JPS6252865B2 - - Google Patents

Info

Publication number
JPS6252865B2
JPS6252865B2 JP7352180A JP7352180A JPS6252865B2 JP S6252865 B2 JPS6252865 B2 JP S6252865B2 JP 7352180 A JP7352180 A JP 7352180A JP 7352180 A JP7352180 A JP 7352180A JP S6252865 B2 JPS6252865 B2 JP S6252865B2
Authority
JP
Japan
Prior art keywords
photoreceptor
image
original image
original
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7352180A
Other languages
Japanese (ja)
Other versions
JPS56168663A (en
Inventor
Takao Kawamura
Hiroshi Mizuno
Masazumi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP7352180A priority Critical patent/JPS56168663A/en
Publication of JPS56168663A publication Critical patent/JPS56168663A/en
Publication of JPS6252865B2 publication Critical patent/JPS6252865B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/22Processes involving a combination of more than one step according to groups G03G13/02 - G03G13/20

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrophotography Using Other Than Carlson'S Method (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Printing Methods (AREA)

Description

【発明の詳細な説明】 本発明は電子写真複写方法、特に、原稿から感
光体への一回の画像露光により多数枚の複写を連
続的に行なう電子写真複写方法に関する。 電子写真複写技術は、印刷技術に比べ製版する
ことなく本などの原稿からでもそのまま直接複製
物を作成することができる利点があるが、一枚の
原稿から多数枚の複製物を連続的に作成する場
合、原稿から感光体への画像露光を一枚の複写毎
に反復して行なわなければならず、このため複写
速度を印刷機のように速めることができないとい
う欠点があつた。他方、印刷技術における製版工
程の煩雑さを避けるため、製版を電子写真法によ
り行なうようにした印刷装置が提案されるように
なつてきた。例えば、特公昭46−4611号明細書に
記載の如く、電子写真複写装置と印刷機とを結合
し、電子写真複写装置により原版を製版し、これ
を自動的に印刷機の版胴に装着して印刷する装
置、あるいはこれを改良した特公昭55−12596号
明細書に記載の如き、版胴に対して接離自在の感
光体ドラムの表面に原稿に相応した静電潜像を形
成させ、この静電潜像を版胴に装着された原版用
紙に転写した後現像し、次いで原版用紙をエツチ
ングして原版となし、これに着肉させて印刷する
ようにした装置などが提案されている。これらの
装置では原稿からの作像は一回ですむが、電子写
真複写装置と印刷装置が必要であり、装置全体が
大型化し、高価なものとなるという問題があつ
た。また、電子写真技術のみを用いて印刷する方
法として、感光板を帯電させ、画像露光して静電
潜像を形成させた後、該感光板を回転ドラムに装
着してその静電潜像を現像、定着させて原版とな
し、この原版に帯電、均一露光を施し、これを現
像して未溶融トナーを原版から複写紙に転写して
複製物を形成し、多数枚複写した後、前記原版を
ドラムから分離するようにしたものが米国特許第
3615128号明細書により提案されている。しか
し、この場合、上記装置と同様、一枚の原稿に対
して一枚の感光板が必要であり、一枚の感光板を
再使用できないため複写枚数の少ないときは、複
写コストが高くなるという問題があつた。 本発明は、この種の電子写真複写方法における
問題を解決すべくなされたもので、従来の一画像
露光一枚複写式の電子写真複写装置と同等の大き
さに装置を製作することができると共に感光体を
再使用でき多数枚の複写を経済的に連続して行う
ことができる電子写真複写方法を提供することを
目的とするものである。 本発明に係る電子写真複写方法は、 (a) アモルフアスシリコン感光体表面上に静電潜
像を形成し、該静電潜像を粉末現像剤により現
像して粉像を形成した後、該粉像を前記感光体
表面に半定着させて原画を作成する原画作成工
程、 (b) 原画を作成した感光体表面を帯電させ、該感
光体表面に均一露光して原画上に静電潜像を形
成した後、粉末現像剤により現像して原画上に
未定着粉像を積層し、該未定着粉像を転写紙上
に転写して定着させる複写物作成工程、および (c) 前記複写物作成工程を繰り返した後、前記感
光体表面上の原画を金属ブレードで除去する感
光体再生工程、 からなることを特徴とするものであつて、高感
度、高硬度および高耐熱耐のアモルフアスシリコ
ン感光体を開発することによつて完成されたもの
である。 本発明方法において使用するアモルフアスシリ
コン感光体(以下、a―Si感光体と記す。)と
は、アモルフアスシリコンを主成分とし、酸素お
よび水素を含有し、要すれば第b族元素または
第Vb族元素を含有してなる光導電層を導電性基
体上に直接或いは硫化カドミウム系、セレン化亜
鉛系又はAs2Se3系光導電性材料からなる中間層
を介して形成したものを意味する。光導電層を直
接導電性基体上に形成する場合、該光導電層中に
酸素および水素に加えて第b族元素、好ましく
は硼素を含有させることが好適である。これは酸
素および水素を含有させただけでは静電潜像形成
に最低限必要とされる1013Ω・cm以上の暗抵抗が
得難いからである。この場合、光導電層中に含有
させる酸素および水素の含有量はそれぞれ約10-6
〜5×10-2原子パーセントおよび約10〜40原子パ
ーセントとするのがよく、また硼素は約10〜
20000ppm含有させるのが望ましい。これは、酸素
は光導電性層の暗抵抗、光感度特性、耐熱性、耐
久性等に影響を及ぼし、10-6原子パーセント未満
ではその効果が期待できず、5×10-2原子パーセ
ントを超えると、水素の含有量にも依存するが、
暗抵抗が向上しても光感度が著しく低下するの
で、上記範囲とするのが好ましい。また、水素の
含有はa―Siの原料となるSiH4ガスに対してキヤ
リアーガスとしてそれを用いることにより効率よ
く行われる。また、硼素はその含有量が増大する
につれて暗抵抗を向上させるが、10ppm未満では暗
抵抗を1013Ω・cm以上に向上させることができ
ず、また、20000ppmを超えると暗抵抗が逆に低下
し所要の暗抵抗を得ることができない。 光導電層と導電性基体との間に硫化カドミウム
系もしくはセレン化亜鉛系光導電性材料とバイン
ダからなる中間層またはAs2Se3系光導電性材料
からなる中間層を設ける場合、酸素および水素を
含有させるだけでも所要の暗抵抗を得ることがで
き、また、第b族元素および第Vb族元素を原
子価制御剤として添加して電気伝導度制御を行な
うことができる。すなわち、水素および酸素を含
有するアモルフアスシリコン(a−Si)からなる
光導電層は弱いn型半導体特性を示すが、アクセ
プタ不純物としてのb族元素、好ましくは硼
素、のような三価の活性中心を添加し、n型半導
体特性の補償を施せばさらに暗抵抗を向上させる
ことができ、ドナー型不純物としてのVb族元
素、好ましくは燐を添加することによりP型半導
体特性を付与することができる。後者の場合、光
導電層自体の暗抵抗はVb族元素の添加により弱
干低下するが、中間層を介在させることにより電
荷の逃げが防止されるので全体としての暗抵抗は
光導電層自体の暗抵抗が1011Ω・cm以上あれば
1013Ω・cm以上の値が保証される。また、酸素お
よび水素のみを含有させたa―Siからなる光導電
層自体の暗抵抗は1012Ω・cm程度まで向上してい
るので、b族元素およびVb族元素の有無にか
かわらず1013Ω・cm以上の暗抵抗を全体として得
ることができ、本発明方法において使用する感光
体を製造しうるが、これら原子価制御剤を含有さ
せる場合、b族元素については20000ppm以下、
Vb族元素については1000ppm以下とするのが好適
である。これは、それ以上原子価制御剤を含有さ
せると光導電層自体の暗抵抗が1011Ω・cm以下に
低下するからである。なお、中間層を介在させる
場合、酸素の含有量は中間層を介在させない場合
の5×10-2〜1×10-5から5×10-2〜10-6原子パ
ーセントまでその範囲を拡大することができる。 上記光導電体層はグロー放電分解法やスパツタ
リング法により形成することができるが、水素や
酸素を含有させ易いグロー放電分解法によるのが
好適である。この光導電体層は10〜60μの厚さで
形成されるが、中間層を形成する場合0.5μの厚
さまで薄くすることができる。従つて、グロー放
電分解法により光導電層を形成する場合、その形
成速度は10〜2500Å/分と遅いが、中間層を設け
ることによりその形成時間を短縮することもでき
る。 中間層は上記の事からも明らかなように、光導
電体層の表面での帯電電位を高め、それ自体光電
荷担体の通過を保証する役割を果すもので、硫化
カドミウム系又はセレン化亜鉛系光導電性材料を
樹脂バインダと共に混練し、これを基体上に塗着
して中間層とするもの、或いはAs2Se3系光導電
性材料を真空蒸着法により基体上に形成して中間
層とするものが好適である。また、その厚さは約
10〜70μあれば充分である。この硫化カドミウム
系光導電性材料としてはCdS、CdS・nCdCO3
(0<n≦4)、CdS―CdSeまたはそれらに銅、
銀等の金属活性剤を0.01〜5重量%ドープさせた
ものなどがあげられる。また、セレン化亜鉛系光
導電性材料としては、ZnSeは勿論のこと、それ
に金属活性剤をドープさせたもの等が使用でき
る。尚、これら光導電性材料が分散される樹脂バ
インダとしては100〜250℃の温度で加熱しても分
解または溶解せず、絶縁抵抗が高く前記硫化カド
ミウム系光導電性材料を10〜70重量%添加し、中
間層の厚さを10μ以上とした場合に暗体積抵抗が
1013Ω・cm以上となるものであればよいが、具体
的にはアクリル樹脂、アミド樹脂、エポキシ樹
脂、シリコン樹脂、フエノール樹脂、アリル樹脂
など熱硬化性樹脂が好適である。 As2Se3系光導電性材料としては、As2Se3は勿
論のこと必要に応じてTeを併用してもよい。 上記の如くa―Si感光体はその光導電層が少な
くとも酸素および水素を含有するアモルフアスシ
リコンで形成されているが、この光導電層は従来
のセレンや硫化カドミウム―樹脂系光導電層に比
べ、著しく表面硬度が高く1800〜2300Kg/mm2(ビ
ツカース硬度Hv25)にも達し、アルミニウムの18
〜23倍、ステンレス鋼の9〜11倍で、サフアイヤ
と同等の硬さがあるため、金属プレードを使用し
ても損傷を受けることがなく、耐久性に優れてお
り、しかも従来の感光体に比べ分光感度特性が著
しく向上している。また、a―Si自体は約700℃
まで安定で、中間層を介在させた場合でも該中間
層も250℃程度まで安定であるため、従来の感光
体よりも著しく耐熱性において優れている。 本発明は上記a―Si感光体を用いて次のように
して行なわれる。 すなわち、まず、a―Si感光体1の表面をコロ
ナ帯電器その他の公知帯電手段2により帯電させ
(第1図a参照)、光学系により原稿3から画像を
露光して感光体1上にその静電潜像を形成させる
(同図b参照)。次いで、この感光体上の静電潜像
を公知粉末現像剤を用いて現像し粉像を形成せた
後(第1図c参照)、これを適当な手段、例え
ば、熱定着、フラツシユ定着、加圧定着などによ
り感光体上に半定着させる(同図d)ことにより
原稿に対応する原画4′が作成される。なお、半
定着とは、後述する転写チヤージヤの作用を受け
ても転写紙上に転移せず、かつ金属ブレード8で
感光体表面を当接させて相対的変位を生じさせた
とき容易に除去できる程度に付着、固定した状態
を意味する。例えば、熱定着の場合、加熱温度は
現像剤の粉像形成粒子(トナー)の融点により定
まるが、通常、複写紙への定着温度120〜200℃よ
り20〜40℃低い温度、80〜180℃で行なうのが好
ましい。なお、感光体の基体が金属であるため、
転写紙(または複写紙)と異なり、感光体表面が
冷えていて熱の吸収率が高いので、あまり低い温
度では半定着も生じない。従つて、使用する現像
剤で試験して定めるのが実際的である。 上記の如く原画作成工程が終了した後、原画
(印刷での原板に相当する。)上に帯電させ(第1
図e参照)、均一露光することにより半定着した
トナー上に電荷を付与し(同図f)、静電潜像を
再形成する。なお、原画を形成する半定着トナー
4上の電荷は、該トナーが存在するため原画全体
に均一露光しても該トナーの下側の感光体の光導
電層が光励起されないので、そのまま残存する。
この静電潜像を粉末現像剤により現像して原画上
に未定着トナー5からなる未定着粉像を積層し
(第1図g)、この未定着粉像を転写チヤージヤ6
等により転写紙(複写紙)7に転写した後(同図
h)、常法により定着させることにより複写物が
作製される。転写後の感光体表面には原画4′が
そのまま残されているので、第1図eから同図h
までの工程を繰り返すことにより多数枚の連続複
写が行なわれる。 上記の様にして多数枚連続複写後、感光体表面
に金属製ブレード8を当接させ、両者間に相対的
変位を生じさせて感光体表面の半定着トナーを除
去し(第1図i参照)、均一露光して残留電位を
除去する(同図j参照)ことにより感光体の再生
が行なわれ、その再使用が可能となる。 以上説明したように、本発明は、予め原稿から
一回の画像露光により原画を感光体上に形成し、
この原画により多数枚の複写物を連続的に作成し
た後、感光体を再生して再使用できるようにした
ので、従来の一画像露光一枚複写式の電子写真複
写装置と同等の大きさの装置で、経済的な多数枚
連続複写を行うことができる。すなわち、本発明
によれば、 原稿台移動式の複写機であつても、原稿台の
動く回数が少くなるので、機械の消耗が抑えら
れ、又、原稿台固定式の複写機と同様に使い易
い。 露光ランプの点灯回数も少くなり、長寿命と
なり、更に電力節減にもなる。 多数枚複写中に次の原稿がセツトできるの
で、少くとも原稿交換の時間が短縮できる。 静電潜像形成後は、感光体ドラムを高速で動
かすことも出来るため、高速化に対応できる。 などの優れた効果が得られる。 以下、本発明方法の実施に使用する電子写真複
写装置の一例を示す添付の図面を参照して説明す
る。 第2図は本発明方法を適応した一画像露光多数
枚複写用電子写真複写機の概略構成を示し、符号
Dはa―Si感光体ドラムで、その周囲に帯電用コ
ロナチヤージヤ18、露光用スリツト17、均一
露光用光源19、現像装置20、転写用チヤージ
ヤ21、分離用チヤージヤ22、半定着装置H、
金属ブレードクリーナ23、イレーサランプ24
が順次配設されている。11は往復動可能な原稿
台で透明ガラス板12上に多数枚複写すべき原稿
が載置される。 この装置を用いて複写する場合、まず、装置の
プリントスイツチ(図示せず)をオンにすると、
帯電用チヤージヤ18、露光ランプ13および原
稿台11のスキヤンソレノイドSL1がオンし、
原稿台11は図の右方向への走査移動を開始して
原稿台に載せられた原稿は露光ランプ13によつ
て露光され、その像は第1ミラー14、投影レン
ズ15および第2ミラー16により露光スリツト
17を介して、帯電用チヤージヤ18により均一
帯電された回転する感光体ドラムD上に遂次投影
され原稿に対応する静電潜像が感光ドラムD上に
形成される。この静電潜像は感光体ドラムDの回
転により、オフ状態の光源19を通過した後、常
時駆動されている現像装置20により現像されて
粉像となり、オフ状態の転写チヤージヤ21、分
離チヤージヤ22を通過する。この時、半定着装
置Hがオンし、そこを通る粉像が感光体ドラムD
上に半定着され原画を形成する。 この半定着された粉像、すなわち、原画が感光
体表面から離間位置にある金属ブレード23′を
有するクリーナ23およびイレーサランプ24を
通過した後、感光体表面全体がオン状態を維持し
ている帯電用チヤージヤ18で再帯電される。一
方、露光ランプ13は原稿台11の走査移動完了
時オフとなり、それと同時に均一露光ランプ19
が点灯し、その後の帯電用チヤージヤ18により
付与された電荷の画像の存在しない部分を消去
し、現像装置20により現像されないようにして
いる。すなわち、この均一露光ランプ19は後端
イレーサの機能を果している。 帯電用チヤージヤ18により原画上より均一に
帯電された感光体ドラムDは2回転目を開始して
おり、露光スリツト17を通過した後、オン状態
にある均一露光用光源19により均一に露光さ
れ、原画の存在しない部分の電荷のみが消去さ
れ、原画上にのみ電荷が残存し、原稿に対応した
静電潜像が形成される。この原画上の静電潜像が
現像装置20により粉像化され、感光体ドラムD
表面上には原画(すなわち、半定着粉像)と未定
着粉像とが重なつて形成され、転写部の方へ移動
する。他方、これに先立つて、シートカセツト2
5に積み重ねられて収容されている複写紙Pは、
給紙ソレノイドSL2により作動する給紙ローラ
26により一枚づつ送り出され、搬送ローラ17
によつて、公知の如く、感光体ドラムDの回転と
同期させられて転写部へ送られる。 複写紙Pと転写部に到達する直前に転写用チヤ
ージヤ21と分離用チヤージヤ22とがオンとな
り、原画上の未定着粉像が転写用チヤージヤ21
の作用により複写紙P上に転移され、この転写さ
れた未定着粉像を有する複写紙Pは分離用チヤー
ジヤ22の作用より感光体ドラムDから分離した
後、搬送ベルト28によつて一対のヒートローラ
29へ搬送され、ここで粉像が定着された後、排
出ローラ30によつてトレー31上に排出され
る。一方、未定着粉像を転写した後の原画を保持
する感光体ドラムDは、半定着開始より1回転後
既にオフとなつている半定着装置Hを通過し、1
枚目の複写を完了する。以後、2枚目から所定枚
数まで同様の動作を繰り返し、所定枚数の複写物
をトレー31上に得る。 所定枚数の複写が完了した後、即ち、最終枚目
の転写が完了し、原画がクリーナ部へ到達する直
前にソレノイドSL3がオンとなり、クリーナの
金属ブレード23が感光体表面に当接し、原画を
除去し、それと同時にイレーサランプ24が点灯
して残留電荷を完全に消去する。なお、ソレノイ
ドSL3は感光体ドラムDが1回転する時間だけ
オンし、金属ブレード23を感光体ドラムが1回
転する間だけ当接させる。感光体ドラムDは所定
複写完了後、少くとも更に1回転以上して停止す
る。また、帯電用チヤージヤ18は最終枚数目の
作像完了後オフとなり、それに少し遅れて均一露
光用光源19がオフとなる。 上記装置において、半定着手段として熱定着を
採用する場合、前記米国特許第3615128号明細書
に記載の如きオーブン定着が容易であるが、ヒー
トローラによる当接タイプを使用することもでき
る。後者の場合、半定着時のみヒートローラを感
光体ドラム表面に当接させ、それ以外は退避させ
る接離型構造とする必要がある。また、ヒートロ
ーラ面へのトナーの付着を防止するため、オフセ
ツト防止液をヒートローラ表面に塗布したり、感
光体ドラム内に他のヒートローラを配置し、トナ
ーがヒートローラ面よりも感光体ドラム表面に半
定着し易いようにするのが望ましい。 また、原画を感光体表面から除去する手段とし
て金属ブレードを採用しているが、その材料とし
てはステンレス鋼、アルミニウム合金等種々のも
のを使用することができる。なお、従来の複写機
で採用されている弾性体ブレードでは、感光体表
面に半定着しているトナーを完全に除去すること
ができない。 次に本発明の実施例について説明する。 実施例 1 水素をキヤリアガスとするモノシランガス(10
%SiH4)、水素をキヤリアガスとするジボランガ
スおよび酸素ガスを原料ガスとして用い、酸素と
モノシランとの比(O2/SiH4)およびジボランと
モノシランとの比(B2H6/SiH4)をそれぞれ
10-4、1×10-4として公知グロー放電分解装置に
供給し、装置内圧1.5Torr、供給電力300w/hr
(周波数4MHz)の条件下で200℃に加熱された直
径80mmのアルミニウム製ドラム表面上に1500Å/
分の速度でa―Siを生成させ、20μ厚の光導電層
を有するa―Si感光体ドラムを作製する。 このa―Si感光体ドラムのa―Siからなる光導
電層は水素18〜22原子パーセント、酸素0.01原子
パーセント、硼素200ppmをそれぞれ含有し、その
暗体積抵抗は8×1013Ω・cmで、ビツカース硬度
(Hv50)約2250Kg/mm2であつた。 このa―Si感光体を第2図に示す複写機の感光
体として用い、下記の条件で1枚の原稿につき、
100枚づつ1万枚まで連続複写したところ、高コ
ントラストで良好な原像が得られた。また、感光
体表面の損傷は認められなかつた。 感光体回転速度: 40rpm 帯電用チヤージヤ供給電位: −5.6KV 画像露光量: 3lux・sec 均一露光用光源による露光量: 5lux・sec 転写用チヤージヤ供給電位: 6KV 分離用チヤージヤ供給電位: 6.5KV 金属ブレード: ステンレス鋼(SUS303) イレーサ露光量: 200lux・sec 実施例 2 硝酸カドミウム308.5gを含む水溶液と、炭酸
アンモニウム水溶液とを混合することにより反応
させ、炭酸カドミウムを沈殿させた。この炭酸カ
ドミウム173gを塩化第2銅0.68gを含む水に分
散させ、その中に硫化水素を吹き込み、Cuを添
加したCdS・nCdCO3の沈殿を生成した。続い
て、この沈殿物を水洗、乾燥粉砕し、250℃で15
時間焼成してCdS・nCdCO3(n=1.5)の光導電
性粉末を得た。 この光導電性粉末100重量部を熱硬化性アクリ
ル樹脂60重量部およびトルエンを主剤とする混合
有機溶剤130重量部と共に混練し、充分に分散さ
せた後、直径80mmのアルミニウム製円筒状基体上
にスプレー塗布、熱硬化させ厚さ30μmの中間層
を形成した。尚、この中間層の比抵抗は5×1013
Ω・cmであつた。 次に別の同様のアルミニウム基体上にセレン化
亜鉛光導電性材料を含む中間層を形成した。 まず、硝酸亜鉛(Zn(NO32・6H2O)300gを
蒸留水に溶かし、塩化銅(CuCl22H2O)の1%
水溶液を68ml加え、その溶液にセレン化アンモニ
ウム120gを蒸留水に溶かした液を滴下させて、
Cuを添加したセレン化亜鉛の沈殿を得た。この
沈殿を水洗乾燥させた後、600℃の温度にて不活
性ガス(Ar、N2)中で1時間焼成し、こうして得
られたZnSe粉末を熱硬化性アクリル樹脂とトル
エン溶剤と共に混合分散させ、アルミニウム基体
上にスプレー塗布した。乾燥後、加熱硬化して厚
さ30μのZnSeバインダ中間層を形成した。その
比抵抗を測定したところ6×1013Ω・cmであつ
た。 更にこれとは別に同様のアルミニウム基体上に
厚さ30μのAs2Se3中間層を形成した。純度99.999
%以上で粒径が1mm以下のSeとAsのペレツト
を、原子比でAs:Seが40%:60%となるように
混合し、石英アンプル中に120g仕込んで10-5
10-6Torrの高真空に引いた後、封じ切る。この
アンプルを電気炉にセツトして約800℃で10時間
加熱しAs及びSeを溶融した。これを十分均一に
混ざるようにした後急冷して、As2Se3の合金塊
を得、この塊を取り出して乳鉢で十分細かく粉砕
後、真空蒸着装置の蒸発源にセツトした。アルミ
ニウムドラム基体を蒸着基体としてセツトした
後、約5×10-5Torrの真空度に蒸着槽内を排気
し、基体を約200℃に加熱し、続いて蒸発源温度
を420〜460℃まで上げて蒸着を開始し、1秒当り
100Å〜200Åの蒸着速度にて厚さ30μのAs2Se3
中間層を形成した。尚、この中間層の比抵抗は4
×1013Ω・cmであつた。 次に、この各円筒状基体を実施例1で用いたグ
ロー放電分解装置に装着し、下記の条件で5μ厚
のa―Si光導電層を中間層上に積層し、3種類の
電子写真用感光体を得た。 〔a―Si光導電層形成条件〕 反応管内圧力 1.5Torr 供給電力 300w/hr(周波数4MHz) 基体温度 200℃ 膜形成速度 1500Å/分 原料ガス 10%SiH4―90%H2混合ガス O2/SiH4モル比 2.75×10-4 B2H6/SiH4モル比10-3 得られた各感光体はそのa―Si光導電体層中に
水素18〜22原子パーセント、酸素0.05原子パーセ
ント、硼素200ppmを含有し、暗体積抵抗4×1014
Ω・cm、ビツカース硬度(Hv50)何れも約2200
Kg/mm2であつた。 この感光体ドラムを用いて実施例1と同条件下
で複写したところ、高コントラストで良好な画像
が得られた。 実施例 3〜6 実施例1または実施例2と同様にして下記表に
示す組成の光導電層を有するa―Si感光体を作成
し、実施例1と同条件下で一板の原稿につき100
枚づつ1万枚まで連続複写を行つた。その結果も
表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophotographic copying method, and more particularly to an electrophotographic copying method in which a large number of copies are continuously made by exposing a photoreceptor to a photoreceptor once. Compared to printing technology, electrophotographic copying technology has the advantage of being able to directly create copies of manuscripts such as books without making plates, but it is difficult to continuously produce multiple copies from a single manuscript. In this case, the exposure of the image from the original onto the photoreceptor must be repeated for each copy, which has the disadvantage that the copying speed cannot be increased as with a printing machine. On the other hand, in order to avoid the complexity of the plate-making process in printing technology, printing apparatuses have been proposed in which plate-making is performed by electrophotography. For example, as described in Japanese Patent Publication No. 46-4611, an electrophotographic copying device and a printing machine are combined, an original plate is made by the electrophotographic copying device, and this is automatically mounted on the plate cylinder of the printing machine. An electrostatic latent image corresponding to the original is formed on the surface of a photoreceptor drum that can be moved into and out of contact with the plate cylinder, such as in a printing device or an improved version of this described in Japanese Patent Publication No. 55-12596. A device has been proposed in which this electrostatic latent image is transferred to a master paper mounted on a plate cylinder, developed, and then etched to form a master plate, which is then inked and printed. . Although these devices only need to create an image from a document once, they require an electrophotographic copying device and a printing device, which makes the entire device large and expensive. Another method of printing using only electrophotographic technology is to charge a photosensitive plate, imagewise expose it to form an electrostatic latent image, and then attach the photosensitive plate to a rotating drum to form an electrostatic latent image. The original plate is developed and fixed to form an original plate, this original plate is charged and exposed uniformly, and this is developed to transfer the unmelted toner from the original plate to copy paper to form a duplicate.After making a large number of copies, the original plate is The U.S. Patent No.
It is proposed by the specification of No. 3615128. However, in this case, like the above-mentioned device, one photosensitive plate is required for each original, and since one photosensitive plate cannot be reused, the cost of copying increases when the number of copies is small. There was a problem. The present invention was made in order to solve the problems in this type of electrophotographic copying method, and it is possible to manufacture the device to the same size as a conventional single-image exposure, single-sheet copying type electrophotographic copying device. It is an object of the present invention to provide an electrophotographic copying method that can reuse a photoreceptor and economically make a large number of copies in succession. The electrophotographic copying method according to the present invention includes: (a) forming an electrostatic latent image on the surface of an amorphous silicon photoreceptor, developing the electrostatic latent image with a powder developer to form a powder image; (b) charging the surface of the photoreceptor on which the original image was created and uniformly exposing the photoreceptor surface to form an electrostatic latent image on the original image; and (c) creating a copy, in which the image is developed with a powder developer, an unfixed powder image is layered on the original image, and the unfixed powder image is transferred and fixed onto a transfer paper, and (c) the copy is created. After repeating the process, the original image on the surface of the photoreceptor is removed with a metal blade. It is completed by developing the body. The amorphous silicon photoreceptor (hereinafter referred to as a-Si photoreceptor) used in the method of the present invention is mainly composed of amorphous silicon, contains oxygen and hydrogen, and optionally contains group B elements or group B elements. It means a photoconductive layer containing a Vb group element formed directly on a conductive substrate or via an intermediate layer made of a cadmium sulfide-based, zinc selenide-based, or As 2 Se 3 -based photoconductive material. . When the photoconductive layer is formed directly on an electrically conductive substrate, it is suitable that the photoconductive layer contains a group b element, preferably boron, in addition to oxygen and hydrogen. This is because it is difficult to obtain a dark resistance of 10 13 Ω·cm or more, which is the minimum required for forming an electrostatic latent image, only by containing oxygen and hydrogen. In this case, the contents of oxygen and hydrogen contained in the photoconductive layer are each approximately 10 -6
5 x 10 -2 atomic percent and about 10 to 40 atomic percent, and boron about 10 to 40 atomic percent.
It is desirable to contain 20,000 ppm. This is because oxygen affects the dark resistance, photosensitivity, heat resistance, durability, etc. of the photoconductive layer, and if it is less than 10 -6 atomic percent, no effect can be expected ; If it exceeds, depending on the hydrogen content,
Even if the dark resistance improves, the photosensitivity decreases significantly, so it is preferable to set it within the above range. In addition, the inclusion of hydrogen can be efficiently carried out by using it as a carrier gas for SiH 4 gas, which is a raw material for a-Si. In addition, as the boron content increases, the dark resistance improves, but if it is less than 10 ppm, it is not possible to improve the dark resistance to 10 13 Ω・cm or more, and if it exceeds 20,000 ppm, the dark resistance decreases. However, the required dark resistance cannot be obtained. When an intermediate layer consisting of a cadmium sulfide-based or zinc selenide-based photoconductive material and a binder or an intermediate layer consisting of an As 2 Se 3 -based photoconductive material is provided between the photoconductive layer and the conductive substrate, oxygen and hydrogen It is possible to obtain the required dark resistance simply by containing , and electrical conductivity can be controlled by adding Group B elements and Group Vb elements as valence control agents. That is, a photoconductive layer made of amorphous silicon (a-Si) containing hydrogen and oxygen exhibits weak n-type semiconductor properties, but a trivalent active layer such as a group B element, preferably boron, as an acceptor impurity. The dark resistance can be further improved by doping the center and compensating for the n-type semiconductor characteristics, and by adding a Vb group element, preferably phosphorus, as a donor-type impurity, the p-type semiconductor characteristics can be imparted. can. In the latter case, the dark resistance of the photoconductive layer itself slightly decreases due to the addition of group Vb elements, but the intervening intermediate layer prevents the escape of charges, so the overall dark resistance of the photoconductive layer itself decreases. If the dark resistance is 10 11 Ω・cm or more
A value of 10 13 Ω・cm or higher is guaranteed. In addition, the dark resistance of the photoconductive layer itself, which is made of a-Si containing only oxygen and hydrogen, has been improved to about 10 12 Ωcm, so it is 10 13 regardless of the presence or absence of group B elements and Vb group elements. A dark resistance of Ω·cm or more can be obtained as a whole, and the photoreceptor used in the method of the present invention can be manufactured. However, when these valence control agents are included, the concentration of group B elements is 20,000 ppm or less,
The content of Vb group elements is preferably 1000 ppm or less. This is because if the valence control agent is contained more than that, the dark resistance of the photoconductive layer itself decreases to 10 11 Ω·cm or less. Note that when an intermediate layer is included, the oxygen content range is expanded from 5 x 10 -2 to 1 x 10 -5 in the case of no intermediate layer to 5 x 10 -2 to 10 -6 atomic percent. be able to. The photoconductor layer can be formed by a glow discharge decomposition method or a sputtering method, but it is preferable to use a glow discharge decomposition method, which facilitates the inclusion of hydrogen and oxygen. This photoconductor layer is formed to a thickness of 10 to 60 microns, but can be reduced to a thickness of 0.5 microns when forming an intermediate layer. Therefore, when a photoconductive layer is formed by the glow discharge decomposition method, the formation rate is slow at 10 to 2500 Å/min, but the formation time can be shortened by providing an intermediate layer. As is clear from the above, the intermediate layer increases the charging potential on the surface of the photoconductor layer and itself plays the role of ensuring the passage of photocharge carriers, and is made of cadmium sulfide or zinc selenide. A photoconductive material is kneaded with a resin binder and coated onto a substrate to form an intermediate layer, or an As 2 Se 3 based photoconductive material is formed on a substrate by vacuum evaporation to form an intermediate layer. It is preferable that Also, its thickness is approximately
10 to 70μ is sufficient. This cadmium sulfide-based photoconductive material includes CdS, CdS・nCdCO 3
(0<n≦4), CdS-CdSe or copper,
Examples include those doped with 0.01 to 5% by weight of a metal activator such as silver. Furthermore, as the zinc selenide-based photoconductive material, not only ZnSe but also ZnSe doped with a metal activator can be used. The resin binder in which these photoconductive materials are dispersed does not decompose or dissolve even when heated at temperatures of 100 to 250°C, has high insulation resistance, and contains 10 to 70% by weight of the cadmium sulfide photoconductive materials. When the thickness of the intermediate layer is 10μ or more, the dark volume resistance increases.
Any material having a resistance of 10 13 Ω·cm or more may be used, and specifically thermosetting resins such as acrylic resin, amide resin, epoxy resin, silicone resin, phenolic resin, and allyl resin are suitable. As the As 2 Se 3 based photoconductive material, not only As 2 Se 3 but also Te may be used in combination as necessary. As mentioned above, the photoconductive layer of the a-Si photoreceptor is formed of amorphous silicon containing at least oxygen and hydrogen, but this photoconductive layer is different from conventional selenium or cadmium sulfide resin photoconductive layers. The surface hardness is extremely high, reaching 1800 to 2300 Kg/mm 2 (Bitzkers hardness Hv 25 ), which is higher than aluminum's 18
~23 times as hard as stainless steel, and 9 to 11 times as hard as Sapphire, so it won't be damaged even when using metal plates, has excellent durability, and is more durable than conventional photoreceptors. The spectral sensitivity characteristics are significantly improved. In addition, a-Si itself is approximately 700℃
Even when an intermediate layer is provided, the intermediate layer is also stable up to about 250° C., so it is significantly superior in heat resistance to conventional photoreceptors. The present invention is carried out in the following manner using the a-Si photoreceptor described above. That is, first, the surface of the a-Si photoreceptor 1 is charged with a corona charger or other known charging means 2 (see FIG. 1a), and an image is exposed from the original 3 using the optical system to be deposited onto the photoreceptor 1. An electrostatic latent image is formed (see b in the same figure). Next, the electrostatic latent image on the photoreceptor is developed using a known powder developer to form a powder image (see FIG. 1c), and then subjected to appropriate means such as heat fixing, flash fixing, An original image 4' corresponding to the original is created by semi-fixing the image on the photoreceptor by pressure fixing or the like (d in the figure). It should be noted that semi-fixed is a level that does not transfer onto the transfer paper even when subjected to the action of a transfer charger described later, and can be easily removed when the metal blade 8 is brought into contact with the surface of the photoreceptor to cause relative displacement. It means a state where it is attached or fixed. For example, in the case of thermal fixing, the heating temperature is determined by the melting point of the powder image forming particles (toner) of the developer, but is usually 20 to 40 degrees Celsius lower than the fixing temperature for copy paper, which is 120 to 200 degrees Celsius, or 80 to 180 degrees Celsius. It is preferable to do so. Furthermore, since the base of the photoreceptor is metal,
Unlike transfer paper (or copy paper), the surface of the photoreceptor is cold and has a high heat absorption rate, so semi-fixing does not occur at very low temperatures. Therefore, it is practical to determine it by testing the developer used. After the original image creation process is completed as described above, the original image (corresponding to the original plate in printing) is charged (the first
(see Figure e), uniform exposure imparts an electric charge to the semi-fixed toner (see Figure f), and an electrostatic latent image is re-formed. Note that the charge on the semi-fixed toner 4 forming the original image remains as it is because the photoconductive layer of the photoreceptor under the toner is not photoexcited even if the entire original image is uniformly exposed due to the presence of the toner.
This electrostatic latent image is developed with a powder developer to layer an unfixed powder image made of unfixed toner 5 on the original image (Fig. 1g), and this unfixed powder image is transferred to a charger 6.
After the image is transferred onto a transfer paper (copy paper) 7 (h in the same figure), a copy is produced by fixing it by a conventional method. Since the original image 4' remains intact on the surface of the photoreceptor after transfer, Figure 1 e to Figure 1 h
By repeating the steps up to this point, a large number of continuous copies are made. After continuously copying a large number of sheets as described above, the metal blade 8 is brought into contact with the surface of the photoreceptor, and a relative displacement is generated between the two to remove the semi-fixed toner on the surface of the photoreceptor (see Figure 1 i). ), the photoreceptor is regenerated by uniformly exposing it to remove the residual potential (see j in the same figure), and it becomes possible to reuse it. As explained above, in the present invention, an original image is formed in advance on a photoreceptor by one image exposure from an original,
After successively creating a large number of copies from this original image, the photoreceptor can be recycled and reused, making it possible to use the same size as the conventional single-image exposure, single-copy type electrophotographic copying machine. The device allows economical continuous copying of multiple sheets. That is, according to the present invention, even in a copying machine with a movable document table, the number of times the document table moves is reduced, so wear and tear on the machine is suppressed, and it can be used as easily as a copying machine with a fixed document table. easy. The number of times the exposure lamp is lit is reduced, resulting in a longer lifespan and further power savings. Since the next original can be set while copying a large number of sheets, at least the time for exchanging originals can be shortened. After the electrostatic latent image is formed, the photoreceptor drum can be moved at high speed, so it can handle higher speeds. Excellent effects such as DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of an electrophotographic copying apparatus used for carrying out the method of the present invention will be described below with reference to the accompanying drawings. FIG. 2 shows a schematic configuration of an electrophotographic copying machine for single-image exposure and multiple-sheet copying to which the method of the present invention is applied. Reference numeral D is an a-Si photoreceptor drum, around which is a corona charger 18 for charging and a slit 17 for exposure. , a uniform exposure light source 19, a developing device 20, a transfer charger 21, a separation charger 22, a semi-fixing device H,
Metal blade cleaner 23, eraser lamp 24
are arranged sequentially. Reference numeral 11 denotes a reciprocally movable document table on which a large number of documents to be copied are placed on a transparent glass plate 12. When copying using this device, first turn on the print switch (not shown) on the device.
The charging charger 18, the exposure lamp 13, and the scan solenoid SL1 of the document table 11 are turned on.
The document table 11 starts scanning to the right in the figure, and the document placed on the document table is exposed by the exposure lamp 13, and its image is projected by the first mirror 14, the projection lens 15, and the second mirror 16. Through the exposure slit 17, the latent image is sequentially projected onto the rotating photosensitive drum D, which is uniformly charged by the charging charger 18, and an electrostatic latent image corresponding to the original is formed on the photosensitive drum D. Due to the rotation of the photosensitive drum D, this electrostatic latent image passes through the light source 19 in the OFF state, and is then developed into a powder image by the developing device 20 which is constantly driven. pass through. At this time, the semi-fixing device H is turned on, and the powder image passing through it is transferred to the photoreceptor drum D.
It is semi-fixed on top to form the original image. After this semi-fixed powder image, that is, the original image passes through a cleaner 23 and an eraser lamp 24 having a metal blade 23' located apart from the photoreceptor surface, the entire surface of the photoreceptor is charged to maintain an on state. The battery is recharged by the charger 18. On the other hand, the exposure lamp 13 is turned off when the scanning movement of the document table 11 is completed, and at the same time, the uniform exposure lamp 19 is turned off.
is turned on, and the portions where the image does not have the electric charge applied by the subsequent charging charger 18 are erased, so that they are not developed by the developing device 20. That is, this uniform exposure lamp 19 functions as a rear end eraser. The photosensitive drum D, which has been more uniformly charged than the original image by the charging charger 18, has started its second rotation, and after passing through the exposure slit 17, it is uniformly exposed by the uniform exposure light source 19 which is in the on state. Only the charges in the areas where the original image does not exist are erased, and the charges remain only on the original image, forming an electrostatic latent image corresponding to the original image. This electrostatic latent image on the original image is turned into powder by the developing device 20, and the photosensitive drum D
An original image (that is, a semi-fixed powder image) and an unfixed powder image are formed overlappingly on the surface and move toward the transfer section. On the other hand, prior to this, seat cassette 2
The copy sheets P stacked and stored in 5 are
The sheets are fed out one by one by the paper feed roller 26 operated by the paper feed solenoid SL2, and then transferred to the conveyance roller 17.
As is well known, the image is sent to the transfer section in synchronization with the rotation of the photosensitive drum D. Immediately before the copy paper P reaches the transfer section, the transfer charger 21 and the separation charger 22 are turned on, and the unfixed powder image on the original image is transferred to the transfer charger 21.
The copy paper P having the transferred unfixed powder image is separated from the photosensitive drum D by the action of the separation charger 22, and then transferred to a pair of heat rollers by the conveyor belt 28. The powder image is conveyed to rollers 29, where it is fixed, and then discharged onto a tray 31 by discharge rollers 30. On the other hand, the photosensitive drum D holding the original image after transferring the unfixed powder image passes through the semi-fixing device H which is already turned off after one rotation from the start of semi-fixing.
Complete the first copy. Thereafter, the same operation is repeated from the second copy to a predetermined number of copies to obtain a predetermined number of copies on the tray 31. After the predetermined number of copies have been completed, that is, the final copy has been transferred, and just before the original image reaches the cleaner section, the solenoid SL3 is turned on, and the metal blade 23 of the cleaner comes into contact with the surface of the photoreceptor, removing the original image. At the same time, the eraser lamp 24 is turned on to completely erase the residual charges. Note that the solenoid SL3 is turned on only during one rotation of the photoreceptor drum D, and brings the metal blade 23 into contact with the metal blade 23 only during one rotation of the photoreceptor drum. After the photosensitive drum D completes the predetermined copying, it makes at least one more rotation and then stops. Further, the charging charger 18 is turned off after the completion of image formation for the final number of sheets, and a little later, the uniform exposure light source 19 is turned off. In the above apparatus, when heat fixing is employed as the semi-fixing means, oven fixing as described in the above-mentioned US Pat. No. 3,615,128 is easy, but a contact type using a heat roller may also be used. In the latter case, it is necessary to use a contact-separation type structure in which the heat roller is brought into contact with the surface of the photoreceptor drum only during semi-fixing, and is retracted at other times. In addition, in order to prevent toner from adhering to the heat roller surface, it is possible to apply an anti-offset liquid to the heat roller surface or place another heat roller inside the photoreceptor drum so that the toner adheres to the photoreceptor drum rather than the heat roller surface. It is desirable to make it easy to semi-fix on the surface. Furthermore, although a metal blade is used as a means for removing the original image from the surface of the photoreceptor, various materials such as stainless steel and aluminum alloy can be used for the blade. Note that the elastic blade used in conventional copying machines cannot completely remove toner semi-fixed on the surface of the photoreceptor. Next, examples of the present invention will be described. Example 1 Monosilane gas (10
%SiH 4 ), diborane gas with hydrogen as a carrier gas, and oxygen gas as source gases, and the ratio of oxygen to monosilane (O 2 /SiH 4 ) and the ratio of diborane to monosilane (B 2 H 6 /SiH 4 ). Each
10 -4 , 1×10 -4 is supplied to a known glow discharge decomposition device, the device internal pressure is 1.5 Torr, and the supplied power is 300 W/hr.
1,500 Å / 1,500 Å /
A-Si is produced at a rate of 1.5 min to produce an a-Si photoreceptor drum having a photoconductive layer with a thickness of 20 μm. The a-Si photoconductive layer of this a-Si photoreceptor drum contains 18 to 22 atomic percent hydrogen, 0.01 atomic percent oxygen, and 200 ppm boron, and its dark volume resistivity is 8×10 13 Ω·cm. The Bitkers hardness ( Hv50 ) was approximately 2250Kg/ mm2 . This a-Si photoreceptor was used as the photoreceptor of the copying machine shown in Fig. 2, and per one document under the following conditions.
When 100 sheets at a time were continuously copied up to 10,000 sheets, a good original image with high contrast was obtained. Further, no damage to the surface of the photoreceptor was observed. Photoreceptor rotation speed: 40 rpm Charger supply potential for charging: -5.6KV Image exposure amount: 3lux・sec Exposure amount by light source for uniform exposure: 5lux・sec Charger supply potential for transfer: 6KV Charger supply potential for separation: 6.5KV Metal blade : Stainless steel (SUS303) Eraser exposure amount: 200 lux·sec Example 2 An aqueous solution containing 308.5 g of cadmium nitrate and an aqueous ammonium carbonate solution were mixed to react, and cadmium carbonate was precipitated. 173 g of this cadmium carbonate was dispersed in water containing 0.68 g of cupric chloride, and hydrogen sulfide was blown into the water to form a precipitate of CdS·nCdCO 3 to which Cu had been added. Subsequently, this precipitate was washed with water, dried and ground, and heated at 250℃ for 15 minutes.
A photoconductive powder of CdS·nCdCO 3 (n=1.5) was obtained by firing for a period of time. 100 parts by weight of this photoconductive powder was kneaded with 60 parts by weight of thermosetting acrylic resin and 130 parts by weight of a mixed organic solvent containing toluene as the main ingredient, thoroughly dispersed, and then placed on an aluminum cylindrical substrate with a diameter of 80 mm. An intermediate layer having a thickness of 30 μm was formed by spray coating and heat curing. Furthermore, the specific resistance of this intermediate layer is 5×10 13
It was Ω・cm. An interlayer comprising zinc selenide photoconductive material was then formed on another similar aluminum substrate. First, dissolve 300 g of zinc nitrate (Zn(NO 3 ) 2 6H 2 O) in distilled water, and dissolve 1% of copper chloride (CuCl 2 2H 2 O).
Add 68ml of aqueous solution, drop 120g of ammonium selenide dissolved in distilled water to the solution,
A precipitate of zinc selenide with added Cu was obtained. After washing and drying this precipitate, it was calcined in an inert gas (Ar, N 2 ) at a temperature of 600°C for 1 hour, and the ZnSe powder thus obtained was mixed and dispersed with a thermosetting acrylic resin and a toluene solvent. , spray coated onto an aluminum substrate. After drying, it was heated and cured to form a ZnSe binder intermediate layer with a thickness of 30 μm. When its specific resistance was measured, it was 6×10 13 Ω·cm. Furthermore, separately from this, an As 2 Se 3 intermediate layer with a thickness of 30 μm was formed on the same aluminum substrate. Purity 99.999
Se and As pellets with a particle size of 1 mm or more and an atomic ratio of 40%:60% were mixed, and 120g of the mixture was placed in a quartz ampoule for 10 -5 ~
After drawing a high vacuum of 10 -6 Torr, seal it off. This ampoule was placed in an electric furnace and heated at about 800°C for 10 hours to melt As and Se. This was mixed sufficiently uniformly and then rapidly cooled to obtain an alloy lump of As 2 Se 3. This lump was taken out and ground sufficiently finely in a mortar, and then set in the evaporation source of a vacuum evaporation apparatus. After setting the aluminum drum substrate as the evaporation substrate, the inside of the evaporation tank was evacuated to a vacuum level of approximately 5 × 10 -5 Torr, the substrate was heated to approximately 200°C, and then the evaporation source temperature was raised to 420 to 460°C. 1 second to start vapor deposition.
As 2 Se 3 with a thickness of 30 μ at a deposition rate of 100 Å to 200 Å
An intermediate layer was formed. Furthermore, the specific resistance of this intermediate layer is 4
×10 13 Ω・cm. Next, each of these cylindrical substrates was installed in the glow discharge decomposition apparatus used in Example 1, and a 5μ thick a-Si photoconductive layer was laminated on the intermediate layer under the following conditions. A photoreceptor was obtained. [A-Si photoconductive layer formation conditions] Reaction tube internal pressure 1.5Torr Power supply 300w/hr (frequency 4MHz) Substrate temperature 200℃ Film formation rate 1500Å/min Raw material gas 10%SiH 4 -90%H 2 mixed gas O 2 / SiH 4 molar ratio 2.75×10 -4 B 2 H 6 /SiH 4 molar ratio 10 -3 Each photoreceptor obtained contained 18 to 22 atomic percent hydrogen, 0.05 atomic percent oxygen, Contains 200ppm boron, dark volume resistance 4×10 14
Ω・cm, Bitkers hardness (Hv 50 ), approximately 2200
It was Kg/ mm2 . When copying was performed using this photosensitive drum under the same conditions as in Example 1, a good image with high contrast was obtained. Examples 3 to 6 An a-Si photoreceptor having a photoconductive layer having the composition shown in the table below was prepared in the same manner as in Example 1 or Example 2, and under the same conditions as in Example 1, 100
Continuous copying was performed up to 10,000 sheets at a time. The results are also shown in the table. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法における各プロセスの経過
を示す説明図、第2図は本発明方法の実施に使用
する電子写真複写機の断面図である 1〜感光体、2〜帯電手段、3〜原稿、4〜粉
像形成粒子(トナー)、5〜未定着トナー、6〜
転写用チヤージヤ、7〜転写紙、8〜金属製ブレ
ード、11〜原稿台、13〜露光ランプ、14,
16〜ミラー、15〜投影レンズ、17〜露光ス
リツト、18〜帯電用チヤージヤ、19〜均一露
光用光源、20〜現像装置、21〜転写用チヤー
ジヤ、22〜分離用チヤージヤ、23〜金属ブレ
ード、24〜イレーサランプ、H〜半定着装置。
FIG. 1 is an explanatory diagram showing the progress of each process in the method of the present invention, and FIG. 2 is a cross-sectional view of an electrophotographic copying machine used to carry out the method of the present invention. 1 - photoreceptor, 2 - charging means, 3 - Original, 4-powder image forming particles (toner), 5-unfixed toner, 6-
transfer charger, 7-transfer paper, 8-metal blade, 11-document stand, 13-exposure lamp, 14,
16-mirror, 15-projection lens, 17-exposure slit, 18-charging charger, 19-uniform exposure light source, 20-developing device, 21-transfer charger, 22-separation charger, 23-metal blade, 24 ~ Eraser lamp, H ~ Semi-fixing device.

Claims (1)

【特許請求の範囲】 1 a アモルフアスシリコン感光体表面上に静
電潜像を形成し、診静電潜像を粉末現像剤によ
り現像して粉像を形成した後、該粉像を感光体
表面に半定着させて原画を作成する原画作成工
程、 b 原画を作成した感光体表面を帯電させ、該感
光体表面に均一露光して原画上に静電潜像を形
成した後、粉末現像剤により現像して原画上に
未定着粉像を積層し、該未定着粉像を転写紙上
に転写して定着させる複写物作成工程、および c 前記複写物作成工程を繰り返した後、前記感
光体表面上の原画を金属ブレードで除去する感
光体再生工程、 からなる電子写真複写方法。
[Claims] 1a After forming an electrostatic latent image on the surface of an amorphous silicon photoreceptor and developing the diagnostic electrostatic latent image with a powder developer to form a powder image, the powder image is transferred to the photoreceptor. An original image creation process in which an original image is created by semi-fixing it on the surface, b. The surface of the photoreceptor on which the original image was created is charged, the surface of the photoreceptor is uniformly exposed to form an electrostatic latent image on the original image, and then a powder developer is applied. c. After repeating the copy creation step, the surface of the photoreceptor is An electrophotographic copying method comprising: a photoreceptor regeneration step in which the original image is removed using a metal blade.
JP7352180A 1980-05-30 1980-05-30 Electrophotographic copying method Granted JPS56168663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7352180A JPS56168663A (en) 1980-05-30 1980-05-30 Electrophotographic copying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7352180A JPS56168663A (en) 1980-05-30 1980-05-30 Electrophotographic copying method

Publications (2)

Publication Number Publication Date
JPS56168663A JPS56168663A (en) 1981-12-24
JPS6252865B2 true JPS6252865B2 (en) 1987-11-07

Family

ID=13520620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7352180A Granted JPS56168663A (en) 1980-05-30 1980-05-30 Electrophotographic copying method

Country Status (1)

Country Link
JP (1) JPS56168663A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105755A (en) * 1980-12-24 1982-07-01 Canon Inc Image forming device
JPS6053967A (en) * 1983-09-02 1985-03-28 Minolta Camera Co Ltd Multiple sheet copying method
JPS60207151A (en) * 1984-03-31 1985-10-18 Mita Ind Co Ltd Electrophotographic method

Also Published As

Publication number Publication date
JPS56168663A (en) 1981-12-24

Similar Documents

Publication Publication Date Title
KR0175117B1 (en) Electrophotographing apparatus
CA1075068A (en) Imaging system
US3712810A (en) Ambipolar photoreceptor and method
JPS6252865B2 (en)
US4698288A (en) Electrophotographic imaging members having a ground plane of hydrogenated amorphous silicon
US4965154A (en) Electrophotographic photoreceptor having surface layers
JPH0151182B2 (en)
JPH01321440A (en) Electrophotographic sensitive body
JPS648331B2 (en)
JPH0121313Y2 (en)
JPH0568702B2 (en)
JP3330008B2 (en) Electrophotographic equipment
JPH0731407B2 (en) Image forming member for electrostatic photography using amorphous boron
JPH0778637B2 (en) Electrophotographic photoconductor
JPS62295064A (en) Electrophotographic sensitive body
JP3895072B2 (en) Electrophotographic photoreceptor and method for producing the same
JP2883233B2 (en) Electrophotographic printing plate material and method of manufacturing printing plate using the same
JP3878752B2 (en) Image forming apparatus
JPH079541B2 (en) Electrophotographic photoconductor
JPH0373862B2 (en)
US3684500A (en) Method of forming permanent electrostatic image with two-layered photoreceptor
JPH11133645A (en) Image forming device
JPH0237583B2 (en)
JP2920663B2 (en) Electrophotographic photoreceptor
JPS58102242A (en) Amorphous silicon photoreceptor