JPS61187796A - Hydrolysis of fat and oil with lipase - Google Patents

Hydrolysis of fat and oil with lipase

Info

Publication number
JPS61187796A
JPS61187796A JP2899685A JP2899685A JPS61187796A JP S61187796 A JPS61187796 A JP S61187796A JP 2899685 A JP2899685 A JP 2899685A JP 2899685 A JP2899685 A JP 2899685A JP S61187796 A JPS61187796 A JP S61187796A
Authority
JP
Japan
Prior art keywords
lipase
glycerol
hydrolysis
tank
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2899685A
Other languages
Japanese (ja)
Inventor
Shoichi Shimizu
清水 祥一
Tsuneo Yamane
恒夫 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2899685A priority Critical patent/JPS61187796A/en
Publication of JPS61187796A publication Critical patent/JPS61187796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:Fat and oil is hydrolyzed using an aqueous lipase solution which previously contains glycerol to enable continuous hydrolysis of fat and oil in a practical scale without deterioration of the lipase solution. CONSTITUTION:In the hydrolysis tank 1, an oil melting lower than 40 deg.C such as olive oil, from tank 2 and an aqueous lipase solution of more than 50 units/ ml, containing previously at least 15wt% of glycerol, from tank 3 are brought into contact through a porous membrane 4 by allowing them to flow in the reverse directions at 10-40 deg.C. The fatty acid formed is recovered in tank 5 and the glycerol formed in the lipase solution is recovered through filter 6 and glycerol concentrator 7 into tank 8. Thus, while glycerol is recovered, more than half of the lipase solution is recycled and water is fed from tank 9 to adjust the amount of glycerol in the lipase solution so that it becomes totally lower than 25wt% for hydrolysis.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はリパーゼによる油脂の加水分解方法、さらに
詳しくは油脂をリパーゼ水溶液と接触させて脂肪酸とグ
リセロールとに加水分解する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for hydrolyzing fats and oils using lipase, and more specifically to a method for hydrolyzing fats and oils into fatty acids and glycerol by contacting them with an aqueous lipase solution.

〔従来の技術〕[Conventional technology]

油脂をリパーゼにより加水分解するひとつの方法として
、高価なリパーゼの回収利用が容易であるという観点か
ら、担体に固定化したリパーゼを用いる方法が検討され
ているが、この方法は固定化操作が煩雑でまた固定化費
用が高くつく、リパーゼの活性発現率が低い、効率的な
不均一反応を行わせにくいなどの欠点があり、これが実
用化を阻む大きな原因となっている。
As one method for hydrolyzing fats and oils with lipase, a method using lipase immobilized on a carrier is being considered from the viewpoint of easy recovery and reuse of expensive lipase, but this method requires a complicated immobilization operation. However, it also has drawbacks such as high immobilization costs, low expression rate of lipase activity, and difficulty in carrying out efficient heterogeneous reactions, which are major reasons for hindering its practical application.

これに対し、リパーゼを水に溶解させた水溶液を使用し
、これに油脂を接触させて加水分解反応を行わせる方法
は、上述の欠点がなく、より実用化しやすい方法として
、最近では実用化にあたってのリパーゼの回収利用をい
かにうま(行うかなどにつき多くの提案がなされている
On the other hand, the method of using an aqueous solution of lipase dissolved in water and bringing it into contact with fats and oils to carry out a hydrolysis reaction does not have the above-mentioned drawbacks and is a method that is easier to put into practical use, and has recently been put into practical use. Many proposals have been made regarding how best to recover and utilize lipase.

このリパーゼ水溶液を用いる方法には、バッチ式では、
所定量のリパーゼ水溶液と油脂とを液状でまたは乳化剤
を用いた半固形状のスラリー状態で、所要の加水分解率
に達するまで攪拌混合する方法が知られており、また連
続式では、リパーゼの回収利用を特に有利に行える方法
として、この出願人が先に提案した特開昭59−154
999号公報に記載される方法(以下、これを提案法−
1という)や、西村正人氏らの提案に係る特開昭59−
210893号公報に記載される方法(以下、これを提
案法−2という)などが知られている。
In the method using this aqueous lipase solution, in a batch method,
A method is known in which a predetermined amount of lipase aqueous solution and oil are mixed in a liquid state or in a semi-solid slurry state using an emulsifier by stirring until the required hydrolysis rate is reached. As a method that can be used particularly advantageously, the present applicant previously proposed Japanese Patent Application Laid-open No. 59-154.
The method described in Publication No. 999 (hereinafter referred to as the proposed method)
1) and Japanese Patent Application Laid-Open No. 1983-1981 proposed by Masato Nishimura et al.
A method described in Japanese Patent No. 210893 (hereinafter referred to as proposed method-2) is known.

上記提案法−1は、リパーゼ水溶液と油脂とを多孔性の
薄膜を介して接触させることを特徴とした加水分解方法
であり(第1図参照)、また上記提案法−2は、リパー
ゼ水溶液中に油脂を微細な油滴として導入し分散状態で
浮上させながら反応させることを特徴とした加水分解方
法である(第2図参照)。この両提案法は、いずれも加
水分解にて生成する脂肪酸とグリセロールとの分離およ
びリパーゼ水溶液中からのリパーゼの回収利用が容易で
あり、かかる分離回収工程を加水分解反応工程に一体的
に組み入れることにより、油脂の連続加水分解化を可能
ならしめたものである。
The above proposed method 1 is a hydrolysis method characterized by bringing an aqueous lipase solution into contact with fats and oils through a porous thin film (see Figure 1), and the above proposed method 2 is a hydrolysis method characterized by bringing an aqueous lipase solution into contact with fats and oils through a porous thin film (see Figure 1). This is a hydrolysis method characterized by introducing fats and oils in the form of fine oil droplets and allowing them to react while being floated in a dispersed state (see Figure 2). In both of these proposed methods, separation of fatty acids and glycerol produced by hydrolysis and recovery and utilization of lipase from an aqueous lipase solution are easy, and such separation and recovery steps can be integrated into the hydrolysis reaction step. This enables continuous hydrolysis of fats and oils.

〔発明が解決しようとする問題点〕 このように、リパーゼ水溶液を用いた油脂の加水分解方
法は、今日、バッチ式から連続方式へと推移しつつ、そ
の実用化に向けて着々と検討が進められている。しかる
に、リパーゼは酵素つまり蛋白質の一種であり、これを
水溶液の状態として使用する場合、下記の如き問題をど
うしてもさけられなかった。
[Problems to be solved by the invention] As described above, the method of hydrolyzing fats and oils using an aqueous lipase solution is currently undergoing a transition from a batch method to a continuous method, and steady studies are being made toward its practical application. It is progressing. However, lipase is a type of enzyme or protein, and when it is used in the form of an aqueous solution, the following problems cannot be avoided.

すなわち、リパーゼによる油脂の加水分解反応は、他の
酵素反応と同様に、一般に室温近辺ないしこれよりやや
高い温度下、実用的には30〜40℃の温度下で行われ
る。この温度は微生物のもつとも増殖しやすい条件であ
り、しかも蛋白質としてのリパーゼは微生物の栄養源と
なるため、このリパーゼを水中に溶解させてなるリパー
ゼ水溶液は微生物増殖によって経時的に腐敗をおこす。
That is, the hydrolysis reaction of fats and oils by lipase, like other enzymatic reactions, is generally carried out at a temperature around or slightly higher than room temperature, practically at a temperature of 30 to 40°C. This temperature is a condition in which microorganisms easily grow, and lipase as a protein serves as a nutritional source for microorganisms, so an aqueous lipase solution prepared by dissolving this lipase in water will deteriorate over time due to microbial growth.

問題はこの腐敗現象が必要とする酵素反応つまり加水分
解反応に比してより早期に発生するということである。
The problem is that this spoilage phenomenon occurs earlier than the required enzymatic or hydrolysis reactions.

たとえばバッチ方式でのリパーゼ水溶液による加水分解
反応は30〜40℃で3〜7日間を必要とするのに対し
、微生物増殖によるリパーゼ水溶液の白濁化は同温度で
2〜3日間で発生する。
For example, a hydrolysis reaction using a lipase aqueous solution in a batch process requires 3 to 7 days at 30 to 40°C, whereas clouding of the lipase aqueous solution due to microbial growth occurs in 2 to 3 days at the same temperature.

このようなリパーゼ水溶液の腐敗は、いうまでもなくリ
パーゼによる加水分解反応を確実に阻害するばかりか、
腐敗菌による副反応を起こして好ましくない生成物を与
えることにもなる。しかも連続方式ではこれが本来長期
の操業を目的としたものであり、また特に前記提案法−
1,2の如く加水分解反応工程に生成物の回収工程やリ
パーゼの回収工程を一体的に組み入れる方式では、リパ
ーゼの貯槽を含む全ラインでの腐敗現象を考慮する必要
があるから、この腐敗に起因した上記問題をいかにして
克服するかが実用化段階での極めて重要な課題となる。
Needless to say, such spoilage of the lipase aqueous solution not only definitely inhibits the hydrolysis reaction by lipase, but also
This can also lead to side reactions caused by spoilage bacteria, giving rise to undesirable products. Moreover, in the continuous method, this is originally intended for long-term operation, and especially in the proposed method -
In methods such as 1 and 2, in which the product recovery process and the lipase recovery process are integrated into the hydrolysis reaction process, it is necessary to take into account spoilage phenomena in the entire line, including the lipase storage tank. How to overcome the above-mentioned problems will be an extremely important issue at the stage of practical application.

したがって、この発明は、リパーゼ水溶液を用いた油脂
の加水分解方法における上記水溶液の腐敗化を長期にわ
たって防止でき、特に前記提案法−1,2の如き連続方
式の実用化を実質的可能となしうる工業的有用な加水分
解方法を提供することを目的とする。
Therefore, the present invention can prevent spoilage of the aqueous solution for a long period of time in a method for hydrolyzing fats and oils using an aqueous lipase solution, and in particular, it can practically make it possible to put into practical use continuous methods such as the above-mentioned proposed methods 1 and 2. The purpose is to provide an industrially useful hydrolysis method.

〔問題点を解決するための手段〕[Means for solving problems]

この発明者は、上記目的を達成するために鋭意検討した
結果、リパーゼ水溶液の腐敗防止にグリセロールが有効
に寄与し、このグリセロールをリパーゼ水溶液中に少な
くとも15重量%となる多量添加しておくことにより、
上記水溶液の腐敗化を長期にわたって防止できることを
見出した。
As a result of intensive studies to achieve the above object, the inventor found that glycerol effectively contributes to preventing spoilage of a lipase aqueous solution, and that glycerol can be added in a large amount of at least 15% by weight to a lipase aqueous solution. ,
It has been found that spoilage of the above aqueous solution can be prevented for a long period of time.

リパーゼ水溶液中のリパーゼがエチレングリコールやグ
リセロールなどの多価アルコールにより安定化すること
はすでに公知である。しかし、この安定化はあくまでも
水溶液中でのリパーゼ自体の活性化率の低下を防ぐ意味
であり、これに必要な上記多価アルコニルの添加量は1
oM量%以下の少量であり、かかる少量ではこの発明の
目的とする微生物増殖による水溶液の腐敗化を防止する
ことはできない。
It is already known that lipase in an aqueous lipase solution is stabilized by polyhydric alcohols such as ethylene glycol and glycerol. However, this stabilization is only meant to prevent a decrease in the activation rate of lipase itself in an aqueous solution, and the amount of polyhydric alkonyl added is necessary for this purpose.
The amount is as small as 0M% or less, and with such a small amount, it is not possible to prevent the aqueous solution from spoiling due to microbial growth, which is the object of the present invention.

また、リパーゼ水溶液による油脂の加水分解反応におい
ては、加水分解にて生成するグリセロールがリパーゼ水
溶液中に溶解してくるが、この種の反応ではその反応性
の面から油脂の処理量をリパーゼ水溶液に対してかなり
少量としているため、上記水溶液中のグリセロールの溶
存量カ月O重量%を超えることはなく、特に前記提案法
−1,2の如き連続方式では通常2,3重量%以下とし
ている。そのうえ上記連続方式では回収したリパーゼを
溶存グリセロールがさらに少ない水溶液として反応系内
に循環供給しているから、この循環系および反応系を含
む全一ラインでのリパーゼ水溶液の腐敗化を、加水分解
にて生成するグリセロールによって防ぐことはできない
In addition, in the hydrolysis reaction of fats and oils using an aqueous lipase solution, glycerol produced by the hydrolysis dissolves in the aqueous lipase solution, but in this type of reaction, the amount of fats and oils to be processed is limited to the aqueous lipase solution due to its reactivity. In contrast, the amount of glycerol dissolved in the aqueous solution does not exceed 0% by weight per month, and in particular, in continuous systems such as the proposed methods 1 and 2, the amount is usually 2.3% by weight or less. Furthermore, in the continuous method described above, the recovered lipase is circulated and supplied into the reaction system as an aqueous solution containing even less dissolved glycerol, so the spoilage of the lipase aqueous solution in the entire line including the circulation system and the reaction system is prevented by hydrolysis. It cannot be prevented by the glycerol produced by

つまり、この発明者は、リパーゼ水溶液を用いた油脂の
加水分解反応において、この加水分解にて生成するグリ
セロール量よりもかなり多くとなる少なくとも15重量
%のグリセロールを、油脂と接触させる前のリパーゼ水
溶液中に予め溶存させておくことによって、上記水溶液
の反応系内さらには循環系内での腐敗化を有効に防止で
きるという事実を見出したものである。
In other words, in the hydrolysis reaction of fats and oils using an aqueous lipase solution, the inventor added at least 15% by weight of glycerol, which is considerably larger than the amount of glycerol produced by this hydrolysis, to the aqueous lipase solution before contacting it with the fats and oils. They have discovered that by dissolving the aqueous solution in advance, it is possible to effectively prevent the aqueous solution from spoiling in the reaction system and further in the circulation system.

一方、グリセロールの生成を伴う油脂の加水分解では、
反応系内の過剰のグリセロールによって、反応の進行自
体が阻害されるおそれがある。しかるに、この発明者は
、広範囲の実験検討の末、グリセロールの溶存量がリパ
ーゼ水溶液中25重量%を超えてしまうと上記阻害現象
が顕著となるが、25重量%以下であると溶存グリセロ
ールによる加水分解反応の阻害現象は全く認められず、
有効に進行することを見出した。
On the other hand, in the hydrolysis of fats and oils accompanied by the production of glycerol,
Excess glycerol in the reaction system may inhibit the progress of the reaction itself. However, after extensive experimental studies, the inventor found that if the amount of dissolved glycerol in the lipase aqueous solution exceeds 25% by weight, the above-mentioned inhibition phenomenon becomes noticeable, but if the amount is less than 25% by weight, the hydration by dissolved glycerol is reduced. No inhibition phenomenon of decomposition reaction was observed.
It was found that the process progresses effectively.

この発明は、以上の知見をもとにしてなされたものであ
り、その要旨とするところは、油脂をリパーゼ水溶液と
接触させて脂肪酸とグリセロールとに加水分解する方法
において、加水分解に供する前のリパーゼ水溶液中に予
め少なくとも15重量%のグリセロールを溶存させてお
くとともに、この溶存グリセロールと加水分解にて生成
するグリセロールとの合計量がリパーゼ水溶液中25重
量%以下となるように上記加水分解を行うことを特徴と
するリパーゼによる油脂の加水分解方法にある。
This invention has been made based on the above findings, and the gist thereof is to provide a method for hydrolyzing fats and oils into fatty acids and glycerol by contacting them with an aqueous lipase solution, before subjecting them to hydrolysis. At least 15% by weight of glycerol is dissolved in the lipase aqueous solution in advance, and the above hydrolysis is carried out so that the total amount of this dissolved glycerol and the glycerol produced by hydrolysis is 25% by weight or less in the lipase aqueous solution. A method for hydrolyzing fats and oils using lipase, which is characterized by the following.

このように、この発明は、リパーゼ水溶液中に15重量
%以上でかつ25重量%以下のグリセロールを含ませる
ことにより、上記水溶液の腐敗化を防止できる一方溶存
グリセロールによる反応阻害現象をきたすこともなく、
長期にわたって安定した加水分解反応を行わせうろこと
を特徴とするものであり、したがってこの方法を前記提
案法−1,2の如き連続方式に適用することにより、反
応系内はもちろんこれに回収リパーゼを循環供給するた
めの循環系内でのリパーゼ水溶液の腐敗化が防がれて、
長期運転を目的としたこれら方式の実用化が実質的可能
となったものである。
As described above, the present invention can prevent spoilage of the aqueous solution by including glycerol in an aqueous lipase solution of 15% by weight or more and 25% by weight or less, while preventing reaction inhibition caused by dissolved glycerol. ,
It is characterized by a scale that allows a stable hydrolysis reaction to occur over a long period of time. Therefore, by applying this method to a continuous method such as the above-mentioned proposed methods 1 and 2, the recovered lipase can be absorbed not only in the reaction system but also in the reaction system. The lipase aqueous solution is prevented from spoiling in the circulatory system for circulating supply.
This makes it practically possible to put these systems into practical use for long-term operation.

この発明において使用するリパーゼの種類はとくに限定
されないが、一般的にはキャンデイダ属、クロモバクテ
リウム属、アスペルギルス属、ヘニシリウム属、ジオト
リカム属、リゾプス属などの微生物を供給源とするリパ
ーゼのほか、すい臓などの動物臓器より得られるリパー
ゼ、ひま種子などの植物種子より得られるリパーゼなど
を使用することができる。
The type of lipase used in this invention is not particularly limited, but in general, lipases sourced from microorganisms such as Candida, Chromobacterium, Aspergillus, Henicillium, Geotrichum, and Rhizopus, as well as pancreatic Lipases obtained from animal organs such as, lipases obtained from plant seeds such as castor seeds, etc. can be used.

リパーゼ水溶液の濃度に関してもとくに制限はなく、自
由に選定することが可能であり、濃度が高いほど加水分
解反応は速やかに進行する。実用的な面からいえば、上
記濃度が50単位/mβ以上、とくに200単位/m1
以上であることが好ましい。
The concentration of the lipase aqueous solution is not particularly limited and can be selected freely, and the higher the concentration, the faster the hydrolysis reaction proceeds. From a practical standpoint, the above concentration is 50 units/mβ or more, especially 200 units/m1
It is preferable that it is above.

油脂の加水分解反応の温度は、通常のリパーゼの場合に
は、失活の防止と反応速度との両面から、一般に10〜
45℃の範囲であるのがよい、しかし、耐熱性リパーゼ
にあっては、上記より高い温度を適用して加水分解の反
応速度を向上させることもできる。
In the case of ordinary lipase, the temperature for the hydrolysis reaction of fats and oils is generally 10 to 10% from the viewpoint of both prevention of deactivation and reaction rate.
A range of 45°C is preferred; however, for thermostable lipases, higher temperatures may be applied to improve the rate of hydrolysis.

基質となる油脂としては、リパーゼ水溶液と液状で接触
させるバッチ方式や前記連続方式では、加水分解反応温
度以下の融点を有するもの、すなわち通常のリパーゼを
用いる場合には融点約40℃以下の油脂、たとえば植物
油ではオリーブ油、アマニ油、サフラワー油、大豆油、
桐油など、動物油脂ではラード、魚油などを使用できる
。耐熱性リパーゼを用いる場合には、パーム油、牛脂な
ども使用できる。また、リパーゼ水溶液と固形状で接触
させるバッチ方式などでは、上記以外の融点の高い油脂
も任意に使用可能である。
In the batch method or continuous method, in which the substrate is brought into contact with the lipase aqueous solution in a liquid state, the fat or oil that has a melting point below the hydrolysis reaction temperature, that is, in the case of using ordinary lipase, a fat or oil with a melting point of about 40°C or less, For example, vegetable oils include olive oil, flaxseed oil, safflower oil, soybean oil,
Animal fats such as tung oil, lard, and fish oil can be used. When using heat-stable lipase, palm oil, beef tallow, etc. can also be used. Furthermore, in a batch method in which the solid state is brought into contact with the lipase aqueous solution, any oil or fat with a high melting point other than those mentioned above can also be used.

〔実施例〕〔Example〕

つぎに、この発明の方法を前記提案法−1,2の連続加
水分解方式に適用した実施例につき説明する。
Next, an example will be described in which the method of the present invention is applied to the continuous hydrolysis method of the above-mentioned proposed methods 1 and 2.

実施例1 第1図は提案法−1に係る連続方式の概略図を示したも
ので、加水分解反応槽1内に油脂槽2およびリパーゼ水
溶液槽3から油脂およびリパーゼ水溶液を逆方向に導入
して多孔性の薄膜4を介して接触させる。この接触によ
り加水分解反応が進行し、生成した脂肪酸は脂肪酸槽5
に回収され、リパーゼ水溶液に溶解して(る生成グリセ
ロールはリパーゼ回収用限外ろ過装置6およびグリセロ
ール濃縮(精製・蒸溜)装置7を介してグリセロール槽
8に回収される。ここで、反応槽1を導出したリパーゼ
水溶液はその一部が上記グリセロール回収系に導かれる
一方、大半部がリパーゼ水溶液槽3を介して再び反応槽
1に循環供給される。
Example 1 Figure 1 shows a schematic diagram of a continuous system according to proposed method-1, in which oil and fat and lipase aqueous solution are introduced into a hydrolysis reaction tank 1 from an oil tank 2 and a lipase aqueous solution tank 3 in opposite directions. contact is made via the porous thin film 4. Due to this contact, the hydrolysis reaction progresses, and the generated fatty acids are transferred to the fatty acid tank 5.
The produced glycerol is recovered into the glycerol tank 8 via the lipase recovery ultrafiltration device 6 and the glycerol concentration (purification/distillation) device 7. Here, the reaction tank 1 A portion of the lipase aqueous solution derived is led to the glycerol recovery system, while the majority is circulated and supplied to the reaction tank 1 again via the lipase aqueous solution tank 3.

上記リパーゼ水溶液槽3では、リパーゼ回収用限外ろ過
装置6からの回収リパーゼと、水槽9(場合によりグリ
セロール濃縮装置7)からの水とが供給されて、一定の
リパーゼ濃度および所定のグリセロール濃度に調整され
る。
The lipase aqueous solution tank 3 is supplied with recovered lipase from the lipase recovery ultrafiltration device 6 and water from the water tank 9 (or glycerol concentrator 7 in some cases) to maintain a constant lipase concentration and predetermined glycerol concentration. be adjusted.

この加水分解方式により、油脂としてオリーブ油(酸価
1.8、けん化価190.1)を、リパーゼ水溶液とし
てキャンデイダ属リパーゼ1.000単位/mlを含有
しかつ所定濃度のグリセロールを有するものを使用する
とともに、多孔性の薄膜4としてポリプロピレン製微孔
膜を用いて、実際に反応系の温度40℃で連続運転を行
った。リパーゼ水溶液中のグリセロール濃度を0〜40
重量%に変化させ、各濃度での加水分解率(%)と運転
日数との関係を調べた結果は、第3図に示されるとおり
であった。図の符号A−Fはリパーゼ水溶1ffl中の
グリセロール濃度をそれぞれ下記の如く設定したもので
ある。
By this hydrolysis method, olive oil (acid value 1.8, saponification value 190.1) is used as the fat and oil, and a lipase solution containing 1.000 units/ml of Candida lipase and a predetermined concentration of glycerol is used as the lipase aqueous solution. At the same time, a polypropylene microporous membrane was used as the porous thin membrane 4, and continuous operation was actually performed at a reaction system temperature of 40°C. Glycerol concentration in lipase aqueous solution is 0 to 40.
The results of examining the relationship between the hydrolysis rate (%) and the number of operating days at each concentration were as shown in FIG. 3. Symbols A to F in the figure indicate the glycerol concentrations in 1 ffl of the lipase aqueous solution set as shown below.

符号A  ・・・  0重量% 符号B  ・・・  9重量% 符号C・・・ 18重量% 符号D  ・・・ 23重量% 符号E  ・・・ 29重量% 符号F  ・・・ 37重量% 上記第3図の結果から明らかなように、リパーゼ水溶液
中のグリセロール濃度が15〜25重量%の範囲内にあ
るときは20日におよぶ長期運転でも加水分解率90%
を保持させることができるのに対し、15重量%に満た
ない場合は微生物による腐敗により、また25重量%を
超える場合はグリセロールの反応阻害により、いずれも
加水分解率を長期にわたって高次に保持できないもので
あることが判る。
Code A: 0% by weight Code B: 9% by weight Code C: 18% by weight Code D: 23% by weight Code E: 29% by weight Code F: 37% by weight As is clear from the results in Figure 3, when the glycerol concentration in the lipase aqueous solution is within the range of 15 to 25% by weight, the hydrolysis rate is 90% even after 20 days of long-term operation.
However, if it is less than 15% by weight, it will be spoiled by microorganisms, and if it exceeds 25% by weight, it will not be possible to maintain a high hydrolysis rate for a long period of time due to reaction inhibition of glycerol. It turns out that it is something.

実施例2 第企図は提案法−2に係る連続方式の概略図を示したも
ので、加水分解反応槽10内に油脂槽20およびリパー
ゼ水溶液槽30から油脂およびリパーゼ水溶液を導入し
て、上記油脂がリパーゼ水溶液中を微細な油滴として分
散状態で浮上する如く、接触反応させる。この反応で生
成した脂肪酸は油水分離用マイクロろ過装置40を介し
て脂肪酸槽50に回収され、リパーゼ水溶液に溶解して
くる生成グリセロールはリパーゼ回収用限外ろ過装置6
0およびグリセロール濃縮(精製・蒸溜)装置70を介
してグリセロール槽80に回収される。ここで、上記リ
パーゼ回収用限外ろ過装置60を通過したリパーゼ水溶
液はその一部が上記グリセロール濃縮装置70に導かれ
る一方、大半部がリパーゼ水溶液槽30を介して再び反
応槽10に循環供給される。上記リパーゼ水溶液槽30
では、リパーゼ回収用限外ろ過装置60からの回収リパ
ーゼと、水槽90(場合によりグリセロール濃縮装置7
0)からの水とが供給されて、一定のリパーゼ濃度およ
び所定のグリセロール濃度に調整される。
Example 2 The second plan shows a schematic diagram of a continuous system according to proposed method-2, in which fats and oils and lipase aqueous solution are introduced into the hydrolysis reaction tank 10 from the fats and oils tank 20 and the lipase aqueous solution tank 30, and the above-mentioned fats and oils are introduced. A catalytic reaction is carried out so that the particles float in a dispersed state as fine oil droplets in the lipase aqueous solution. The fatty acids produced in this reaction are collected in the fatty acid tank 50 via the microfiltration device 40 for oil/water separation, and the produced glycerol dissolved in the lipase aqueous solution is collected by the ultrafiltration device 6 for lipase recovery.
0 and is collected into a glycerol tank 80 via a glycerol concentration (purification/distillation) device 70. Here, part of the lipase aqueous solution that has passed through the lipase recovery ultrafiltration device 60 is guided to the glycerol concentrator 70, while the majority is circulated and supplied to the reaction tank 10 again via the lipase aqueous solution tank 30. Ru. The above lipase aqueous solution tank 30
Now, the recovered lipase from the lipase recovery ultrafiltration device 60 and the water tank 90 (in some cases, the glycerol concentrator 7
water from 0) is supplied and adjusted to a constant lipase concentration and a predetermined glycerol concentration.

この加水分解方式により、油脂としてオリーブ油(酸価
1.8、けん化価190.1)を、リパーゼ水溶液とし
てキャンデイダ属すパーゼ1,000単位/ m lを
含有しかつ所定濃度のグリセロールを有するものを使用
して、実際に反応系の温度40℃で連続運転を行った。
Using this hydrolysis method, olive oil (acid value 1.8, saponification value 190.1) is used as the fat and oil, and a lipase solution containing 1,000 units/ml of parse belonging to Candida and having a predetermined concentration of glycerol is used as the lipase aqueous solution. Then, continuous operation was actually carried out at a reaction system temperature of 40°C.

なお、オリーブ油の反応槽10への供給は、油脂循環系
100により約10分を要して20回繰り返し、順次新
しいオリーブ油を供給するようにした。
The supply of olive oil to the reaction tank 10 was repeated 20 times using the oil circulation system 100 over a period of about 10 minutes, and new olive oil was supplied one after another.

この連続運転において、リパーゼ水溶液中のグリセロー
ル濃度を0〜40重量%に変化させ、各濃度での加水分
解率(%)と運転日数との関係を調べた結果は、第4図
に示されるとおりであった。
In this continuous operation, the glycerol concentration in the lipase aqueous solution was varied from 0 to 40% by weight, and the relationship between the hydrolysis rate (%) and the number of operating days at each concentration was investigated. The results are shown in Figure 4. Met.

図の符号G〜Lはリパーゼ水溶液中のグリセロール濃度
をそれぞれ下記の如く設定したものである。
Symbols G to L in the figure indicate the glycerol concentrations in the lipase aqueous solution, each set as follows.

符号G  ・・・  0重量% 符号H・・・ 10重量% 符号I  ・・・ 16重量% 符号J  ・・・ 23重量% 符号K  ・・・ 30重量% 符号L  ・・・ 39重量% 上記第4図の結果から明らかなように、リパーゼ水溶液
中のグリセロール濃度が15〜25重量%の範囲内にあ
るときは20日におよぶ長期運転でも加水分解率80%
を保持させることができるのに対し、15重量%に満た
ない場合は微生物による腐敗により、また25重量%を
超える場合はグリセロールの反応阻害により、いずれも
加水分解率を長期にわたって高次に保持できないもので
あることが判る。
Code G: 0% by weight Code H: 10% by weight Code I: 16% by weight Code J: 23% by weight Code K: 30% by weight Code L: 39% by weight Above No. As is clear from the results in Figure 4, when the glycerol concentration in the lipase aqueous solution is within the range of 15 to 25% by weight, the hydrolysis rate is 80% even after 20 days of long-term operation.
However, if it is less than 15% by weight, it will be spoiled by microorganisms, and if it exceeds 25% by weight, it will not be possible to maintain a high hydrolysis rate for a long period of time due to reaction inhibition of glycerol. It turns out that it is something.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、リパーゼ水溶液の微
生物による腐敗化を防止してリパーゼの加水分解能を長
期にわたり維持させることができるため、リパーゼ水溶
液を用いた油脂の加水分解方法、特に前記提案法−1,
2の如き連続方式の加水分解方法の実用化に大きく寄与
させることができる。
As described above, according to the present invention, the lipase aqueous solution can be prevented from being putrefied by microorganisms and the hydrolyzing ability of the lipase can be maintained for a long period of time. Law-1,
This can greatly contribute to the practical application of continuous hydrolysis methods such as 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はリパーゼ水溶液を用いた油脂の連続加水分解方
法の一例を示す概略図、第2図は上記他の例を示す概略
図、第3図は上記第1図の連続加水分解方法における加
水分解率と連続運転日数との関係を示す性能図、第4図
は上記第2図の連続加水分解方法における加水分解率と
連続運転日数との関係を示す性能図である。 第3図 第4図 連続運転日数!(日)
Figure 1 is a schematic diagram showing an example of a continuous hydrolysis method for fats and oils using an aqueous lipase solution, Figure 2 is a schematic diagram showing another example of the above, and Figure 3 is a schematic diagram showing an example of the continuous hydrolysis method of fats and oils using an aqueous lipase solution. Performance diagram showing the relationship between the decomposition rate and the number of continuous operation days. FIG. 4 is a performance diagram showing the relationship between the hydrolysis rate and the number of continuous operation days in the continuous hydrolysis method of FIG. 2. Figure 3 Figure 4 Number of continuous operation days! (Day)

Claims (1)

【特許請求の範囲】[Claims] (1)油脂をリパーゼ水溶液と接触させて脂肪酸とグリ
セロールとに加水分解する方法において、加水分解に供
する前のリパーゼ水溶液中に予め少なくとも15重量%
のグリセロールを溶存させておくとともに、この溶存グ
リセロールと加水分解にて生成するグリセロールとの合
計量がリパーゼ水溶液中25重量%以下となるように上
記加水分解を行うことを特徴とするリパーゼによる油脂
の加水分解方法。
(1) In a method of hydrolyzing fats and oils into fatty acids and glycerol by contacting them with an aqueous lipase solution, at least 15% by weight of the aqueous lipase solution is added in advance to the aqueous lipase solution before being subjected to hydrolysis.
of fats and oils with lipase is dissolved, and the hydrolysis is carried out so that the total amount of the dissolved glycerol and the glycerol produced by hydrolysis is 25% by weight or less in the lipase aqueous solution. Hydrolysis method.
JP2899685A 1985-02-16 1985-02-16 Hydrolysis of fat and oil with lipase Pending JPS61187796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2899685A JPS61187796A (en) 1985-02-16 1985-02-16 Hydrolysis of fat and oil with lipase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2899685A JPS61187796A (en) 1985-02-16 1985-02-16 Hydrolysis of fat and oil with lipase

Publications (1)

Publication Number Publication Date
JPS61187796A true JPS61187796A (en) 1986-08-21

Family

ID=12264020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2899685A Pending JPS61187796A (en) 1985-02-16 1985-02-16 Hydrolysis of fat and oil with lipase

Country Status (1)

Country Link
JP (1) JPS61187796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089403A (en) * 1989-06-05 1992-02-18 Iowa State University Research Foundation, Inc. Process for enzymatic hydrolysis of fatty acid triglycerides with oat caryopses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089403A (en) * 1989-06-05 1992-02-18 Iowa State University Research Foundation, Inc. Process for enzymatic hydrolysis of fatty acid triglycerides with oat caryopses

Similar Documents

Publication Publication Date Title
JP4222937B2 (en) Method and apparatus for obtaining fatty acids from natural oils and fats by their enzymatic degradation.
EP1717318B1 (en) Process for producing fat or oil
CN101720821B (en) Process for producing oil and fat rich in diacylglycerol
Suzuki et al. Mass production of lipase by fed-batch culture of Pseudomonas fluorescens
Aarthy et al. A two step process for production of omega 3-polyunsaturated fatty acid concentrates from sardine oil using Cryptococcus sp. MTCC 5455 lipase
JPH0338834B2 (en)
US6258575B1 (en) Hydrolyzing fats and oils using an immobilized enzyme column and substrate-feeding chamber that separates phases
WO2005077485A1 (en) Effluent treatment
CN109082345B (en) Method for producing fatty acid by one-step conversion of high-phospholipid crude oil
US4865978A (en) Lipolytic splitting of fats and oils
JPS61187796A (en) Hydrolysis of fat and oil with lipase
HÄggström et al. Continuous production of butanol with immobilized cells of Clostridium acetobutylicum
Baret [38] Large-scale production and application of immobilized lactase
US4364962A (en) Method for enzymatically decomposing a low molecular weight material
EP0265409A1 (en) Process for the production of lactic acid by fermentation of whey
Hayes et al. 1, 3‐specific lipolysis ofLesquerella fendleri oil by immobilized and reverse‐micellar encapsulated enzymes
EP1931794B1 (en) Two-stage process for producing fatty acids
JPH03275195A (en) Treatment of waste water containing lipid
AU2243699A (en) Method for producing l-carnitine from crotonobetaine
JP2983655B2 (en) Diglyceride production method
Giorno et al. Food applications of membrane bioreactors
JPS632997A (en) Removal of glucose
KR20040007311A (en) A method for producing a fatty acid
CA1212055A (en) Process for producing ethanol from fermentable sugar solutions
JPS61173791A (en) Method of hydrolyzing fat and oil with lipase