JPS6253152B2 - - Google Patents

Info

Publication number
JPS6253152B2
JPS6253152B2 JP58230922A JP23092283A JPS6253152B2 JP S6253152 B2 JPS6253152 B2 JP S6253152B2 JP 58230922 A JP58230922 A JP 58230922A JP 23092283 A JP23092283 A JP 23092283A JP S6253152 B2 JPS6253152 B2 JP S6253152B2
Authority
JP
Japan
Prior art keywords
membrane
reaction
oil
enzyme
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58230922A
Other languages
Japanese (ja)
Other versions
JPS60126090A (en
Inventor
Masanobu Tanigaki
Kunizo Hashiba
Hidetoshi Wada
Masaru Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP58230922A priority Critical patent/JPS60126090A/en
Publication of JPS60126090A publication Critical patent/JPS60126090A/en
Publication of JPS6253152B2 publication Critical patent/JPS6253152B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はリパーゼによる油脂分解反応において
分離膜を利用した反応器(バイオリアクター)を
使用することにより、高い油脂分解率を維持しな
がら酵素の活性を持続し、且つ生成したグリセリ
ンと脂肪酸の分離をも分解反応と同時に行わせる
ことを特徴とする酵素反応方法に関する。 油脂分解酵素(リパーゼ)を用いて油脂を分解
し、グリセリンと脂肪酸を製造する方法は古くか
ら知られているが、工業化には種々の障壁があ
る。その大きな原因は、油脂分解酵素が反応とと
もに急激に失活し、回収再利用できないため高価
な酵素を大量に使用しなくてはならない点にあ
る。そのため高圧分解法に比してコスト的メリツ
トが得られず、酵素分解の特性を生かせずにいる
のが現状である。 リパーゼの失活の原因を調べると、阻害物質、
熱、及び水がその主な要因であると言える。特に
このうちの水に着目すれば、油脂分解反応は加水
分解反応であるため、反応に水を必要としながら
も、リパーゼは水の存在量の増大とともに失活が
進行するという相反した性質をもつている。従つ
て失活を防ぐ要因の一つに、反応に必要な水のみ
を与え、過剰の水を与えないことが必要であるこ
とは容易に想像がつく。しかし次の第1表にみら
れるように、水、油及び酵素を混合撹拌して反応
させる方法では、水の量を極端に少くすれば、油
脂の分解率の低下が起こり、十分な分解反応を行
わせることができなくなる。
The present invention uses a reactor (bioreactor) that uses a separation membrane in the fat and oil decomposition reaction using lipase, thereby maintaining enzyme activity while maintaining a high fat and oil decomposition rate, and separating the produced glycerin and fatty acids. The present invention also relates to an enzyme reaction method characterized in that the enzyme reaction is carried out simultaneously with the decomposition reaction. Although methods for producing glycerin and fatty acids by decomposing fats and oils using lipases have been known for a long time, there are various obstacles to industrialization. The main reason for this is that fat-degrading enzymes rapidly deactivate during the reaction and cannot be recovered and reused, so large amounts of expensive enzymes must be used. Therefore, the current situation is that it does not offer cost advantages compared to high-pressure decomposition methods, and the characteristics of enzymatic decomposition cannot be utilized. When investigating the causes of lipase inactivation, inhibitors,
It can be said that heat and water are the main factors. Particularly focusing on water, lipase decomposition reaction is a hydrolysis reaction, so although water is required for the reaction, lipase has the contradictory property of deactivating as the amount of water increases. ing. Therefore, it is easy to imagine that one of the factors to prevent deactivation is to supply only the water necessary for the reaction and not to supply excess water. However, as shown in Table 1 below, in the method of reacting by mixing and stirring water, oil, and enzymes, if the amount of water is extremely reduced, the decomposition rate of fats and oils will decrease, resulting in a sufficient decomposition reaction. You will not be able to make it happen.

【表】 従つて水、油、酵素を混合撹拌して分解反応を
行わせる反応では、高い分解率を確保するため、
反応に必要な水量以上の水を与え、酵素の回収再
利用は犠牲にしながら反応を行わざるを得ない。 本発明者等はこのような欠点を克服すべく鋭意
検討の結果、高い分解率を維持しながら、なお且
つ酵素の失活を防ぎ、更に反応生成物のグリセリ
ンと脂肪酸の分離をも同時に行える画期的な反応
方法を見出した。 本発明による反応方法は、逆浸透膜、限外過
膜、イオン交換膜や透析膜などと呼ばれている分
離膜を用い、この膜の一方側にリパーゼを懸濁し
た油相を、膜の反対側に水相を存在させ、膜を界
して酵素、油、水を接触させて油脂の加水分解反
応を行うことを特徴とするものである。 膜の片側に酵素を懸濁した油相、反対側に水相
を存在させるだけでは分解反応が進行するにつれ
て水が油相内に侵入し、前述のように水の量が多
くなつて酵素は失活する。しかし、油相側に多少
の圧をかけてやることによつて油相中への水の侵
入は防げ、酵素の失活は防止できる。しかし一
方、油相側にかける圧力を高くしすぎると分解率
が低下する。従つて油相側にかける圧力は水が油
相中に浸透してこない様にするに必要な最低圧に
維持するのが好ましく、これは使用する油の種類
や温度等によつて異なる。一般的に圧力は0.01
Kg/cm2以上に維持することが必要であり、最適圧
力は膜反応器の形状、大きさ等によつて変るが、
望ましくは0.05〜5Kg/cm2、更に望ましくは0.05
〜0.5Kg/cm2である。 本発明の膜反応器の反応機作としては、水が膜
中を通つて油相側の膜表面にまで浸透し、この膜
表面にて酵素と接触し、油脂分解反応が起こるも
のと推定される。このように膜表面にて油脂分解
反応が起こるため、非常に高い分解率が得られる
一方、水が油相中に殆ど混入しないため酵素の失
活をも防ぐことができると考えられるが、なお詳
細は不明である。 本発明の油脂分解反応方法に於ては、分解反応
で生成したグリセリンは水相側へ放出され、油相
中には殆ど存在しなくなる。これにより、分解反
応終了時点では、油相側は酵素を懸濁した脂肪酸
溶液、水相側はグリセリン水となり、反応と同時
にグリセリンと脂肪酸の分離をも行うことができ
る。 また油脂分解反応は水と油、そして酵素との接
触時間で決まることから、膜面積を増大させるこ
とにより油脂分解速度を上げることができる。従
つて膜面積を増大させることにより従来20〜30時
間必要であつた反応時間を更に大巾に短縮するこ
とも可能である。 本発明に用いられるリパーゼとしては、油脂分
解力の強いものであれば微生物により生産された
ものでも、或いは動物の臓器や植物の種子などよ
り得られたものでも良く、特にその給源を規定す
るものではない。またこれらリパーゼは精製した
酵素標品ばかりでなく、未精製品でも用いること
ができ、その純度については特に限定するもので
はない。 本発明に使用する分離膜としては、前述の如く
逆浸透膜、限外過膜、イオン交換膜、透析膜な
どの半透膜或いは多孔質膜が使用され、特に酵素
を通過させないものであれば良く、その材質等に
ついては限定するものではないが、水との親和性
が高いものが望ましい。膜の形態についても特に
限定するものではなく、平膜、中空糸膜、スパイ
ラル状膜等、どのような形態の膜も使用可能であ
る。膜をセツトする膜反応器は、平膜の場合には
何枚もの膜をセツトし多室型構造にするとか、或
いは中空糸膜の場合には何本もの中空糸膜をセツ
トできるような、よりコンパクトで膜面積を大き
く出来るような反応器が望ましいが、反応器の形
態についても特に規定するものではない。 本発明の実施に当つては酵素を懸濁した油相及
び水は膜の両側に静置しても良く、またポンプ等
で通液しても良い。静置する場合は、油圧機やガ
ス圧などにより油相側に圧力をかける必要がある
が、ポンプ通液の場合はポンプ圧を利用すれば良
く、工業的にはポンプ通液の方が好ましい。また
ポンプ通液の場合は、油及び水を夫々膜に対して
循環通液することができ、これにより膜面積を少
くできる。この点からもポンプ通液が好ましいと
考えられる。 本発明の反応方法では反応終了後膜反応器から
出てきた脂肪酸溶液は酵素を懸濁しているため、
これを分離して回収再利用するが、この分離には
過、遠心分離、或いは限外過膜による分離な
どが有用である。但しこの際酵素の失活を防ぐた
め、熱が発生せず、短時間で分離でき、なお且つ
酵素のロスの少い方法が望まれる。 本発明の方法で使用する油脂としては、大豆
油、パーム油、やし油、オリーブ油、アマニ油、
ヒマシ油などの植物性油脂、或いは牛脂、豚脂、
魚油などの動物性油脂等が挙げられる。これらの
油脂のうち、常温で液体の液状油の場合は前述の
ポンプ通液は可能であるが、常温で固体の固体脂
の場合はこれができない。従つてこれら固体脂の
場合は、融点以上の温度に加熱して反応を行う
か、或いは固体脂と相溶性をもつ有機溶剤を加え
て流動性を与え分解反応を行うのが好ましい。但
し加熱下での反応では、熱による酵素の失活が大
きいため極端な加熱はできず、油が流動性をもつ
最低温度に維持するのが好ましい。また有機溶剤
添加の場合も、酵素活性を失わせ難い有機溶剤
を、流動性を与える最低量だけ添加するのが好ま
しい。リパーゼを失活させ難い有機溶剤として
は、ヘキサンやイソオクタン等が挙げられるが、
これに限定するものではない。 本発明による反応方法は膜を利用した反応方法
ではあるが、膜に酵素を固定するものではなく、
酵素は油相中に懸濁している。従つて固定化酵素
にみられる固定化する際の酵素の失活は生じな
い。また膜反応後酵素の分離工程での酵素失活は
極めて少く、酵素の活性が高いまま容易に回収再
利用できる。 以上述べてきたように、本発明はリパーゼの特
徴を利用して、高い分解率を維持したままその回
収再利用を可能にした外、脂肪酸とグリセンの分
離をも同時に行うことが出来、しかも反応時間を
も短縮できるなど非常に多くの利点をもつた反応
方法である。 以下本発明を実施例について説明するが、本発
明はこれらの実施例に限定されるものではない。 実施例 1 面積0.02m2をもつ酢酸セルロース膜(ダイセル
化学工業(株)DRS−10)10枚をセツトし、多室型
構造とした膜反応器を用意した。 第1図はかかる多室型構造膜反応器の一例の断
面略示図であり、第1図に示す如く、膜1とガス
ケツト4を交互に配列し、膜1で仕切られた複数
の室11を形成し、各室にプラスチツク製の網か
ら成る充填物2を入れ、室11の1つ置きに水槽
5からポンプ7により水を9,9′のラインによ
り循環供給し、水を供給した室に隣接する室に油
槽6からポンプ8により油(酵素を懸濁)を1
0,10′のラインにより循環供給するようにし
てある。3は外枠を示す。 大豆油300gにリパーゼ(名糖産業(株)リパーゼ
OF)0.15gを懸濁させた油を油槽6に入れ、こ
れを膜反応器の各膜の片側の室にポンプで通液し
た。また同様に水300gを水槽5に入れ、各膜の
反対側の室にポンプで通液した。油相と水相との
ポンプ流量を変えて、油相側に0.2Kg/cm2の圧力
がかかるようにポンプ流量を定め、温度30℃で油
相及び水相を循環通液した。なお、反応の進行と
共に液の粘度、密度が変わるため、0.2Kg/cm2
圧を維持するにはポンプ流量を常に調節していな
ければならなかつた。このようにして反応を行
い、24時間後、95%の加水分解率を得た。一方、
24時間後の油相中のグリセリン濃度は0.1%、水
も0.1%であつた。膜の反対側を通液した水中の
グリセリン濃度は9%であつた。このように高い
分解率が得られる一方、膜反応が終了した時点で
既にグリセリンと脂肪酸の分離も行われた。な
お、同じ条件で圧力のみを0.5Kg/cm2に上げた場
合、24時間後の分解率は90%まで低下した。従つ
て圧力は、水が油相中に浸入しない様にするに必
要な最低圧付近に維持するのが好ましく、膜反応
器の形状、大きさ等に従つて適宜選定される。 実施例 2 実施例1と同様の条件、即ち大豆油300g、水
300g、酵素0.15g、温度30℃、圧力0.2Kg/cm2
膜面積0.2m2で24時間反応後、脂肪酸液の遠心分
離を行い酵素を分離した。遠心分離は25℃、
8000rpm、10分で行つた。こうして得られた酵素
を再度フレツシユな大豆油300gに懸濁し、同じ
条件で2回目の反応を行つた。24時間後89%の加
水分解率を得た。同様にして再度回収して3回目
の反応を行つた。24時間後83%の加水分解率であ
つた。このように、1回の反応につき丁度6%し
か酵素の活性低下がみられず、酵素の失活が非常
に少いまま回収再利用できた。 実施例 3 実施例2においては1回の反応毎に6%の失活
があつたが、これを補う目的で6%分のフレツシ
ユ酵素を添加した系での酵素の回収再利用実験を
行つた。 即ち、実施例1と同じ条件(圧力0.2Kg/cm2
で24時間反応後、実施例2に記した分離法にて酵
素を分離し、この分離した酵素に、初期添加量の
6%分に相当する0.009gのフレツシユ酵素を加
え、この系で実施例1と同じ条件で再度分解反応
を行つた。24時間後95%の分解率が得られた。こ
のように酵素が非常に低い失活度のまま回収再利
用できることから、数パーセントの失活分だけを
各バツチ毎に補つてやれば95%の高い分解率が維
持できることがわかつた。 これに対し水、油、酵素を単に撹拌混合して油
脂分解を行い、酵素の回収を行わない方法では、
1回につき0.15gのリパーゼが必要となつた。従
つて本発明の方法ではその使用量の約1/20程度で
済むことになる。 実施例 4 実施例1と同様の第1図に示した如き膜反応器
の膜枚数を40枚に増加し、実施例1と同じ条件、
即ち、油300g、水300g、酵素0.15g、圧力0.2
Kg/cm2、温度30℃で反応を行つたところ、第2図
のように分解速度のアツプがみられた。Aは膜10
枚(0.2m2)、Bは膜40枚(0.8m2)の場合を示
す。即ち95%の最大分解率の到達するのに膜10枚
(0.2m2)では24時間必要であつたものが、膜40枚
(0.8m2)では9時間で可能となつた。このように
膜面積を増大させることで反応時間は大巾に短縮
でき、工業化に際しては大きなメリツトをもつこ
とがわかつた。 実施例 5 実施例1では平膜を用いたが、本実施例では平
膜の代わりに中空糸膜を用い、中空糸膜の内側に
水相、外側に油相を通液して分解反応を行わせ
た。 オリーブ油300gに酵素0.15gを懸濁させ、こ
れを容器に入れ、中空糸膜の外側にポンプ通液し
た。一方、水300gを容器に入れ、これを中空糸
膜の内側にポンプで通液した。油相側には0.3
Kg/cm2の圧力をかけた。なお中空糸膜は旭化成(株)
に限外過膜ACL−1010(ポリアクリロニトリ
ル)を用いた。この膜の面積は0.2m2である。30
℃で24時間反応後、95%の分解率が得られ、実施
例1と同様にグリセリンと脂肪酸の分離も行われ
た。
[Table] Therefore, in a reaction where water, oil, and enzymes are mixed and stirred to perform a decomposition reaction, in order to ensure a high decomposition rate,
The reaction has no choice but to provide more water than is necessary for the reaction, sacrificing recovery and reuse of the enzyme. As a result of intensive studies to overcome these drawbacks, the present inventors have developed a system that can maintain a high decomposition rate, prevent enzyme deactivation, and simultaneously separate the reaction products glycerin and fatty acids. discovered a temporary reaction method. The reaction method according to the present invention uses a separation membrane called a reverse osmosis membrane, an ultrafiltration membrane, an ion exchange membrane, or a dialysis membrane, and an oil phase in which lipase is suspended on one side of the membrane. It is characterized in that an aqueous phase is present on the opposite side, and the enzyme, oil, and water are brought into contact with each other through a membrane to perform a hydrolysis reaction of fats and oils. If only an oil phase in which enzymes are suspended is present on one side of the membrane and an aqueous phase on the other side, water will enter the oil phase as the decomposition reaction progresses, and as mentioned above, the amount of water will increase and the enzyme will become inactive. However, by applying some pressure to the oil phase side, water can be prevented from entering the oil phase, and enzyme deactivation can be prevented. However, on the other hand, if the pressure applied to the oil phase side is too high, the decomposition rate decreases. Therefore, it is preferable to maintain the pressure applied to the oil phase at the minimum pressure necessary to prevent water from penetrating into the oil phase, and this varies depending on the type of oil used, temperature, etc. Generally the pressure is 0.01
It is necessary to maintain the pressure at Kg/cm 2 or higher, and the optimum pressure varies depending on the shape and size of the membrane reactor, but
Desirably 0.05-5Kg/cm 2 , more preferably 0.05
~0.5Kg/ cm2 . The reaction mechanism of the membrane reactor of the present invention is that water penetrates through the membrane to the membrane surface on the oil phase side, contacts enzymes on this membrane surface, and an oil and fat decomposition reaction occurs. Ru. Since the fat and oil decomposition reaction occurs on the membrane surface in this way, a very high decomposition rate can be obtained, and since almost no water is mixed into the oil phase, it is thought that deactivation of enzymes can be prevented. Details are unknown. In the fat and oil decomposition reaction method of the present invention, the glycerin produced in the decomposition reaction is released into the water phase and almost no longer exists in the oil phase. As a result, at the end of the decomposition reaction, the oil phase becomes a fatty acid solution in which enzymes are suspended, and the aqueous phase becomes glycerin water, making it possible to separate glycerin and fatty acids at the same time as the reaction. Furthermore, since the fat and oil decomposition reaction is determined by the contact time between water, oil, and enzyme, the rate of fat and oil decomposition can be increased by increasing the membrane area. Therefore, by increasing the membrane area, it is possible to further shorten the reaction time, which conventionally required 20 to 30 hours. The lipase used in the present invention may be produced by microorganisms as long as it has a strong ability to decompose fats and oils, or may be obtained from animal organs, plant seeds, etc., and in particular, the source thereof may be specified. isn't it. Furthermore, these lipases can be used not only as purified enzyme preparations but also as unpurified products, and there are no particular limitations on their purity. As the separation membrane used in the present invention, as mentioned above, semipermeable membranes or porous membranes such as reverse osmosis membranes, ultrafiltration membranes, ion exchange membranes, and dialysis membranes are used, especially if they do not allow enzymes to pass through. Although there are no restrictions on the material, it is desirable to use a material that has a high affinity for water. There are no particular limitations on the form of the membrane, and any form of membrane can be used, such as a flat membrane, hollow fiber membrane, or spiral membrane. The membrane reactor in which the membranes are set can be a flat membrane in which many membranes are set to form a multi-chamber structure, or a hollow fiber membrane in which many hollow fiber membranes can be set. A reactor that is more compact and allows for a larger membrane area is desirable, but there are no particular restrictions on the shape of the reactor. In carrying out the present invention, the oil phase in which the enzyme is suspended and water may be left standing on both sides of the membrane, or may be passed through with a pump or the like. When left standing, it is necessary to apply pressure to the oil phase side using a hydraulic machine or gas pressure, but when pumping liquid, it is sufficient to use pump pressure, and pumping liquid is preferable from an industrial perspective. . In addition, in the case of pump liquid passage, oil and water can be circulated through the membrane, respectively, and thereby the membrane area can be reduced. From this point of view as well, pumping is considered preferable. In the reaction method of the present invention, the enzyme is suspended in the fatty acid solution that comes out of the membrane reactor after the reaction is completed.
This is separated, collected and reused. For this separation, filtration, centrifugation, separation using an ultrafiltration membrane, etc. are useful. However, in this case, in order to prevent enzyme deactivation, a method is desired that does not generate heat, can be separated in a short time, and has less enzyme loss. The fats and oils used in the method of the present invention include soybean oil, palm oil, coconut oil, olive oil, linseed oil,
Vegetable oils such as castor oil, beef tallow, pork tallow,
Examples include animal fats and oils such as fish oil. Among these fats and oils, in the case of liquid oils that are liquid at room temperature, the above-mentioned pumping is possible, but in the case of solid fats that are solid at room temperature, this is not possible. Therefore, in the case of these solid fats, it is preferable to carry out the reaction by heating to a temperature above the melting point, or to add an organic solvent that is compatible with the solid fat to impart fluidity and carry out the decomposition reaction. However, in the reaction under heating, extreme heating is not possible because the enzyme is largely inactivated by heat, and it is preferable to maintain the temperature at the lowest temperature at which the oil has fluidity. Also, in the case of adding an organic solvent, it is preferable to add an organic solvent that does not easily lose enzyme activity in the minimum amount that provides fluidity. Examples of organic solvents that do not easily deactivate lipase include hexane and isooctane.
It is not limited to this. Although the reaction method according to the present invention uses a membrane, it does not involve immobilizing the enzyme on the membrane.
The enzyme is suspended in the oil phase. Therefore, deactivation of the enzyme during immobilization, which occurs with immobilized enzymes, does not occur. Furthermore, enzyme deactivation in the enzyme separation step after the membrane reaction is extremely rare, and the enzyme can be easily recovered and reused while maintaining high enzyme activity. As described above, the present invention utilizes the characteristics of lipase to enable its recovery and reuse while maintaining a high decomposition rate, as well as to simultaneously separate fatty acids and glycene. This reaction method has many advantages such as being able to shorten the time. The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. Example 1 A membrane reactor having a multi-chamber structure was prepared by setting 10 cellulose acetate membranes (DRS-10, manufactured by Daicel Chemical Industries, Ltd.) with an area of 0.02 m 2 . FIG. 1 is a schematic cross-sectional view of an example of such a multi-chamber structured membrane reactor. As shown in FIG. A filling material 2 consisting of a plastic net is placed in each chamber, and water is circulated and supplied from a water tank 5 to every other chamber 11 through lines 9 and 9' by a pump 7. 1. Oil (enzyme suspended) is pumped from the oil tank 6 into the chamber adjacent to the pump 8.
It is designed to be circulated and supplied through a 0,10' line. 3 indicates the outer frame. 300g of soybean oil and lipase (Meito Sangyo Co., Ltd.)
Oil in which 0.15 g of OF) was suspended was placed in oil tank 6, and pumped into the chamber on one side of each membrane of the membrane reactor. Similarly, 300 g of water was placed in the water tank 5, and the water was pumped into the chambers on the opposite side of each membrane. The pump flow rates for the oil phase and water phase were changed, and the pump flow rates were determined so that a pressure of 0.2 Kg/cm 2 was applied to the oil phase side, and the oil and water phases were circulated at a temperature of 30°C. In addition, as the viscosity and density of the liquid changed as the reaction progressed, the pump flow rate had to be constantly adjusted to maintain a pressure of 0.2 Kg/cm 2 . The reaction was carried out in this manner, and after 24 hours, a hydrolysis rate of 95% was obtained. on the other hand,
After 24 hours, the glycerin concentration in the oil phase was 0.1%, and the water concentration was also 0.1%. The glycerin concentration in the water that passed through the other side of the membrane was 9%. While such a high decomposition rate was obtained, glycerin and fatty acids were already separated at the end of the membrane reaction. Note that when only the pressure was increased to 0.5 Kg/cm 2 under the same conditions, the decomposition rate decreased to 90% after 24 hours. Therefore, the pressure is preferably maintained near the minimum pressure necessary to prevent water from penetrating into the oil phase, and is appropriately selected according to the shape, size, etc. of the membrane reactor. Example 2 Same conditions as Example 1, 300 g of soybean oil, water
300g, enzyme 0.15g, temperature 30℃, pressure 0.2Kg/cm 2 ,
After 24 hours of reaction in a membrane area of 0.2 m 2 , the fatty acid solution was centrifuged to separate the enzyme. Centrifugation at 25℃
I did it in 10 minutes at 8000rpm. The enzyme thus obtained was suspended again in 300 g of fresh soybean oil, and a second reaction was carried out under the same conditions. A hydrolysis rate of 89% was obtained after 24 hours. The mixture was collected again in the same manner and a third reaction was performed. After 24 hours, the hydrolysis rate was 83%. In this way, the enzyme activity decreased by just 6% per reaction, and the enzyme could be recovered and reused with very little deactivation. Example 3 In Example 2, there was 6% inactivation in each reaction, but to compensate for this, an enzyme recovery and reuse experiment was conducted in a system in which 6% fresh enzyme was added. . That is, the same conditions as Example 1 (pressure 0.2 Kg/cm 2 )
After reacting for 24 hours, the enzyme was separated using the separation method described in Example 2, and 0.009 g of fresh enzyme, equivalent to 6% of the initial addition amount, was added to the separated enzyme. The decomposition reaction was carried out again under the same conditions as in 1. A decomposition rate of 95% was obtained after 24 hours. Since the enzyme can be recovered and reused with a very low degree of deactivation, it was found that a high decomposition rate of 95% could be maintained by supplementing only a few percent of the deactivated amount for each batch. On the other hand, a method in which water, oil, and enzymes are simply stirred and mixed to decompose fats and oils, but the enzymes are not recovered;
0.15g of lipase was required for each application. Therefore, the method of the present invention requires only about 1/20 of the amount used. Example 4 The number of membranes in the membrane reactor as shown in FIG. 1 as in Example 1 was increased to 40, and the same conditions as in Example 1 were carried out.
i.e. 300g oil, 300g water, 0.15g enzyme, 0.2 pressure
When the reaction was carried out at a rate of Kg/cm 2 and a temperature of 30°C, an increase in the decomposition rate was observed as shown in Figure 2. A is membrane 10
(0.2 m 2 ), and B indicates the case of 40 membranes (0.8 m 2 ). That is, it took 24 hours with 10 membranes (0.2 m 2 ) to reach the maximum decomposition rate of 95%, but it became possible with 40 membranes (0.8 m 2 ) in 9 hours. It was found that by increasing the membrane area in this way, the reaction time could be significantly shortened, which would have great advantages in industrialization. Example 5 In Example 1, a flat membrane was used, but in this example, a hollow fiber membrane was used instead of the flat membrane, and a decomposition reaction was carried out by passing an aqueous phase inside the hollow fiber membrane and an oil phase outside. I made it happen. 0.15 g of enzyme was suspended in 300 g of olive oil, this was placed in a container, and the liquid was pumped to the outside of the hollow fiber membrane. On the other hand, 300 g of water was placed in a container and pumped through the inside of the hollow fiber membrane. 0.3 on the oil phase side
A pressure of Kg/cm 2 was applied. The hollow fiber membrane is manufactured by Asahi Kasei Corporation.
Ultrafiltration membrane ACL-1010 (polyacrylonitrile) was used. The area of this membrane is 0.2 m 2 . 30
After reacting at ℃ for 24 hours, a decomposition rate of 95% was obtained, and glycerin and fatty acids were separated in the same manner as in Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法で使用される装置の一例
の断面略示図、第2図は反応時間(横軸)と分解
率(縦軸)との関係の例を示すグラフである。 1……膜、2……充填物、3……外枠、4……
ガスケツト。
FIG. 1 is a schematic cross-sectional view of an example of an apparatus used in the method of the present invention, and FIG. 2 is a graph showing an example of the relationship between reaction time (horizontal axis) and decomposition rate (vertical axis). 1... Membrane, 2... Filling, 3... Outer frame, 4...
Gasket.

Claims (1)

【特許請求の範囲】 1 分離膜を界したいずれか一方側にリパーゼを
懸濁させた油相を、他方側に水相を存在させ、膜
を界して酵素、油、水を接触させて油脂の加水分
解反応を行うことを特徴とする反応方法。 2 油相側への水の侵入を阻むために必要な圧力
を油相側にかけることを特徴とする特許請求の範
囲第1項に記載の反応方法。 3 圧力が0.01Kg/cm2以上である特許請求の範囲
第2項記載の反応方法。
[Claims] 1. An oil phase in which lipase is suspended is present on either side of a separation membrane, and an aqueous phase is present on the other side, and the enzyme, oil, and water are brought into contact with each other across the membrane. A reaction method characterized by carrying out a hydrolysis reaction of fats and oils. 2. The reaction method according to claim 1, characterized in that a pressure necessary to prevent water from entering the oil phase side is applied to the oil phase side. 3. The reaction method according to claim 2, wherein the pressure is 0.01 Kg/cm 2 or more.
JP58230922A 1983-12-07 1983-12-07 Hydrolysis of oil and fat with lipase Granted JPS60126090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58230922A JPS60126090A (en) 1983-12-07 1983-12-07 Hydrolysis of oil and fat with lipase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58230922A JPS60126090A (en) 1983-12-07 1983-12-07 Hydrolysis of oil and fat with lipase

Publications (2)

Publication Number Publication Date
JPS60126090A JPS60126090A (en) 1985-07-05
JPS6253152B2 true JPS6253152B2 (en) 1987-11-09

Family

ID=16915382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58230922A Granted JPS60126090A (en) 1983-12-07 1983-12-07 Hydrolysis of oil and fat with lipase

Country Status (1)

Country Link
JP (1) JPS60126090A (en)

Also Published As

Publication number Publication date
JPS60126090A (en) 1985-07-05

Similar Documents

Publication Publication Date Title
Dekker et al. Enzyme recovery by liquid-liquid extraction using reversed micelles
EP0232933B2 (en) The hydrolysis of fats using immobilized lipase
JPS59154999A (en) Method for biochemical reaction and biochemical reactor
JPH0338834B2 (en)
JPS623791A (en) Production of lipid by mildew or algae
US5032515A (en) Hydrolysis process of fat or oil
JP3764855B2 (en) Method for hydrolysis of fats and oils
JPS6253152B2 (en)
Bélafi-Bakó et al. Triacylglycerol hydrolysis by lipase in a flat membrane bioreactor
EP0605173A2 (en) Hollow fibre reactor
JPS626694A (en) Production of lipid by mold or alga
JPS61173791A (en) Method of hydrolyzing fat and oil with lipase
JPS62278988A (en) Process for enzymatic or microbial reaction
JPS6248391A (en) Production of fatty acid ester
JPS62166895A (en) Production of fatty acid ester
JPH0889938A (en) Treatment of water-based liquid containing hydrogen peroxide
JPH043953B2 (en)
JPH03259089A (en) Production of organic acid ester
JPH0412711B2 (en)
JPS6185196A (en) Hydrolysis of fat and oil with lipase
JPS61173790A (en) Method of hydrolyzing fat and oil with lipase
SU378406A1 (en) BIELOTECL
JPS61100196A (en) Hydrolysis of oil and fat with lipase
JPH02291264A (en) Membrane having immobilized enzyme
JPH01108972A (en) Reactor for liquid-liquid different phases