JPS6253224B2 - - Google Patents

Info

Publication number
JPS6253224B2
JPS6253224B2 JP54136543A JP13654379A JPS6253224B2 JP S6253224 B2 JPS6253224 B2 JP S6253224B2 JP 54136543 A JP54136543 A JP 54136543A JP 13654379 A JP13654379 A JP 13654379A JP S6253224 B2 JPS6253224 B2 JP S6253224B2
Authority
JP
Japan
Prior art keywords
heating element
catalytically active
catalytic
exhaust gas
active substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54136543A
Other languages
Japanese (ja)
Other versions
JPS5660647A (en
Inventor
Akio Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP13654379A priority Critical patent/JPS5660647A/en
Publication of JPS5660647A publication Critical patent/JPS5660647A/en
Publication of JPS6253224B2 publication Critical patent/JPS6253224B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、多数の貫通孔を有する正の抵抗温度
特性を有する半導体磁器からなる発熱体を用いた
触媒要素に関するものである。 さらに詳しく言えば、排ガス中の悪臭を有する
可燃性物質を効果的に酸化して無臭化して悪臭を
除去する排ガスの処理に好適な触媒要素を提供す
るものである。 近年、生活レベルの向上、化学工業特に石油化
学の発展に伴い、生活および労働環境において炭
化水素、アルコール、エステル、アンモニア等の
可燃性有臭物質−いわゆる悪臭による公害が社会
問題として取り上げられ、この悪臭の効果的な除
去手段の出現が要望されている。悪臭の発生源
は、非常に広範囲にわたつており、し尿処理、下
水処理、石油化学、塗装、印刷、食品等があり、
これまで排ガス中の悪臭を除去する手段として
は、洗浄液に通過させて液に吸収させる薬液吸収
法、吸着剤を用いる吸着法、触媒と接触させて無
臭物質に変換させる触媒法などが知られている。 しかしながら洗浄法は、多量の液体を使用する
ので、取り扱いが不便である上に大規模な設備を
必要とし、又吸着法は大量の排ガス処理に不適当
であつた。触媒を用いて処理する方法は、大多数
の悪臭物質が可燃性物質であるため酸化によつて
CD2やH2Oなどの無臭成分に変えることが出来る
ので着目を浴びることとなり、この悪臭を有する
可燃性物質を含む排ガス処理用の触媒として、白
金族金属、ニツケル、銅、マンガン等の金属又は
それらの酸化物、又はこれらをアルミナ、シリカ
等の担体に担持させた触媒が種々提案されてい
る。 しかしながら、通常、処理の対策となる排ガス
の温度が、触媒活性物質を有効に作用させるには
低すぎる事が多く、そのような場合、排ガスを別
途加熱する必要があるが、かかる方法に於ける暖
機能率は良くなく、コスト面や装置の複雑化等
種々の問題が生じる。 本発明では、排ガスを加熱するのではなく、直
接触媒活性物質をハニカム状発熱体で効率良く加
熱し暖機能率を向上する様に構成された触媒要素
を提供する事により、これらの問題を解決しよう
とするものであり、ハニカム構造上から期待しう
る大容量の発熱体上に触媒活性物質を担持させた
触媒要素を使用する点に特徴を有す。 本発明によれば、触媒活性物質支持体としてチ
タン酸バリウム(BaTiO3)を主体とし、これに微
量の半導体化元素(希土類元素、Nb、Ta、Sb、
Bi等)を添加した焼結体からなる正の抵抗温度特
性を有する半導体磁器で構成された多数の貫通孔
を有する、いわゆるハニカム状発熱体を用い、そ
の貫通孔内壁に触媒活性物質を担持して触媒要素
とし、これに電流を通じ、適当な温度に触媒を直
接加熱し、悪臭を有する可燃性ガスを含む排ガス
を通して排ガス中の可燃性ガスを酸化除去するも
のである。 なお、貫通孔内壁にアルミナ、シリカ等の高い
表面積を有する粉体をコーテイングした多孔性セ
ラミツクス層を設け、その多孔性セラミツクス層
に触媒活性物質を担持せしめれば、より有効な触
媒要素を得る事が出来る。 また、触媒活性成分としては、上述の内容より
明らかな様に必ずしも特定の成分に限定されるも
のでは無いが、比較的低温活性に優れている白金
を含む組成を用いれば良好な特性が得られる。 次に本発明に用いられる触媒コンバーターにつ
いて、図面を参照しつつ説明する。 第1図は本発明触媒要素を用いた触媒コンバー
ターの一例を示し、1は本発明による触媒要素
で、この触媒要素1には電源から電極2,3を通
して通電される。なお、4,5は、排ガスの入口
および出口である。 このように、本発明は、触媒要素自体が発熱体
で構成されているため排ガスを加熱する装置が必
要でないばかりでなく、本発明の触媒要素は、正
の温度特性を有するので自己温度制御機能を有し
ており、発熱体のコントロール回路等の複雑な周
辺回路も必要なく、極めて単純な回路とすること
ができる。 第2図は、本発明による暖機装置付触媒要素を
取り付けた触媒コンバーターの断面を示す概略図
である。汚染ガスは入口4から触媒槽を通り、出
口5から排出される。なお6は触媒活性物質であ
る。汚染ガスは入口4から、自己発熱するハニカ
ム状発熱体1の貫通孔を通り、この貫通孔の内壁
に設けられた触媒活性物質6により有害成分が酸
化、浄化され出口5を経て排出される。 本発明による触媒要素を用いた場合、電気エネ
ルギーで暖機を行うのでコンバーター装置が簡単
で安価であり、かつ発熱体自身が温度制御機能を
有しているので、特別な制御回路を必要としな
い。また、発熱体により直接触媒を加熱するので
効率がよい。 以下に本発明を実施例により更に詳しく説明す
る。 実施例 1 チタン酸バリウム(BaTiO3)、酸化イツトリウ
ム(Y2O3)、酸化鉛(PbO)およびマンガン
(Mn)からなる焼結体を素材として用いて直径30
mm、長さ80mm、セルの数〜41個/cm2のハニカム状
発熱構造体を用意した。このハニカム状発熱体の
斜視図を第3図aに、その断面図を第3図Bに示
す。このハニカム状発熱体1の貫通孔を有する面
に電極2,3が設けられている。なお、この発熱
体の抵抗温度特性を第4図に示す。このハニカム
状発熱構造体をヘキサクロロ白金酸水溶液(白金
換算0.5wt%水溶液)に浸漬し、液切り後、50wt
%のヒドラジン水溶液に浸漬し、液切りして100
℃にて乾燥した。白金はほぼ0.1wt%(ハニカム
状発熱構造体に対して)担持されていた。この触
媒要素を第1図、第2図で説明した様に触媒コン
バーターに組み込み、通電した。ハニカム状発熱
体は第4図に示すように発熱体自身の温度制御機
能のため、約270℃の温度に自動的に保たれる。 この触媒コンバーターに各種の悪臭を有する可
燃性物質300ppm酸素4%残余窒素からなるモデ
ルガスを3/分で流し、入口側と出口側のガス
組成をガスクロマトグラフイーにより測定して、
除去率を求めた。その結果を第1表に示す。
The present invention relates to a catalyst element using a heating element made of semiconductor porcelain having a large number of through holes and having positive resistance-temperature characteristics. More specifically, the present invention provides a catalyst element suitable for treating exhaust gas that effectively oxidizes combustible substances having a foul odor in the exhaust gas to make it odorless and remove the foul odor. In recent years, with the improvement of living standards and the development of the chemical industry, especially petrochemistry, pollution caused by flammable and odorous substances such as hydrocarbons, alcohol, esters, and ammonia - so-called bad odors - has been raised as a social problem in the living and working environment. There is a need for an effective means for removing bad odors. The sources of bad odors are very wide-ranging, including human waste treatment, sewage treatment, petrochemicals, painting, printing, and food.
Until now, known methods for removing bad odors from exhaust gas include a chemical absorption method in which it is passed through a cleaning solution and absorbed by the solution, an adsorption method in which an adsorbent is used, and a catalytic method in which it is brought into contact with a catalyst to convert it into an odorless substance. There is. However, since the cleaning method uses a large amount of liquid, it is inconvenient to handle and requires large-scale equipment, and the adsorption method is unsuitable for treating large amounts of exhaust gas. The treatment method using a catalyst is effective because the majority of malodorous substances are flammable substances.
It has attracted attention because it can be converted into odorless components such as CD 2 and H 2 O, and metals such as platinum group metals, nickel, copper, and manganese have been used as catalysts for treating exhaust gas containing flammable substances with bad odors. Various catalysts have been proposed in which catalysts, oxides thereof, or these are supported on carriers such as alumina and silica. However, the temperature of the exhaust gas that is normally treated is often too low for the catalytic active substance to work effectively, and in such cases it is necessary to separately heat the exhaust gas, but in such a method The heating efficiency is not good, and various problems arise such as cost and complexity of the equipment. The present invention solves these problems by providing a catalyst element configured to efficiently heat the catalytically active substance directly with a honeycomb-shaped heating element to improve the warming efficiency, rather than heating the exhaust gas. It is characterized by the use of a catalytic element in which a catalytically active substance is supported on a large-capacity heating element, which can be expected from the honeycomb structure. According to the present invention, barium titanate (BaTiO 3 ) is used as the catalytically active material support, and trace amounts of semiconducting elements (rare earth elements, Nb, Ta, Sb,
A so-called honeycomb-shaped heating element is used, which has many through-holes made of semiconductor porcelain made of a sintered body doped with Bi (Bi, etc.) and has positive resistance-temperature characteristics, and a catalytically active substance is supported on the inner wall of the through-holes. A current is passed through the catalyst element, the catalyst is directly heated to an appropriate temperature, and the exhaust gas containing the foul-smelling combustible gas is passed through it to oxidize and remove the combustible gas in the exhaust gas. Furthermore, if a porous ceramic layer coated with powder having a high surface area such as alumina or silica is provided on the inner wall of the through hole, and a catalytically active substance is supported on the porous ceramic layer, a more effective catalyst element can be obtained. I can do it. In addition, as is clear from the above, the catalytic active component is not necessarily limited to a specific component, but good characteristics can be obtained by using a composition containing platinum, which has relatively excellent low-temperature activity. . Next, the catalytic converter used in the present invention will be explained with reference to the drawings. FIG. 1 shows an example of a catalytic converter using a catalytic element according to the present invention. Reference numeral 1 denotes a catalytic element according to the present invention, and this catalytic element 1 is energized from a power source through electrodes 2 and 3. In addition, 4 and 5 are the inlet and outlet of exhaust gas. In this way, the present invention not only eliminates the need for a device for heating exhaust gas because the catalyst element itself is composed of a heating element, but also has a self-temperature control function because the catalyst element of the present invention has positive temperature characteristics. This eliminates the need for complex peripheral circuits such as a control circuit for the heating element, making it possible to create an extremely simple circuit. FIG. 2 is a schematic diagram showing a cross section of a catalytic converter equipped with a catalytic element with a warm-up device according to the present invention. Contaminated gas passes through the catalyst tank through the inlet 4 and is discharged through the outlet 5. Note that 6 is a catalytically active substance. The polluted gas passes from the inlet 4 through the through hole of the self-heating honeycomb heating element 1, and the harmful components are oxidized and purified by the catalytically active material 6 provided on the inner wall of the through hole, and then discharged through the outlet 5. When using the catalyst element according to the present invention, the converter device is simple and inexpensive since warming is performed using electrical energy, and the heating element itself has a temperature control function, so no special control circuit is required. . In addition, efficiency is high because the catalyst is directly heated by the heating element. The present invention will be explained in more detail below with reference to Examples. Example 1 A sintered body made of barium titanate (BaTiO 3 ), yttrium oxide (Y 2 O 3 ), lead oxide (PbO), and manganese (Mn) was used as a material to form a sintered body with a diameter of 30 mm.
A honeycomb-shaped heat generating structure with a length of 80 mm and a number of cells of ~41 cells/cm 2 was prepared. A perspective view of this honeycomb-shaped heating element is shown in FIG. 3a, and a sectional view thereof is shown in FIG. 3B. Electrodes 2 and 3 are provided on the surface of this honeycomb-shaped heating element 1 having through holes. Note that the resistance temperature characteristics of this heating element are shown in FIG. This honeycomb-shaped heat generating structure was immersed in a hexachloroplatinic acid aqueous solution (0.5wt% aqueous solution in terms of platinum), and after draining, 50wt.
100% hydrazine aqueous solution and drained.
Dry at ℃. Approximately 0.1 wt% of platinum (based on the honeycomb-like heat generating structure) was supported. This catalytic element was assembled into a catalytic converter as described in FIGS. 1 and 2 and energized. As shown in Figure 4, the temperature of the honeycomb heating element is automatically maintained at approximately 270°C due to its own temperature control function. Through this catalytic converter, a model gas consisting of 300 ppm oxygen, 4% residual nitrogen, containing various flammable substances with bad odors was flowed at a rate of 3/min, and the gas composition on the inlet and outlet sides was measured by gas chromatography.
The removal rate was determined. The results are shown in Table 1.

【表】【table】

【表】 実施例 2 実施例1と同様の素材からなる直径30mm、長さ
80mm、セルの数〜41個/cm2のハニカム状発熱構造
体を用意した。このハニカム状発熱構造体を市販
の活性アルミナ(粒径0.2μ、比表面積〜100m2
g)を用いて調整したスラリー中に浸漬、引き上
げた后、100℃で3時間乾燥し、後450℃で2時間
焼成した。アルミナは〜10重量%付着した。この
アルミナで被覆したハニカムを、ヘキサクロロ白
金酸水溶液(白金換算0.5wt%水溶液)に浸漬
し、液切り後、50wt%ヒドラジン水溶液に浸漬
し、液切りして100℃にて乾燥した。白金はほぼ
0.5wt%(ハニカム状発熱構造体に対して)担持
されていた。この触媒要素を第1図、第2図で説
明した様に触媒コンバーターに組み込み、通電し
た。発熱体は、実施例1と同様270℃に保持され
た。この触媒コンバーターを用いて、実施例1と
同じ要領で除去率を測定した。その結果を第2表
に示す。
[Table] Example 2 Made of the same material as Example 1, diameter 30 mm, length
A honeycomb-shaped heat generating structure with a diameter of 80 mm and a number of cells of ~41 cells/cm 2 was prepared. This honeycomb-shaped heat generating structure was made of commercially available activated alumina (particle size 0.2 μ, specific surface area ~100 m 2 /
After being immersed in the slurry prepared using g) and pulled up, it was dried at 100°C for 3 hours, and then baked at 450°C for 2 hours. Alumina was deposited at ~10% by weight. This honeycomb coated with alumina was immersed in a hexachloroplatinic acid aqueous solution (0.5 wt% aqueous solution in terms of platinum), drained, and then immersed in a 50 wt% hydrazine aqueous solution, drained, and dried at 100°C. Platinum is almost
It was supported at 0.5wt% (based on the honeycomb-shaped heat generating structure). This catalytic element was assembled into a catalytic converter as described in FIGS. 1 and 2 and energized. The heating element was maintained at 270°C as in Example 1. Using this catalytic converter, the removal rate was measured in the same manner as in Example 1. The results are shown in Table 2.

【表】【table】

【表】 なお、この実施例2では、被覆層としてアルミ
ナ(Al2O3)を用いたがアルミナ以外にシリカ
(SiO2)、ジルコニア(ZiO2)チタニア(TiO2)お
よびこれらの複合物を用いても同様の効果が得ら
れる。もちろん、この被覆層として、これらの酸
化物からなる層を2層以上形成してもよい。
[Table] In this Example 2, alumina (Al 2 O 3 ) was used as the coating layer, but in addition to alumina, silica (SiO 2 ), zirconia (ZiO 2 ), titania (TiO 2 ), and composites thereof were also used. Similar effects can be obtained by using Of course, two or more layers made of these oxides may be formed as this coating layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明触媒要素を用いた触媒コンバー
ターの一例を示し、第2図は本発明触媒要素を取
り付けた触媒コンバーターの断面図を示す。第3
図a,bは、本発明触媒要素の斜視図および断面
図を示し、また、第4図は本発明の触媒要素の抵
抗温度特性を示す。 1……ハニカム状発熱体、2,3……電極、6
……触媒活性物質。
FIG. 1 shows an example of a catalytic converter using the catalyst element of the present invention, and FIG. 2 shows a sectional view of the catalytic converter equipped with the catalyst element of the present invention. Third
Figures a and b show a perspective view and a sectional view of the catalyst element of the invention, and Figure 4 shows the resistance-temperature characteristics of the catalyst element of the invention. 1... Honeycomb-shaped heating element, 2, 3... Electrode, 6
...catalytically active substance.

Claims (1)

【特許請求の範囲】 1 正の抵抗温度特性を有する半導体磁器からな
る発熱体に多数の貫通孔を形成し、この貫通孔の
内壁に触媒活性物質を担持したことを特徴とする
触媒要素。 2 触媒活性物質が白金を含むことを特徴とする
特許請求範囲第1項記載の触媒要素。 3 触媒活性物質は、前記発熱体の貫通孔内壁に
被覆されたアルミナ、シリカ、ジルコニア、チタ
ニアの少くとも一種からなる被覆層上に担持され
たことを特徴とする特許請求の範囲第1項記載の
触媒要素。 4 可燃性有臭物質を含有する排ガスを、発熱体
に担持された触媒活性物質に接触させることによ
り該排ガス中の可燃性有臭物質を酸化除去するこ
とを特徴とする特許請求の範囲第1項記載の触媒
要素。
[Scope of Claims] 1. A catalytic element characterized in that a heating element made of semiconductor porcelain having positive resistance-temperature characteristics is provided with a large number of through holes, and a catalytically active material is supported on the inner walls of the through holes. 2. The catalytic element according to claim 1, wherein the catalytically active substance contains platinum. 3. The catalytically active substance is supported on a coating layer made of at least one of alumina, silica, zirconia, and titania and coated on the inner wall of the through hole of the heating element. catalytic element. 4. Claim 1, characterized in that the flammable odorous substances in the exhaust gas are oxidized and removed by bringing the exhaust gas containing the flammable odorous substances into contact with a catalytically active substance supported on a heating element. Catalytic elements as described in Section.
JP13654379A 1979-10-23 1979-10-23 Catalyst element Granted JPS5660647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13654379A JPS5660647A (en) 1979-10-23 1979-10-23 Catalyst element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13654379A JPS5660647A (en) 1979-10-23 1979-10-23 Catalyst element

Publications (2)

Publication Number Publication Date
JPS5660647A JPS5660647A (en) 1981-05-25
JPS6253224B2 true JPS6253224B2 (en) 1987-11-09

Family

ID=15177648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13654379A Granted JPS5660647A (en) 1979-10-23 1979-10-23 Catalyst element

Country Status (1)

Country Link
JP (1) JPS5660647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000088A1 (en) * 1988-06-28 1990-01-11 Matsushita Electric Industrial Co., Ltd. Catalytic assembly for use in cleaning exhaust gas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69021267T2 (en) * 1989-05-11 1995-12-21 Nippon Catalytic Chem Ind Process for purifying a gas using an electrically heated MnO2 catalyst.
DE19718239C2 (en) * 1997-04-30 2000-07-06 Forschungszentrum Juelich Gmbh Electrically heated catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000088A1 (en) * 1988-06-28 1990-01-11 Matsushita Electric Industrial Co., Ltd. Catalytic assembly for use in cleaning exhaust gas

Also Published As

Publication number Publication date
JPS5660647A (en) 1981-05-25

Similar Documents

Publication Publication Date Title
JPH05317717A (en) Catalyzer and preparation of catalyzer
JP4591164B2 (en) Exhaust gas purification method and exhaust gas purification device
JPS6253224B2 (en)
JPH10290933A (en) Deodorization catalyst, deodorization filter using the same and deodorizer using the same
CN114917753A (en) Use of supports for selective catalysis of ammonia
JPH0866460A (en) Deodorizing device
JPH1099685A (en) Deodoorizing catalyst and its production
JP2001321634A (en) Exhaust gas cleaning member, exhaust gas cleaning method and exhaust gas cleaner
JP2833113B2 (en) Wall material for heating cooker
JP4095699B2 (en) Adsorption decomposition deodorization element
JP3617357B2 (en) Garbage processing machine
JP2001254421A (en) Deodorizor for toilet
JPS6120334B2 (en)
JP2000325788A (en) Catalytic material and exhaust gas cleaning device using this catalytic material
JP2005245811A (en) Deodorant and cleaner using it
JP2002210366A (en) PLASMA-ASSIST CATALYST FOR CLEANING NOx
JP3606113B2 (en) Garbage drying processing machine
JPH10290921A (en) Deodorizing catalyst filter and deodorizing device using the same
JP2001070417A (en) Deodorizing device
JPH02307511A (en) Ozone decomposer
JP2000185270A (en) Garbage treating machine
JPH03181319A (en) Ozone decomposing catalyst filter and ozone decomposing device
JP2001327867A (en) Purifying member for gas, method for manufacturing purifying member for gas, method for purifying gas and device for purification of gas
JP2003214138A (en) Exhaust emission control device and exhaust emission control method
JPH0352625A (en) Deodorizing method