JPS61173791A - Method of hydrolyzing fat and oil with lipase - Google Patents

Method of hydrolyzing fat and oil with lipase

Info

Publication number
JPS61173791A
JPS61173791A JP60013903A JP1390385A JPS61173791A JP S61173791 A JPS61173791 A JP S61173791A JP 60013903 A JP60013903 A JP 60013903A JP 1390385 A JP1390385 A JP 1390385A JP S61173791 A JPS61173791 A JP S61173791A
Authority
JP
Japan
Prior art keywords
reaction
glycerin
enzyme
oil
oils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60013903A
Other languages
Japanese (ja)
Inventor
Masanobu Tanigaki
谷垣 雅信
Hidetoshi Wada
和田 英俊
Masaru Sakata
勝 坂田
Ikizou Hashiba
羽柴 域三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP60013903A priority Critical patent/JPS61173791A/en
Publication of JPS61173791A publication Critical patent/JPS61173791A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep high decomposition ratio of fats and oils, to maintain enzyme activity and to continue a reaction stably for a long period, by hydrolyzing fats and oils with lipase while keeping always glycerin concentration in a water phase existing in a reaction system in a specific range. CONSTITUTION:In hydrolyzing fats and oils with lipase, glycerin concentration in a water phase existing in a reaction system is kept always at 10-40wt% to carry out the reaction. After the hydrolysis is over, the reaction mixture is separated into an oil layer, an emulsion layer and a water layer, the emulsion layer is taken out, used again for the following fats and oils hydrolysis, the enzyme dissolved in the water phase is concentrated and recovered from the water layer by the use of an ultrafilter, and preferably it is reused for the ensuring fats and oils hydrolysis.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は油脂分解酵素(リパーゼ)を用いた油脂分解反
応において、反応系内に一定量のグリセリンを維持する
ととKよシ、高い油脂分解率を保ちながら酵素の活性を
持続し、酵素の再、利用を可能にして長期間安定に反応
を継続できる新規な酵素反応方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention proposes that in a fat decomposition reaction using a fat decomposing enzyme (lipase), if a certain amount of glycerin is maintained in the reaction system, a high degree of fat decomposition can be achieved. This invention relates to a novel enzyme reaction method that maintains the activity of the enzyme while maintaining the efficiency, enables reuse and reuse of the enzyme, and allows the reaction to continue stably for a long period of time.

〔従来の技術及び問題点〕[Conventional technology and problems]

リパーゼを用いて油脂を分解し、グリセリンと脂肪酸を
製造する方法は古くから知られているが、工業化には種
々の障壁がある。その大きな原因は、リパーゼが反応と
ともに急激に失活し、回収再利用できないため、高価な
酵素を大量に使用しなくてはならない点くある。そのた
め高圧分解法に比してコスト的メリットが得られず、酵
素の特性を生かせずKいるのが現状である◇従って、酵
素を安定化し回収再利用を可能にす6方法については近
年様々な検討がなされてきている。例えば、酵素を多糖
類ゲルに固定化させて安定化を計る方法(特開昭58−
146284号公報)、また或いは、1価又は多価アル
コールのポリオ中シアルキレンエーテルを添加する方法
(特開昭59−173080号公報)などが挙げられる
。しかしこれらの方法は工業化に際してはそれぞれ大き
な欠点を持っている。例えば固定化リパーゼによる方法
では、多量の固定化担体を要し、これに要する費用を無
視できない。また一般に固定化すると酵素の活性発現率
が低下すると言われておシ、そのため多量の酵素を必要
とする場合が多い。或いはまた、1価又は多価アルコー
ルのポリオキシアルキレンエーテルを添加する方法では
、反応生成物中にこの添加物が存在することからこれを
除去する工程が必ず必要である。またこの添加物が回収
再利用できない場合には、添加物に要するコストも大き
なものとなってくる。
Although the method of producing glycerin and fatty acids by decomposing fats and oils using lipase has been known for a long time, there are various obstacles to industrialization. The main reason for this is that lipase rapidly deactivates during the reaction and cannot be recovered and reused, so a large amount of expensive enzyme must be used. Therefore, the current situation is that there is no cost advantage compared to high-pressure decomposition methods, and the characteristics of enzymes cannot be utilized. Therefore, in recent years, various methods have been developed to stabilize enzymes and make it possible to recover and reuse them. Considerations have been made. For example, a method of stabilizing an enzyme by immobilizing it on a polysaccharide gel (Japanese Unexamined Patent Application Publication No. 1983-1989)
146284), or a method of adding a sialkylene ether in a monohydric or polyhydric alcohol polio (Japanese Patent Laid-open No. 173080/1983). However, each of these methods has major drawbacks when it comes to industrialization. For example, the method using immobilized lipase requires a large amount of immobilization carrier, and the cost required for this cannot be ignored. Furthermore, it is generally said that immobilization reduces the activity expression rate of the enzyme, and therefore a large amount of enzyme is often required. Alternatively, in the method of adding a polyoxyalkylene ether of a monohydric or polyhydric alcohol, since this additive is present in the reaction product, a step for removing it is necessarily necessary. Furthermore, if this additive cannot be recovered and reused, the cost required for the additive becomes large.

このように従来の酵素安定化法は工業化を考えた場合、
工程的コスト的に種々のデメリットを持っておシ、高圧
分解法を凌駕する技術とはなシ難いと考えられる。
In this way, when considering industrialization, conventional enzyme stabilization methods
It has various disadvantages in terms of process and cost, and it is difficult to find a technology that surpasses the high-pressure decomposition method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、このような欠点を克服すべく鋭意検討し
た結果、酵素を安定的に再利用でき、しかもコスト的に
有利な新規油脂分解技術を確立するに至った。
As a result of intensive studies aimed at overcoming these drawbacks, the present inventors have established a new fat and oil decomposition technology that allows stable reuse of enzymes and is advantageous in terms of cost.

すなわち、リパーゼの安定化には、油脂分解反応の生成
物であるグリセリンが非常に有効に作用し、反応系内に
常に一定量以上のグリセリンが存在するような条件下で
反応を行わせしめれば、リパーゼを安定化させ容易に再
利用できることを見出した。
In other words, glycerin, which is a product of fat and oil decomposition reaction, acts very effectively to stabilize lipase, and if the reaction is carried out under conditions where a certain amount or more of glycerin is always present in the reaction system, found that lipase can be stabilized and easily reused.

すなわち、油脂分解酵素(リパーゼ)による油脂の加水
分解反応において、反応系内に存在する水相中のグリセ
リン濃度を常に10〜40重量パーセントに維持して反
応を行うことを特徴とする酵素反応方法を提供するもの
である。
That is, in the hydrolysis reaction of fats and oils using a fat-degrading enzyme (lipase), an enzyme reaction method is characterized in that the reaction is carried out while always maintaining the glycerin concentration in the aqueous phase present in the reaction system at 10 to 40% by weight. It provides:

グリセリンは一定量以上あれば酵素の安定化に寄与する
が、しかし一方、グリセリンが多量に存在すると油脂分
解率が低下し、目的とする80〜90%以上の高い油脂
分解率を得ることが困難となってくる。これはおそらく
グリセリンが多量に存在する場合には次の反応式で表わ
される分解反応の逆反応が起こるため、あるいは又反応
平衡の問題が原因ではないかと考えられる。
Glycerin contributes to the stabilization of enzymes if it is present in a certain amount or more, but on the other hand, if a large amount of glycerin is present, the fat and oil decomposition rate decreases, making it difficult to obtain the desired high fat and oil decomposition rate of 80 to 90% or more. It becomes. This is probably due to the fact that when a large amount of glycerin is present, a reverse reaction to the decomposition reaction expressed by the following reaction formula occurs, or due to a problem in reaction equilibrium.

このようなことから、反応系内に存在するグリセリンの
量を、反応系内の水相中のグリセリン濃度として10〜
40重量パーセント、・望ましくは15〜30重量パー
セントKtK維持して油脂分解反応を行わせしめれば、
酵素は安定化され、容易に回収再利用できる一方、油脂
の加水分解率を高いレベルに保ったまま反応を行うこと
ができることを見出し、本発明を完成するに至った。
For this reason, the amount of glycerin present in the reaction system is determined as the concentration of glycerin in the aqueous phase of the reaction system.
If KtK is maintained at 40% by weight, preferably 15 to 30% by weight, and the fat decomposition reaction is carried out,
The present invention was completed based on the discovery that the enzyme is stabilized and can be easily recovered and reused, while the reaction can be carried out while maintaining the hydrolysis rate of fats and oils at a high level.

グリセリン濃度を上記範囲内に保つ方法として、基質で
ある油脂、水とリパーゼとを攪拌混和させて反応するに
際して、水の代わシに1例えば15重量%のグリセリン
水溶液を用いる。
As a method of keeping the glycerin concentration within the above-mentioned range, when stirring and mixing the substrate fats and oils and water with lipase to react, a 1, for example, 15% by weight aqueous glycerin solution is used instead of water.

油脂分解反応の進行に伴い、グリセリンが生成し水相内
のグリセリン濃度が増加することから、グリセリン水溶
液の添加量は油脂が分解後生成した最終グリセリン濃度
が上記範囲内に入るように設定しなくてはならない。例
を挙げて更に詳しく説明すると、例えば15重量%のグ
リセリン水溶液を反応初期に使用し、反応終了後水相中
のグリセリン濃度を30重量%内に維持する場合には、
以下のような計算によシ油脂/グリセリン水溶液の供給
比、率をコントロールする必要がある。
As the fat and oil decomposition reaction progresses, glycerin is produced and the glycerin concentration in the aqueous phase increases, so the amount of glycerin aqueous solution added should not be set so that the final glycerin concentration produced after the fat and oil is decomposed falls within the above range. must not. To explain in more detail by giving an example, for example, if a 15% by weight aqueous glycerin solution is used at the initial stage of the reaction and the glycerin concentration in the aqueous phase is maintained within 30% by weight after the reaction is completed,
It is necessary to control the supply ratio and rate of oil/glycerin aqueous solution by the following calculation.

油脂の分子量=M、グリセリン分子量=9’2゜油脂量
=X 、 1S重量%グリセリン水溶液量=y、油脂分
解率=η 一マ・x+ 0.157=0.37 仮KM冨900.マ=95%を代入するとx/y = 
L54 本発明はこのようKして油脂/グリセリン水溶液の供給
比率をコントロールして、全反応過程において水相中の
グリセリン濃度が常に上記の範囲内に入るように設定し
て反応を行うことを特徴とするものである。
Molecular weight of fats and oils = M, molecular weight of glycerin = 9'2°, amount of fats and oils = Substituting ma = 95%, x/y =
L54 The present invention is characterized in that the feed ratio of oil/fat/glycerin aqueous solution is controlled in this way, and the reaction is carried out by setting the glycerin concentration in the aqueous phase to always be within the above range during the entire reaction process. That is.

このようにグリセリンを酵素の安定化剤に使用する方法
では前述の1価又は多価アルコールのポリオキシアルキ
レンエーテルを添加する方法などに比べて、グリセリン
が反応生成物であることから反応終了物からこれを除去
する必要がなく、コスト的、工程的に非常に有利となる
In this way, in the method of using glycerin as an enzyme stabilizer, compared to the method of adding polyoxyalkylene ether of monohydric or polyhydric alcohol, since glycerin is a reaction product, it is difficult to remove the reaction product from the end product. There is no need to remove this, which is very advantageous in terms of cost and process.

系内のグリセリン濃度を一定に保って安定化した酵素を
再利用するに際しては、酵素の回収方法として以下の方
法をとる。すなわち、反応終了後、反応系を静置或いは
遠心分離等の手段によシ3層に分離する。3層とは上層
から、油層、エマルジョン層、水層であシ、酵素はこの
エマルジョン層に80〜95%、及び水層に5〜20%
含まれている。従って酵素を再利用するKfiつては、
このエマルジョン層を取り出し次回の酵素反応に用い、
また水層は限外一過膜で処理して、溶解している酵素を
濃縮回収してこれを次回の酵素反応に用いる。グリセリ
ンによって安定化されているため、このようKして回収
した酵素は殆んど活性の損失が無く、次回の反応に再使
用できる。なおグリセリン濃度が低い場合には、反応を
くシ返していくにつれ、油脂分解率が低下する場合があ
る0このような場合には少量のフレッシュ表リパーゼを
補ってやるのが好ましい。補充量は最初に添加した酵素
の5〜20%を用いるのが好ましい。
When reusing the stabilized enzyme by keeping the glycerin concentration in the system constant, the following method is used to recover the enzyme. That is, after the reaction is completed, the reaction system is separated into three layers by standing still or by means such as centrifugation. The three layers are, from the top, an oil layer, an emulsion layer, and an aqueous layer. 80-95% of the enzyme is in this emulsion layer, and 5-20% is in the aqueous layer.
include. Therefore, in order to reuse enzymes,
This emulsion layer is taken out and used for the next enzyme reaction.
In addition, the aqueous layer is treated with an ultra-transient membrane to concentrate and recover the dissolved enzyme, which is then used for the next enzyme reaction. Since it is stabilized by glycerin, the enzyme recovered by K in this way has almost no loss of activity and can be reused for the next reaction. Note that if the glycerin concentration is low, the fat and oil decomposition rate may decrease as the reaction is repeated. In such a case, it is preferable to supplement with a small amount of fresh surface lipase. The replenishment amount is preferably 5 to 20% of the initially added enzyme.

水層からの酵素の回収に当って使用する限外一過膜は、
酵素を通過させないものであれば、材質、形状等特に限
定するものではなく、例えば、酢酸セルロース膜、ポリ
アクリロニトリル膜、ポリスルホン膜、ポリアミド膜、
ポリイミド膜等どのような材質のものでも使用でき、ま
た形状についても、管状、スパイラル状、中空糸状、平
膜状等どのような形状のものでも使用できる。また限外
一過膜の分画分子量については、3000〜20000
程度のものが好ましい。限外−適法によシ、グリセリン
水溶液が限外−過膜を透過し、酵素の濃縮液が膜内に残
るからこれを次回の酵素反応に再利用すれば良い0酵素
液の濃縮倍率は5倍以上、好ましくは20倍以上が追補
である。
The ultratransient membrane used to recover enzymes from the aqueous layer is
There are no particular limitations on the material or shape as long as it does not allow enzymes to pass through, such as cellulose acetate membrane, polyacrylonitrile membrane, polysulfone membrane, polyamide membrane,
Any material such as a polyimide membrane can be used, and any shape can be used such as a tubular shape, a spiral shape, a hollow fiber shape, or a flat membrane shape. In addition, the molecular weight cutoff of the ultratransient membrane is 3000 to 20000.
It is preferable that the degree of According to the ultra-proper method, the aqueous glycerin solution passes through the ultra-filter membrane and the concentrated enzyme solution remains inside the membrane, so it can be reused for the next enzyme reaction.The concentration ratio of the enzyme solution is 5. The supplement is at least twice that amount, preferably 20 times or more.

以上のような方法によシ酵素は安定的に回収再利用でき
るが、本発明による方法では、更に高温下での反応にお
いても酵素は失活せず容易に回収再利用できる。一般に
酵素は熱に対して非常に不安定である。リパーゼにおい
てもこの例に洩れず、40℃を越える温度では徐々に活
性の低下が認められることから、各方面で耐熱性リパー
ゼの開発が精力的に行われている。しかしこのような耐
熱性リパーゼを用いなくても、高温で失活し易い通常の
リパーゼを用いた場合でも、本発明による方法では、酵
素の失活を抑え、安定的に再利用できることを見出した
。すなわち、本発明による方法では、45〜SO℃の高
温でも、80〜90%以上の高い油脂分解率で、なお且
つ、酵素も回収再利用できる0これkよシ本発明による
方法では、牛脂やパーム油などのように常温で固体であ
る油脂も効率良く容易KW素分解できる。また、高温で
反応できるととKよシ、油脂分解速度がアップし、その
ため低温下での反応に比べ一定時間内に多量の油脂を分
解できる。
Although enzymes can be stably recovered and reused by the methods described above, in the method according to the present invention, enzymes are not deactivated even in reactions at high temperatures and can be easily recovered and reused. Enzymes are generally very unstable to heat. This is also the case with lipases, where a gradual decrease in activity is observed at temperatures exceeding 40°C, and therefore, efforts are being made to develop heat-resistant lipases in various fields. However, it has been found that even if such a heat-stable lipase is not used, and even if a normal lipase, which is easily deactivated at high temperatures, is used, the method of the present invention can suppress the deactivation of the enzyme and allow stable reuse. . That is, the method according to the present invention has a high fat and oil decomposition rate of 80 to 90% even at high temperatures of 45 to SO ℃, and enzymes can also be recovered and reused. Oils and fats that are solid at room temperature, such as palm oil, can be efficiently and easily subjected to KW elementary decomposition. Furthermore, if the reaction can be carried out at a high temperature, the rate of decomposition of fats and oils will be increased, and therefore a large amount of fats and oils can be decomposed within a certain amount of time compared to reactions at low temperatures.

本発明で用いられるリパーゼの種類は特に限定するもの
ではないが、一般的にはキャンデイダ属、クロモバクテ
リウム属、アスペルギルス属、ペニシリウム属、ムコー
ル属、ジオトリカム属、リゾプス属、アルスロバクタ−
属、ヒコミセス属などの微生物を給源とするリパーゼ、
すい臓などの動物臓器よシ得られるリパーゼ、ひま種子
などの植物極子よシ得られるリパーゼ等が使用できる。
The type of lipase used in the present invention is not particularly limited, but generally includes Candida, Chromobacterium, Aspergillus, Penicillium, Mucor, Geotrichum, Rhizopus, and Arthrobacter.
Lipases sourced from microorganisms such as Hycomyces spp.
Lipase obtained from animal organs such as pancreas, lipase obtained from plant pollen such as castor seeds, etc. can be used.

またこれらリパーゼ畔精製した酵素標品ばかシでなく、
未精製品でも用いることができ、その純度については特
に限定するものではない。
In addition, these lipase-purified enzyme preparations are not
An unpurified product can also be used, and its purity is not particularly limited.

また本発明に用いる油脂としては、大豆油、パーム油、
ヤシ油、オリ−・プ油、アマニ油、ヒマシ油、桐油など
の植物性油脂、或いは牛脂、豚脂、魚油などの動物性油
脂などが挙げられる。
In addition, the oils and fats used in the present invention include soybean oil, palm oil,
Vegetable oils and fats such as coconut oil, olive oil, linseed oil, castor oil, and tung oil, and animal oils and fats such as beef tallow, lard, and fish oil are exemplified.

以上述べてきたように本発明はリパーゼの特徴を利用し
て高い分解率を維持したままりバーゼの回収再利用を可
能にし、なお且つ高温下での反応及び回収再利用も可能
にするなど、数多くの利点をもった油脂分解反応方法で
ある。
As described above, the present invention utilizes the characteristics of lipase to enable recovery and reuse of barse while maintaining a high decomposition rate, and also enables reaction at high temperatures and recovery and reuse. This is a fat and oil decomposition reaction method that has many advantages.

〔実施例〕〔Example〕

以下本発明の実施例について説明するが、本発明はこれ
ら実施例に限定されるものではなへ実施例−1 油脂として大豆油を用い、大豆油200fに20重量%
グリセリン水溶液200tを加え、これにキャンタイプ
・シリンドラセよ〕産生じたリパーゼ(320000単
位/f)を0.11 (大豆油の0.05%)加えて、
30℃(常時攪拌して反応させた。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
Add 200 t of glycerin aqueous solution, and add 0.11 (0.05% of soybean oil) of lipase (320,000 units/f) produced by Cantype Cylindrace.
The reaction was carried out at 30°C (with constant stirring).

24時間後、反応液を遠心分離して3層に分離した。遠
心分離は8000rpmで5分間行った。
After 24 hours, the reaction solution was centrifuged and separated into three layers. Centrifugation was performed at 8000 rpm for 5 minutes.

上層部(油相部)から160tを採取し、酸価及びけん
化価を測定した。酸価= 174 、けん化価=195
が得られ、下式よシ加水分解率を計算したところ、89
.2%であった。
160 tons was collected from the upper layer (oil phase) and the acid value and saponification value were measured. Acid value = 174, saponification value = 195
was obtained, and the hydrolysis rate was calculated using the formula below, which was 89
.. It was 2%.

また下層(水相部)は分画分子量20000 、材質ポ
リアクリロニトリル、平膜タイプの限外一過膜を用いて
、下層中の酵素の回収を行った。
The enzyme in the lower layer (aqueous phase) was recovered using a flat membrane type ultra-transient membrane having a molecular weight cutoff of 20,000 and made of polyacrylonitrile.

圧力1 b/s2で処理を行−1170tの下層液を1
2Fまで濃縮した。なお膜透過液のグリセリン濃度は2
9重量%であった。
Processing is carried out at a pressure of 1 b/s2 - 1170 t of lower layer liquid is
It was concentrated to 2F. The glycerin concentration of the membrane permeate is 2.
It was 9% by weight.

このようにして分離したエマルジョン層と限外−過濃縮
した下層の濃縮液の合計82tに、再度大豆油200f
及び、18重量%のグリセリン水溶液200tを加えて
2回目の反応を行った(18重量%のグリセリン水溶液
を使用したのは回収したエマルジョン層及び膜濃縮液の
水相(計42t)中のグリセリン濃度が29重量%であ
ることから、水相全体のグリセリン濃度を20重量%に
調節するためである)。30℃にて攪拌しながら24時
間反応させた。油脂の分解率は90.1%、水層のグリ
セリン濃度は29重量%であった。
A total of 82 tons of the emulsion layer separated in this way and the ultra-superconcentrated lower layer concentrate were added again to 200 f of soybean oil.
Then, a second reaction was carried out by adding 200 tons of 18% by weight aqueous glycerin solution (the reason why the 18% by weight glycerin aqueous solution was used was based on the glycerin concentration in the collected emulsion layer and the aqueous phase of the membrane concentrate (42 tons in total). is 29% by weight, this is to adjust the glycerin concentration of the entire aqueous phase to 20% by weight). The reaction was allowed to proceed for 24 hours while stirring at 30°C. The decomposition rate of fats and oils was 90.1%, and the glycerin concentration in the aqueous layer was 29% by weight.

24時間後、更に上記と同様に遠心分離、膜分離を行っ
て回収した酵素を利用して、フレッシュな大豆油200
t、18重量%グリセリン水溶液200fと同様に反応
させて3回目の反応を行った。
After 24 hours, using the enzyme recovered by centrifugation and membrane separation in the same manner as above, fresh soybean oil 200%
A third reaction was carried out in the same manner as with t and 200f of a 18% by weight aqueous glycerin solution.

このようにしてくシ返し反応を行ったところ、第1表の
ような油脂加水分解率が得られ、酵素は全く失活せず、
元の酵素がそのまま使用でき、常に高分解率が維持でき
た。結果を第1表に示した0 第  1  表 実施例−2 油脂としてオリーブ油を用い、オリーブ油200fに1
5重量多グリセリン水溶液10(Itを加え、実施例−
1で用いたと同じリパーゼ0.1 fを加えて30℃で
24時間攪拌しながら反応させた。
When the comb-reaction reaction was carried out in this way, the oil and fat hydrolysis rates shown in Table 1 were obtained, and the enzyme was not deactivated at all.
The original enzyme could be used as is, and a high decomposition rate could always be maintained. The results are shown in Table 1.Table 1 Example-2 Olive oil was used as the fat, and 200f of olive oil was mixed with 1
Add 5 weight polyglycerin aqueous solution 10 (It, Example-
0.1 f of the same lipase used in 1 was added and reacted at 30°C for 24 hours with stirring.

24時間後実施例−1と同様の条件で遠心分離、限外一
過膜分離を行った◇油相の加水分解率は88.2%であ
った。また水相のグリセリン濃度は33重量%であった
After 24 hours, centrifugation and ultra-transient membrane separation were performed under the same conditions as in Example 1. The hydrolysis rate of the oil phase was 88.2%. Moreover, the glycerin concentration of the aqueous phase was 33% by weight.

エマルジョン層及び膜による濃縮液合計73炉を回収し
、これにフレッシュなオリーブ油200を及び8重量多
グリセリン水溶液100tを加えた。これKよ〕系内の
水相中のグリセリン濃度は15重量うとなる。
A total of 73 furnaces of concentrate from the emulsion layer and membrane were recovered, to which were added 200 tons of fresh olive oil and 100 tons of an 8 weight glycerin aqueous solution. The glycerin concentration in the aqueous phase of the system is 15% by weight.

温度sO℃で24時間反応後、同様にして遠心分離、限
外一過膜分離を行った。分離したエマルジョン層及び限
外−過膜濃縮液を3回目の反応に用いた。
After reacting for 24 hours at a temperature of sO<0>C, centrifugation and ultra-transient membrane separation were performed in the same manner. The separated emulsion layer and ultra-filter concentrate were used for the third reaction.

このようにして反応をくシ返したところ、第2表の油脂
加水分解率が得られた。
When the reaction was repeated in this manner, the oil and fat hydrolysis rates shown in Table 2 were obtained.

第  2  表 実施例−3 大豆油200tに10重量%のグリセリン水溶液200
fを加え、これに実施例−1で用いたリパーゼ0.1f
を加え、30℃24時間反応させた。24時間後、実施
例−1と同様の条件で遠心分離、限外一過膜分離を行っ
た。油脂の加水分解率は92.5%、水相のグリセリン
濃度は19重量%であった。
Table 2 Example-3 200 tons of 10% by weight glycerin aqueous solution in 200 tons of soybean oil
f, and to this add 0.1f of the lipase used in Example-1.
was added and reacted at 30°C for 24 hours. After 24 hours, centrifugation and ultra-transient membrane separation were performed under the same conditions as in Example-1. The hydrolysis rate of fats and oils was 92.5%, and the glycerin concentration in the aqueous phase was 19% by weight.

実施例−1と同様にエマルジョン層及び膜による濃縮液
を回収し、これにフレッシュな大豆油200を及び8重
量%のグリセリン水溶液200rを加え(これによシ、
反応系内の水相中のグリセリン濃度は10重量%)、同
様に24時間反応させた。24時間後、同様に遠心分離
、膜分離゛を行って酵素を回収し、これに再び大豆油、
グリセリン水溶液を加えて3回目の反応を行ったO このようにして反応なくシ返して、油脂の加水分解率を
測定したところ第3表の結果が得られた。
In the same manner as in Example-1, the emulsion layer and membrane concentrate were collected, and 200 r of fresh soybean oil and 200 r of an 8% by weight aqueous glycerin solution were added (to this,
The glycerin concentration in the aqueous phase in the reaction system was 10% by weight), and the reaction was similarly carried out for 24 hours. After 24 hours, the enzyme was recovered by centrifugation and membrane separation in the same manner, and soybean oil and soybean oil were added to it again.
A third reaction was carried out by adding an aqueous glycerin solution. After the reaction was repeated in this manner without any reaction, the hydrolysis rate of the oil and fat was measured, and the results shown in Table 3 were obtained.

第  3  表 このように初期のグリセリン水溶液濃度を10重量%に
した時は、反応回数を追うごとに油脂の加水分解率は低
下していった。
Table 3 As shown in Table 3, when the initial concentration of the glycerin aqueous solution was set to 10% by weight, the hydrolysis rate of fats and oils decreased as the number of reactions increased.

実施例−4 実施例−3で反応回数毎に分解率の低下がみられたので
、ここでは回収した酵素液にフレッシュな酵素を少量ず
つ添加する方法で反応をくシ返した。すなわち、実施例
−3と同じ条件で反応を行い、遠心分離、膜分離を行っ
て得られた酵素回収液にフレッシュなリパーゼo、o1
r (仕込み酵素量の10%)を加え、2回目の反応を
行った。同様にして3回目の反応時にもフレッシュなリ
パーゼ0.01Fを加えて反応をくり返した。
Example 4 In Example 3, a decrease in the decomposition rate was observed with each number of reactions, so here the reaction was repeated by adding fresh enzyme little by little to the recovered enzyme solution. That is, the reaction was carried out under the same conditions as in Example 3, and fresh lipase o, o1 was added to the enzyme recovery solution obtained by centrifugation and membrane separation.
r (10% of the amount of charged enzyme) was added, and a second reaction was performed. Similarly, during the third reaction, fresh lipase 0.01F was added and the reaction was repeated.

このようにして反応をくシ返したととる、第4表の油脂
加水分解率が得られた。
In this way, the oil and fat hydrolysis rates shown in Table 4 were obtained, assuming that the reaction was repeated.

第  4  表 このように初期のグリセリン水溶液濃度が低い場合には
、活性の低下が与られることから、少量の酵素をくり返
し添加することで午れを防ぐことができた0またグリセ
リン濃度が低い場合には、24時間後の到達分解率はグ
リセリン濃度の高い場合よシ高くなる0 実施例−5 牛脂200fに20重量%のグリセリン水溶液200f
を加え、これに実施例−1で使用したと同じリパーゼO
,a t (牛脂に対して0.4%)を加えて、45℃
で24時間攪拌しながら反応させた。45℃で牛脂の粘
度は大きく低下するため、攪拌動力は小さなもので攪拌
可能であった024時間後、反応液を遠心分離して3層
に分離した。遠心分離に当っては常に45℃を保つよう
に液部弁を保温できるものを用いた0上層の油相部の加
水分解率を測定したところ90.2%であった。また下
層の水相中のグリセリン濃度は29重量%であった。
Table 4 As shown in Table 4, when the initial concentration of the glycerin aqueous solution is low, the activity is reduced, so by repeatedly adding small amounts of the enzyme, it was possible to prevent dryness.0 Also, when the glycerin concentration is low The decomposition rate reached after 24 hours is higher when the glycerin concentration is higher.
and added the same lipase O used in Example-1.
, a t (0.4% based on beef tallow) and heated to 45°C.
The mixture was reacted with stirring for 24 hours. Since the viscosity of beef tallow decreases significantly at 45° C., stirring was possible with a small stirring power. After 24 hours, the reaction solution was centrifuged and separated into three layers. During centrifugation, the hydrolysis rate of the oil phase in the upper layer was measured to be 90.2% using a device capable of keeping the liquid valve at 45° C. at all times. The glycerin concentration in the lower aqueous phase was 29% by weight.

下層の水相部については、限外−過膜を用いて酵素の濃
縮を行った。ここでは限外−過膜として、分画分子量1
5000のポリスルホン膜を用い、圧力1go/cab
2で操作を行った。
For the lower aqueous phase, the enzyme was concentrated using an ultrafiltration membrane. Here, as an ultra-filter membrane, the molecular weight cutoff is 1
Using 5000 polysulfone membrane, pressure 1go/cab
The operation was performed in 2.

実施例−1と同様に、遠心分離にて分離したエマルジョ
ン層及び限外一過膜濃縮液の合計851に、再び7しで
シュな牛脂200 p及び18重量%のグリセリン水溶
液200fを加え、45℃24時間で2回目の反応を行
った022回目反応終了後、実施例−1と同様の操作で
3回目の反応を行い、順次これをくシ返した0その結果
、牛脂の加水分解率は第5表のように反応を5回くシ返
しても全く低下しなかった。
In the same manner as in Example 1, 200 p of shredded beef tallow and 200 f of an 18 wt % aqueous glycerin solution were added to a total of 851 of the emulsion layer and ultrafilter concentrate separated by centrifugation, and 45 The second reaction was carried out for 24 hours at ℃. After the completion of the second reaction, the third reaction was carried out in the same manner as in Example 1, and the reactions were repeated sequentially. As a result, the hydrolysis rate of beef tallow was As shown in Table 5, there was no decrease at all even when the reaction was repeated 5 times.

このように45℃の高温下でも本反応方法では酵素は全
く失活せず再利用できることがわかった。
Thus, it was found that even at a high temperature of 45°C, the enzyme was not deactivated at all in this reaction method and could be reused.

比較例−1 大豆油200f1水200f1実施例−1で用いたと同
じリパーゼ0.1tを攪拌混和して30℃で24時間反
応させた。反応液、実施例−1と同条件で遠心分離にて
3層に分離した。
Comparative Example-1 200 fl of soybean oil, 200 fl of water, and 0.1 t of the same lipase used in Example-1 were mixed with stirring and reacted at 30° C. for 24 hours. The reaction solution was separated into three layers by centrifugation under the same conditions as in Example-1.

油相の大豆油の加水分解率は93.0%が得られた。ま
た水相のグリセリン濃度は9.7%でおった。
The hydrolysis rate of soybean oil in the oil phase was 93.0%. Furthermore, the glycerin concentration in the aqueous phase was 9.7%.

実施例−1と同様の方法で水相部を限外一過膜処理して
酵素を回収し、エマルジョン層とともに次の反応に使用
した。すなわち大豆油200v1水200vを回収した
酵素液に加え、30℃、24時間で2回目の反応を行っ
た。このようにして反応なくシ返したところ、大豆油加
水分解率として第6表の結果が得られた。
The aqueous phase was subjected to ultra-transient membrane treatment in the same manner as in Example-1 to recover the enzyme, which was used together with the emulsion layer in the next reaction. That is, 200v of soybean oil and 200v of water were added to the recovered enzyme solution, and a second reaction was carried out at 30°C for 24 hours. When the mixture was recycled in this manner without any reaction, the results shown in Table 6 were obtained for the soybean oil hydrolysis rate.

第  6  表 このようにグリセリンを含まず、単に水と油脂を反応さ
せる方法では、反応のくシ返しとともに酵素活性は大き
く低下してゆく。
Table 6 As shown, in the method of simply reacting water and fat without glycerin, the enzyme activity decreases significantly as the reaction is repeated.

比較例−2 大豆油200t、50重景%グリセリン水溶液2001
、実施例−1で使用したのと同じリパーゼ0.1fを攪
拌混和して30℃で24時間反応させた。反応後、実施
例−1と同じ条件で遠心分離を行った。
Comparative Example-2 200t of soybean oil, 50% glycerin aqueous solution 2001
The same lipase 0.1f as used in Example-1 was mixed with stirring and reacted at 30°C for 24 hours. After the reaction, centrifugation was performed under the same conditions as in Example-1.

油相の大豆油の加水分解率は66%であった。The hydrolysis rate of soybean oil in the oil phase was 66%.

一方、水相のグリセリン濃度は57重量%モあった。On the other hand, the glycerin concentration in the aqueous phase was 57% by weight.

このように50重量%ものグリセリン水溶液を使用する
と、油脂の加水分解率は大きく低下する。
When an aqueous glycerin solution of as much as 50% by weight is used in this way, the hydrolysis rate of fats and oils is greatly reduced.

比較例−3 牛脂200t、水200F、実施例−1で用いたと同じ
リパーゼO,a t (牛脂の0.4%)を攪拌混和し
て45℃で24時間反応させた。反応後実施例−5と同
じ条件で遠心分離を行い、3層に分離した。油相の牛脂
の加水分解率は91.0%であシ、また水相のグリセリ
ン濃度は9.4重量%であった0 実施例−5と同様の方法で水相部を限外−過膜処理して
酵素を回収し、エマルジョン層とともに次の反応に使用
した。すなわち、牛脂200v1水200fを回収した
酵素液に加え、45℃24時間で2@目の反応を行った
。このようにして反応をくシ返したとこ嶌、以下の結果
が得られた。
Comparative Example-3 200 t of beef tallow, 200 F of water, and the same lipase O, at (0.4% of beef tallow) used in Example-1 were mixed with stirring and reacted at 45° C. for 24 hours. After the reaction, centrifugation was performed under the same conditions as in Example 5 to separate into three layers. The hydrolysis rate of beef tallow in the oil phase was 91.0%, and the glycerin concentration in the aqueous phase was 9.4% by weight. The enzyme was recovered by membrane treatment and used together with the emulsion layer in the next reaction. That is, 200 vol of beef tallow and 200 f of water were added to the recovered enzyme solution, and a second reaction was carried out at 45° C. for 24 hours. When the reaction was repeated in this way, the following results were obtained.

第  7  表 このように45℃での高温の反応で、グリセリンが一定
量存在しない系では反応のくシ返しとともに酵素活性は
著しく低下してゆく。
Table 7 As shown above, in a system in which a certain amount of glycerin is not present in a high-temperature reaction at 45°C, the enzyme activity decreases markedly as the reaction recycles.

出願人代理人  古  谷     馨手続令甫正書岨
発) 昭和60年3月1日 特願昭60−13903号 2、発明の名称 リパーゼによる油脂の加水分解方法 3、補正をする者 事件との関係  特許出願人 (091)花王石鹸株式会社 4、代理人 東京都中央区日本橋横山町1の3中井ビル明細書の発明
の詳細な説明の欄 6、補正の内容 (11明細書19頁7行「反応液」を「反応後」と訂正
Patent Application No. 13903/1983 dated March 1, 1985, Patent Application No. 60-13903 (2) Title of Invention: Process for Hydrolyzing Oils and Fats by Lipase 3, Patent Application No. 13903 (Departed from Kaoru Furuya, Procedural Ordinance for the Applicant) Related Patent Applicant (091) Kao Soap Co., Ltd. 4, Agent Nakai Building, 1-3 Nihonbashi Yokoyama-cho, Chuo-ku, Tokyo Column 6 of the detailed description of the invention in the specification, Contents of the amendment (11 Specification, page 19, line 7) Corrected “reaction solution” to “after reaction”

Claims (1)

【特許請求の範囲】 1 油脂分解酵素(リパーゼ)による油脂の加水分解反
応において、反応系内に存在する水相中のグリセリン濃
度を常に10〜40重量パーセントに維持して反応を行
うことを特徴とする酵素反応方法。 2 加水分解反応終了後に、油層、エマルジヨン層、水
層の3層に分け、このエマルジヨン層を取り出し、次回
の油脂分解反応に再び用い、また水層については限外一
過膜を用いて水相中に溶解している酵素を濃縮回収し、
これも次回の油脂分解反応に再び用いることを特徴とす
る特許請求の範囲第1項に記載の方法。
[Scope of Claims] 1. In the hydrolysis reaction of fats and oils using lipolytic enzymes (lipases), the reaction is carried out while always maintaining the glycerin concentration in the aqueous phase present in the reaction system at 10 to 40% by weight. Enzyme reaction method. 2. After the hydrolysis reaction is completed, the mixture is divided into three layers: an oil layer, an emulsion layer, and an aqueous layer. This emulsion layer is taken out and used again for the next fat and oil decomposition reaction. Concentrate and recover the enzyme dissolved in the
The method according to claim 1, characterized in that this is also used again in the next fat and oil decomposition reaction.
JP60013903A 1985-01-28 1985-01-28 Method of hydrolyzing fat and oil with lipase Pending JPS61173791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60013903A JPS61173791A (en) 1985-01-28 1985-01-28 Method of hydrolyzing fat and oil with lipase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60013903A JPS61173791A (en) 1985-01-28 1985-01-28 Method of hydrolyzing fat and oil with lipase

Publications (1)

Publication Number Publication Date
JPS61173791A true JPS61173791A (en) 1986-08-05

Family

ID=11846130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60013903A Pending JPS61173791A (en) 1985-01-28 1985-01-28 Method of hydrolyzing fat and oil with lipase

Country Status (1)

Country Link
JP (1) JPS61173791A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287989A (en) * 1985-06-14 1986-12-18 花王株式会社 Hydrolysis of oils and fats
US5089403A (en) * 1989-06-05 1992-02-18 Iowa State University Research Foundation, Inc. Process for enzymatic hydrolysis of fatty acid triglycerides with oat caryopses
US5137660A (en) * 1991-03-15 1992-08-11 The Procter & Gamble Company Regioselective synthesis of 1,3-disubstituted glycerides

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287989A (en) * 1985-06-14 1986-12-18 花王株式会社 Hydrolysis of oils and fats
JPH0358277B2 (en) * 1985-06-14 1991-09-04 Kao Corp
US5089403A (en) * 1989-06-05 1992-02-18 Iowa State University Research Foundation, Inc. Process for enzymatic hydrolysis of fatty acid triglycerides with oat caryopses
US5137660A (en) * 1991-03-15 1992-08-11 The Procter & Gamble Company Regioselective synthesis of 1,3-disubstituted glycerides

Similar Documents

Publication Publication Date Title
CN1034587C (en) Process for decreasing content of phosphorus-containing components in vegctable and animal oils
JP3970669B2 (en) Conjugated fatty acid-containing monoglyceride and method for producing the same
US5677160A (en) Fat splitting process
JPH03262492A (en) Preparation of monoglyceride
JPH01137988A (en) Production of ester exchanged fat by continuous ester exchange method using alkaline high molecular weight lipase
JPS61173791A (en) Method of hydrolyzing fat and oil with lipase
US5032515A (en) Hydrolysis process of fat or oil
US4865978A (en) Lipolytic splitting of fats and oils
JP4335196B2 (en) Conjugated fatty acid-containing monoglyceride and method for producing the same
AU688287B2 (en) Improved fat splitting process
US6063822A (en) Method for dewatering and purifying oil or fat
JP2002088392A (en) Method for ester interchange of oils or fats
JP2554469B2 (en) Method for producing fatty acid esters
JPS63296698A (en) Continuous production of high-purity monoglyceride
JPS6248391A (en) Production of fatty acid ester
JP2007029085A (en) Method for producing fatty acids
JP2983655B2 (en) Diglyceride production method
US6825368B2 (en) Method for producing a fatty acid
JPS6253152B2 (en)
JPS6078586A (en) Preparation of liquid fat and oil
JPH01291798A (en) Production of fatty acid
WO2021193887A1 (en) Method for producing biodiesel fuel
JPS61187796A (en) Hydrolysis of fat and oil with lipase
JP2006288404A (en) Method for producing diglyceride
JPS61173790A (en) Method of hydrolyzing fat and oil with lipase