonium fluoride concentration in the solution used for the surface adjustment is 0.4 to 10 g / L, preferably 0.7 to 8 g / L.

本発明の表面処理方法で採用する表面調整処理においては、上記の溶液を用い、溶液のpHをNHFやNHなどの弱酸や弱アルカリで好ましくは6〜8、実際には6.5前後に調整し、溶液の温度を好ましくは20〜50℃、より好ましくは30〜50℃に維持し、好ましくは2〜10分間、より好ましくは3〜8分間処理する。 In the surface conditioning treatment employed in the surface treatment method of the present invention, the above solution is used, and the pH of the solution is preferably 6 to 8, preferably 6.5 to 8 with a weak acid or weak alkali such as NH 4 F or NH 3. The temperature of the solution is preferably maintained at 20 to 50 ° C., more preferably 30 to 50 ° C., and preferably 2 to 10 minutes, more preferably 3 to 8 minutes.

本発明の表面処理方法においては、表面をエッチング処理し、スマット除去処理したマグネシウム合金を用いることが好ましい。このエッチング処理及びスマット除去処理は周知の技術であり、本発明においては周知のエッチング処理及びスマット除去処理をそのまま採用することができる。 In the surface treatment method of the present invention, it is preferable to use a magnesium alloy obtained by etching the surface and removing the smut. This etching process and smut removal process are well-known techniques, and in the present invention, a well-known etching process and smut removal process can be employed as they are.

本発明の表面処理方法においては、化成処理した後、純水で洗浄し、乾燥することが好ましい。この純水での洗浄処理、乾燥処理は周知の技術であり、本発明においては周知の純水での洗浄処理、乾燥処理をそのまま採用することができる。   In the surface treatment method of the present invention, after the chemical conversion treatment, it is preferable to wash with pure water and dry. The cleaning process and the drying process with pure water are well-known techniques. In the present invention, the well-known cleaning process and drying process with pure water can be employed as they are.

本発明の表面処理方法においては、乾燥した後、塗装することができる。マグネシウム合金表面の塗装技術は周知であり、本発明においては周知の塗装方法をそのまま採用することができる。塗装は、例えば、溶剤型塗料、水溶性塗料、粉体塗料等一般的な塗料を用いて行うことができる。具体的には、水溶性カチオン電着塗料を用い、電解電圧100〜150V、処理時間3分、塗膜厚10〜20μm、乾燥条件150℃、30分で塗布し、その上にトップコートとして、アクリル系塗料を用いて塗膜厚10〜25μm,乾燥条件150℃、30分で塗装する。   In the surface treatment method of the present invention, the coating can be performed after drying. The coating technique of the magnesium alloy surface is well known, and in the present invention, a well-known coating method can be employed as it is. The coating can be performed using a common paint such as a solvent-type paint, a water-soluble paint, or a powder paint. Specifically, using a water-soluble cationic electrodeposition coating, applied at an electrolysis voltage of 100 to 150 V, a treatment time of 3 minutes, a coating thickness of 10 to 20 μm, a drying condition of 150 ° C. for 30 minutes, and a top coat thereon. Using an acrylic paint, coating is performed at a coating thickness of 10 to 25 μm and drying conditions of 150 ° C. for 30 minutes.

以下に実施例及び比較例によって本発明を具体的に説明する。     The present invention will be specifically described below with reference to examples and comparative examples.

実施例1〜5、比較例1〜3
マグネシウム合金(AZ91D)製の長さ10cm、幅5cm、厚さ2mmの試験片を複数個用意し、各々の試験片をエタノールで脱脂し、水洗した。次いで硫酸11mL/L及びクエン酸二水素カリウム18.4g/Lを含有する60℃の溶液中に1分間浸漬してエッチングし、水洗した。その後、NaOHを50g/L含有する60℃の溶液中に3分間浸漬してスマット除去し、水洗した。
Examples 1-5, Comparative Examples 1-3
A plurality of test pieces made of magnesium alloy (AZ91D) having a length of 10 cm, a width of 5 cm, and a thickness of 2 mm were prepared. Each test piece was degreased with ethanol and washed with water. Subsequently, it was immersed in a 60 ° C. solution containing 11 mL / L sulfuric acid and 18.4 g / L potassium dihydrogen citrate for 1 minute, etched, and washed with water. Then, it was immersed in a 60 ° C. solution containing 50 g / L of NaOH for 3 minutes to remove smut, and washed with water.

上記のように処理した複数の試験片の一部について、フッ化アンモニウムを1g/L含有するpH6.5、温度40℃の溶液中に5分間浸漬して表面調整(MgF幕の形成)を行った。表面調整の実施の有無は第1表に示す通りであった。 A portion of the plurality of test pieces treated as described above was immersed in a solution containing 1 g / L of ammonium fluoride at pH 6.5 and temperature of 40 ° C. for 5 minutes for surface adjustment (formation of MgF 2 curtain). went. The presence / absence of surface adjustment was as shown in Table 1.

陽極酸化処理については
リン酸水素二カリウム 8g/L
アルミン酸ナトリウム 3g/L
フッ化カリウム 4g/L
水酸化ナトリウム 5g/L
を含むpH13.0、温度50℃(スタート時)の電解液中に試験片を浸漬し、電流密度(定電流)1A/dmで15分間陽極酸化処理した。陽極酸化処理の有無は第1表に示す通りであった。
About anodizing treatment Dipotassium hydrogen phosphate 8g / L
Sodium aluminate 3g / L
Potassium fluoride 4g / L
Sodium hydroxide 5g / L
The test piece was immersed in an electrolyte solution having a pH of 13.0 and a temperature of 50 ° C. (starting time), and anodized at a current density (constant current) of 1 A / dm 2 for 15 minutes. The presence or absence of anodizing treatment was as shown in Table 1.

化成処理については、第1表に記載の組成を有するpH9.5、温度45℃の化成処理液中に2分間浸漬して化成処理した。その後、水洗し、純水で洗浄し、乾燥した。   Regarding the chemical conversion treatment, chemical conversion treatment was performed by immersing in a chemical conversion treatment solution having a composition shown in Table 1 at pH 9.5 and a temperature of 45 ° C. for 2 minutes. Thereafter, it was washed with water, washed with pure water, and dried.

実施例1〜5及び比較例1〜3に従って処理したマグネシウム合金(AZ91D)製の試験片について、JIS Z 2371に従って塩水噴霧試験を実施した。第1表に記載の時間塩水噴霧した後の表面の腐食状態をレイティングナンバー標準図表と照合して評価した。その結果は第1表に記載の通りであった。   About the test piece made from the magnesium alloy (AZ91D) processed according to Examples 1-5 and Comparative Examples 1-3, the salt spray test was implemented according to JISZ2371. The corrosion state of the surface after spraying with salt water for the time indicated in Table 1 was evaluated against the rating number standard chart. The results were as shown in Table 1.

Figure 0005595874
Figure 0005595874

実施例6
AZ91D製の試験片の代わりにACM522(Mg−5Al−2Ca−2RE)製の試験片を用いた以外は実施例3と同様に処理し、実施例3と同様に塩水噴霧試験を実施した。その結果は塩水噴霧時間168hr後及び240hr後のレイティングナンバーは10であり、360hr後のレイティングナンバーは9.5であった。
Example 6
A salt spray test was conducted in the same manner as in Example 3 except that a test piece made of ACM522 (Mg-5Al-2Ca-2RE) was used instead of the test piece made of AZ91D. As a result, the rating number after salt spraying time 168 hr and 240 hr was 10, and the rating number after 360 hr was 9.5.

Claims (5)

マグネシウム合金の表面を
リン酸イオン 3〜15g/L
アルミン酸イオン 1〜6g/L
フッ化物イオン 1〜10g/L
水酸化アルカリ金属 1〜8g/L(水酸化ナトリウム換算で)
を含む電解液中に浸漬し、陽極酸化処理して陽極酸化皮膜を形成し、次いで
ピロリン酸イオン 1〜100g/L
リン酸イオン 1〜60g/L
フッ化物イオン 0.1〜10g/L
スズ酸イオン 0.1〜10g/L
メタバナジン酸イオン 0.1〜10g/L
を含む化成処理液で化成処理して皮膜を形成することを特徴とするマグネシウム合金の表面処理方法。
The surface of the magnesium alloy is phosphate ion 3-15g / L
Aluminate ion 1-6g / L
Fluoride ion 1-10g / L
Alkali metal hydroxide 1-8g / L (in terms of sodium hydroxide)
Soaked in an electrolytic solution containing anodic oxidation to form an anodic oxide film, and then pyrophosphate ions 1 to 100 g / L
Phosphate ion 1-60g / L
Fluoride ion 0.1 ~ 10g / L
Stannate ion 0.1 ~ 10g / L
Metavanadate ion 0.1-10g / L
A surface treatment method for a magnesium alloy, characterized by forming a film by chemical conversion treatment with a chemical conversion treatment solution containing
マグネシウム合金の表面を
フッ化アンモニウム 0.4〜10g/L
を含む溶液中に浸漬して表面調整し、次いで
リン酸イオン 3〜15g/L
アルミン酸イオン 1〜6g/L
フッ化物イオン 1〜10g/L
水酸化アルカリ金属 1〜8g/L(水酸化ナトリウム換算で)
を含む電解液中に浸漬し、陽極酸化処理して陽極酸化皮膜を形成し、更に
ピロリン酸イオン 1〜100g/L
リン酸イオン 1〜60g/L
フッ化物イオン 0.1〜10g/L
スズ酸イオン 0.1〜10g/L
メタバナジン酸イオン 0.1〜10g/L
を含む化成処理液で化成処理して皮膜を形成することを特徴とするマグネシウム合金の表面処理方法。
The surface of the magnesium alloy is 0.4 to 10 g / L ammonium fluoride.
Surface adjustment by immersion in a solution containing 3 to 15 g / L phosphate ion
Aluminate ion 1-6g / L
Fluoride ion 1-10g / L
Alkali metal hydroxide 1-8g / L (in terms of sodium hydroxide)
Soaked in an electrolyte solution containing anodic oxidation to form an anodic oxide film, and further pyrophosphate ions 1 to 100 g / L
Phosphate ion 1-60g / L
Fluoride ion 0.1 ~ 10g / L
Stannate ion 0.1 ~ 10g / L
Metavanadate ion 0.1-10g / L
A surface treatment method for a magnesium alloy, characterized by forming a film by chemical conversion treatment with a chemical conversion treatment solution containing
表面をエッチング処理し、スマット除去処理したマグネシウム合金を用いることを特徴とする請求項1又は2に記載のマグネシウム合金の表面処理方法。 The magnesium alloy surface treatment method according to claim 1 or 2, wherein a magnesium alloy obtained by etching the surface and removing the smut is used. 化成処理した後、純水で洗浄し、乾燥することを特徴とする請求項1、2又は3に記載のマグネシウム合金の表面処理方法。   4. The magnesium alloy surface treatment method according to claim 1, wherein the chemical conversion treatment is followed by washing with pure water and drying. 乾燥した後、塗装することを特徴とする請求項4に記載のマグネシウム合金の表面処理方法。   The surface treatment method for a magnesium alloy according to claim 4, wherein the coating is performed after drying.
JP2010247925A 2010-11-04 2010-11-04 Magnesium alloy surface treatment method Active JP5595874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010247925A JP5595874B2 (en) 2010-11-04 2010-11-04 Magnesium alloy surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247925A JP5595874B2 (en) 2010-11-04 2010-11-04 Magnesium alloy surface treatment method

Publications (2)

Publication Number Publication Date
JP2012097340A JP2012097340A (en) 2012-05-24
JP5595874B2 true JP5595874B2 (en) 2014-09-24

Family

ID=46389579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247925A Active JP5595874B2 (en) 2010-11-04 2010-11-04 Magnesium alloy surface treatment method

Country Status (1)

Country Link
JP (1) JP5595874B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6083020B2 (en) * 2012-10-24 2017-02-22 株式会社正信 Surface treatment method of magnesium or magnesium alloy, acid detergent and chemical conversion treatment agent, and chemical conversion treatment structure of magnesium or magnesium alloy
JP6083562B2 (en) * 2013-03-27 2017-02-22 株式会社正信 Surface treatment method, chemical conversion treatment agent, and chemical conversion treatment structure
CN104651908B (en) * 2013-11-25 2017-09-29 中国兵器科学研究院宁波分院 The preparation method and method for sealing of a kind of Mg alloy surface ceramic film
JP2016113676A (en) * 2014-12-16 2016-06-23 富士通株式会社 Method for manufacturing housing having chemical conversion coating, housing having chemical conversion coating and tool for holding housing
WO2019059255A1 (en) * 2017-09-20 2019-03-28 ミリオン化学株式会社 Magnesium-lithium alloy and surface-treatment method thereof
JP6553268B2 (en) * 2017-09-20 2019-07-31 ミリオン化学株式会社 Magnesium-lithium alloy and surface treatment method thereof
JP7235254B2 (en) * 2021-04-09 2023-03-08 三菱重工業株式会社 Method for modifying surface of Mg-Al-Ca alloy
KR102339453B1 (en) * 2021-09-02 2021-12-14 박중수 Magnesium etching treatment method
CN113774462B (en) * 2021-10-22 2023-03-28 上海康德莱医疗器械股份有限公司 Magnesium alloy surface treatment method and treated magnesium alloy
CN114875396B (en) * 2022-04-28 2023-03-14 厦门大学 Surface treatment method of magnesium or magnesium alloy
CN115305552A (en) * 2022-08-05 2022-11-08 河南大学 Electrolyte formula and method for preparing high-corrosion-resistance magnesium alloy micro-arc oxidation coating based on electrolyte formula

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134200A (en) * 1984-07-26 1986-02-18 Matsufumi Takatani Surface treatment of magnesium and its alloy
EP0573585B1 (en) * 1991-02-26 1994-12-14 Technology Applications Group, Inc. Two-step chemical/electrochemical process for coating magnesium
JPH0770759A (en) * 1993-08-31 1995-03-14 Kobe Steel Ltd Mg or mg alloy material having high corrosion resistance
JP4223088B2 (en) * 1998-02-23 2009-02-12 三井金属鉱業株式会社 Corrosion-resistant magnesium material product exhibiting metallic substrate gloss and method for producing the same
JP2002322567A (en) * 2001-04-24 2002-11-08 Chiyoda Chemical Kk Surface treatment method for casting and cast article
JP2002371380A (en) * 2001-06-15 2002-12-26 Fujitsu Ltd Magnesium material product having corrosion resistance and manufacturing method therefor
US6887320B2 (en) * 2002-02-11 2005-05-03 United Technologies Corporation Corrosion resistant, chromate-free conversion coating for magnesium alloys
US6692583B2 (en) * 2002-02-14 2004-02-17 Jon Bengston Magnesium conversion coating composition and method of using same
US20040256030A1 (en) * 2003-06-20 2004-12-23 Xia Tang Corrosion resistant, chromate-free conversion coating for magnesium alloys
JP2005281717A (en) * 2004-03-26 2005-10-13 Kurimoto Ltd Method for forming chemical conversion-treated film of magnesium alloy

Also Published As

Publication number Publication date
JP2012097340A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5595874B2 (en) Magnesium alloy surface treatment method
JP4686728B2 (en) Method for producing magnesium or magnesium alloy product having an anodized film on the surface
JP6083020B2 (en) Surface treatment method of magnesium or magnesium alloy, acid detergent and chemical conversion treatment agent, and chemical conversion treatment structure of magnesium or magnesium alloy
US20160047057A1 (en) Method for anodizing parts made of an aluminum alloy
JPH04297595A (en) Method of zinc electroplating on aluminum strip
JP4446230B2 (en) Trivalent chromate solution for aluminum or aluminum alloy and method for forming corrosion-resistant film on aluminum or aluminum alloy surface using the same
JP6369745B2 (en) Anodized film and sealing method thereof
KR100695999B1 (en) Anodizing method for matal surface using high-frequency pluse
JP4112219B2 (en) Surface treatment method for lithium-based magnesium alloy material
WO2014203919A1 (en) Method for manufacturing magnesium alloy product
JP5428105B2 (en) Black chemical conversion treatment liquid, chemical conversion treatment method and chemical conversion treatment member for magnesium alloy
JP2004538375A (en) Magnesium anodizing system and method
JP3828446B2 (en) Magnesium alloy surface cleaning method
JP2001123274A (en) High corrosion resistance surface treated magnesium alloy product and producing method therefor
JP3916222B2 (en) Surface treatment method of magnesium alloy
KR200497108Y1 (en) Surface treatment method of aluminum alloy member and member made of anodized aluminum alloy
JP2003041382A (en) Method for manufacturing eyeglasses frame
JP6274556B2 (en) Electrolytic plating method
JP3903381B2 (en) How to paint aluminum alloy
JP5103034B2 (en) Method for forming a coating film of magnesium alloy
RU2817277C1 (en) Method of applying electroconductive protective coating on aluminium alloys
JPH06116740A (en) Surface treatment of magnesium alloy product
JP2001123294A (en) Method for surface treatment of magnesium or magnesium alloy
JP2003155595A (en) Anodizing method of aluminium and aluminium alloy
Pearson Pretreatment of aluminium for electrodeposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R150 Certificate of patent or registration of utility model

Ref document number: 5595874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250