JPS6251424B2 - - Google Patents

Info

Publication number
JPS6251424B2
JPS6251424B2 JP8281881A JP8281881A JPS6251424B2 JP S6251424 B2 JPS6251424 B2 JP S6251424B2 JP 8281881 A JP8281881 A JP 8281881A JP 8281881 A JP8281881 A JP 8281881A JP S6251424 B2 JPS6251424 B2 JP S6251424B2
Authority
JP
Japan
Prior art keywords
state
solvent
control valve
open
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8281881A
Other languages
Japanese (ja)
Other versions
JPS57198864A (en
Inventor
Akira Nakamoto
Akinori Kyofuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP8281881A priority Critical patent/JPS57198864A/en
Publication of JPS57198864A publication Critical patent/JPS57198864A/en
Publication of JPS6251424B2 publication Critical patent/JPS6251424B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 この発明は高速液体クロマトグラフイーにおけ
るグラジエント溶出のための溶媒混合装置に関
し、特に小容量のミキサーで十分な混合濃度の安
定性および混合濃度の正確度が得られる溶媒混合
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solvent mixing device for gradient elution in high performance liquid chromatography, and in particular to a solvent mixing device that can provide sufficient mixing concentration stability and accuracy with a small-capacity mixer. Regarding equipment.

高速液体クロマトグラフイーにおけるグラジエ
ント溶出法は、複雑な混合物の分離や分析条件の
検討にたいへん有効な手法である。しかし、この
ときに使用される従来の溶媒混合装置は、異つた
溶媒を混合する時その混合濃度の安定性および正
確度が十分なものではなかつた。そのため、高速
液体クロマトグラフの検出器が混合した溶媒を移
動相とした時その濃度変動の影響を受けベースラ
イン変化が大きくなり、高感度分析が困難であつ
たり、また実際の移動相濃度の設定濃度との偏差
が大きかつたり濃度の再現性が十分でないという
問題があつた。
Gradient elution in high-performance liquid chromatography is a very effective method for separating complex mixtures and considering analysis conditions. However, the conventional solvent mixing apparatus used in this case does not have sufficient stability and accuracy in determining the mixing concentration when mixing different solvents. For this reason, when a high-performance liquid chromatograph detector uses a mixed solvent as a mobile phase, it is affected by concentration fluctuations, resulting in large baseline changes, making it difficult to perform high-sensitivity analysis, and when setting the actual mobile phase concentration. There were problems in that the deviation from the concentration was large and the reproducibility of the concentration was insufficient.

この発明の発明者らは上記のような状況に鑑み
て鋭意研究を行つた結果、従来装置における溶媒
混合濃度の不安定性の原因が、(i)制御弁の動作、
(ii)制御弁と送液ポンプ間の配管、(iii)ミキサーの配
置、に主として存在することを見出し、これらの
点を改良することにより、この発明を成すに到つ
たものである。
The inventors of this invention conducted intensive research in view of the above situation and found that the cause of the instability of the solvent mixture concentration in the conventional device is (i) operation of the control valve;
The present invention was achieved by discovering that this problem mainly exists in (ii) the piping between the control valve and the liquid pump, and (iii) the arrangement of the mixer, and by improving these points.

而して、この発明によれば、送液ポンプの吸入
口に移動相用の複数個の溶媒槽を各々制御弁を介
して接続し、送液ポンプの吸入行程中にそれらの
制御弁を順次開閉して送液ポンプに各溶媒を所定
の比率で吸入し混合する方式の溶媒混合装置にお
いて、吸入行程中におけるひとつの制御弁の
“開”状態と次の他のひとつの制御弁の“開”状
態の間に制御弁のすべてが“閉”になる“全閉”
状態をごくわずかの時間で設けるとともに、制御
弁と送液ポンプ入口間の接続配管を圧力変形小に
かつ容量小に構成し、さらに送液ポンプの吐出口
側にミキサーを配置した高速液体クロマトグラフ
の溶媒混合装置が提供される。
According to the present invention, a plurality of solvent tanks for the mobile phase are connected to the suction port of the liquid feeding pump through respective control valves, and the control valves are sequentially operated during the suction stroke of the liquid feeding pump. In a solvent mixing device that sucks and mixes each solvent at a predetermined ratio into a liquid sending pump by opening and closing, the "open" state of one control valve and the "open" state of the next control valve during the suction stroke are different. “Fully closed” during which all of the control valves are “closed”
This is a high-speed liquid chromatograph in which the state can be adjusted in a very short time, the connecting piping between the control valve and the inlet of the liquid pump has a small pressure deformation and small capacity, and a mixer is placed on the discharge port side of the liquid pump. A solvent mixing device is provided.

この発明において“開”状態とは、溶媒が少量
でも制御弁を通過しうる状態、つまり制御弁が少
しでも開いている状態をいう。また、“閉”状態
とは完全に制御弁が閉じている状態をいう。
In this invention, the "open" state refers to a state in which even a small amount of solvent can pass through the control valve, that is, a state in which the control valve is open even slightly. Moreover, the "closed" state refers to a state in which the control valve is completely closed.

この発明装置において前記“全閉”状態を構成
する具体例としては、制御弁としてデツドボリユ
ームが小さく比較的動作速度が速くかつ“開”状
態から“閉”状態になる時の時間が、“閉”状態
から“開”状態になる時の時間よりも短い電磁弁
を用いること、制御弁の動作時にとなり合う2つ
の制御弁がいずれも“開”状態になる時間がない
ようにドライブ信号のタイミングを制御したりド
ライブ回路を選択して各制御弁を駆動すること等
が挙げられる。
As a specific example of configuring the "fully closed" state in the device of the present invention, the control valve has a small dead volume and a relatively fast operating speed, and the time it takes to change from the "open" state to the "closed" state is longer than the "closed" state. Use a solenoid valve that is shorter than the time it takes to change from the state to the "open" state, and adjust the timing of the drive signal so that there is no time for two control valves adjacent to each other to become "open" when the control valve operates. For example, controlling or selecting a drive circuit to drive each control valve.

また、この発明装置において制御弁と送液ポン
プ間の接続配管を圧力変形小にかつ容量小に構成
する具体例としては、配管をステンレスパイプで
行うこと、配管をテフロン(登録商標名)パイプ
で行う際には内径1mmφ×外径2mmφのテフロン
パイプならすくなくとも10cm以下とすること、配
管は各制御弁出口と送液ポンプの入口とを直結す
るものとし中間にミキサーなどを介設しないこと
等が挙げられる。
In addition, as specific examples of configuring the connecting piping between the control valve and the liquid pump in the device of this invention to have a small pressure deformation and a small capacity, the piping can be made of stainless steel pipe, and the piping can be made of Teflon (registered trademark) pipe. When performing this, the Teflon pipe with an inner diameter of 1 mmφ x outer diameter of 2 mmφ should be at least 10 cm or less, and the piping should be directly connected to the outlet of each control valve and the inlet of the liquid pump, and no mixer etc. should be interposed in between. Can be mentioned.

この発明装置において送液ポンプの吐出口側に
ミキサーを配設する構成については別段説明を要
しないであろう。
No special explanation is required regarding the configuration in which the mixer is disposed on the discharge port side of the liquid feeding pump in the device of the present invention.

次に図に示す実施例に基いて、この発明の溶媒
混合装置の構成をさらに詳説する。
Next, the configuration of the solvent mixing apparatus of the present invention will be explained in further detail based on the embodiment shown in the drawings.

第1図に示す1はこの発明の溶媒混合装置の一
実施例である。2はデユアル小プランジヤーポン
プで、その吸入口はステンレスパイプ製接続配管
3で複数の電磁弁4a,4bの出口に直結されて
おり、それら電磁弁4a,4bの入口は各々テフ
ロンチユーブ5a,5bで溶媒槽6a,6bに接
続されている。溶媒槽6a,6bにはそれぞれ溶
媒A,Bが満たされている。7はミキサーで、圧
力センサー8を介して前記ポンプ2の吐出口に接
続され、またダンパー9を介して公知の構成の高
速液体クロマトグラフの試料導入口にそしてカラ
ムそして検出器100が接続されている。ポンプ
2および電磁弁4a,4bはプログラマ10によ
りコントロールされている。
1 shown in FIG. 1 is an embodiment of the solvent mixing apparatus of the present invention. 2 is a dual small plunger pump, the suction port of which is directly connected to the outlet of a plurality of electromagnetic valves 4a, 4b through a connecting pipe 3 made of stainless steel pipe, and the inlet of these electromagnetic valves 4a, 4b are connected to Teflon tubes 5a, 5b, respectively. and is connected to the solvent tanks 6a and 6b. Solvent tanks 6a and 6b are filled with solvents A and B, respectively. 7 is a mixer, which is connected via a pressure sensor 8 to the discharge port of the pump 2, and via a damper 9 to a sample inlet of a high performance liquid chromatograph having a known configuration, and to a column and a detector 100. There is. The pump 2 and the solenoid valves 4a, 4b are controlled by a programmer 10.

第2図は電磁弁4aの弁構造を示すもので、ダ
イヤフラム12で支持された弁棒11が最下位置
(図中破線の位置)にあるときが“閉”状態で、
その他の位置は“開”状態である。なお“開”状
態でも、弁棒11が最上位置(図中実線の位置)
にあるときを以下特に“完全開”状態と呼ぶ。
FIG. 2 shows the valve structure of the solenoid valve 4a. When the valve stem 11 supported by the diaphragm 12 is at the lowest position (the position indicated by the broken line in the figure), it is in the "closed" state.
Other positions are in the "open" state. Even in the “open” state, the valve stem 11 is in the uppermost position (the position indicated by the solid line in the figure).
Hereinafter, the state when the opening is in the "fully open" state will be particularly referred to as the "fully open" state.

第3図は電磁弁4aのドライブ回路を示すもの
である。電磁弁4aのコイル13に通電すれば、
“完全開”状態へ向い、通電を断てば“閉”状態
に向う。トランジスタ16が導通から遮断にスイ
ツチングしたときにコイル13の応答が遅れない
ために、コイル13と並列にツエナーダイオード
14とダイオード15の直列回路が接続されてい
る。
FIG. 3 shows a drive circuit for the solenoid valve 4a. If the coil 13 of the solenoid valve 4a is energized,
It goes to the "fully open" state, and when the power is turned off, it goes to the "closed" state. A series circuit of a Zener diode 14 and a diode 15 is connected in parallel with the coil 13 so that the response of the coil 13 is not delayed when the transistor 16 switches from conduction to cutoff.

第4図は電磁弁4aの動作のタイムチヤート
で、イは前記トランジスタ16に加えられるドラ
イブ信号、ロは電磁弁4aの状態を示している。
電磁弁4aが“閉”から“開”になるときには、
ドライブ信号がOFFからONになつてから(t′1
t′0)時間のON遅延時間だけ遅れて弁棒11が上
昇を始め、“開”状態が始まり、(t′2−t′1)時間の
ON移動時間を経て“完全開”状態になる。つま
り、ドライブ信号がOFFからONになつてから
(t′2−t′0)時間のON作動時間の後に“完全開”に
なる。一方、“完全開”から“閉”になるときに
は、ドライブ信号がONからOFFになつてから
(t1−t0)時間のOFF遅延時間だけ遅れて弁棒11
が下降を始め、(t2−t1)時間のOFF移動時間を経
て“閉”状態になる。つまり、ドライブ信号が
ONからOFFになつてから(t2−t0)時間のOFF作
動時間の後に“閉”状態になる。
FIG. 4 is a time chart of the operation of the solenoid valve 4a, in which A shows the drive signal applied to the transistor 16, and B shows the state of the solenoid valve 4a.
When the solenoid valve 4a changes from "closed" to "open",
After the drive signal turns from OFF to ON (t′ 1
The valve stem 11 starts to rise after the ON delay time of time t′ 0 ), and the “open” state begins, and the valve stem 11 starts to rise after the ON delay time of time t0 ), and the “open” state begins.
After the ON movement time, it becomes "fully open" state. In other words, the drive signal becomes "fully open" after an ON operation time of (t' 2 - t' 0 ) after the drive signal is turned from OFF to ON. On the other hand, when changing from "fully open" to "closed", the valve stem 11 is opened with a delay of the OFF delay time (t 1 - t 0 ) after the drive signal changes from ON to OFF.
begins to descend and reaches the "closed" state after an OFF movement time of (t 2 - t 1 ). In other words, the drive signal
The state becomes "closed" after an OFF operation time of (t 2 - t 0 ) after switching from ON to OFF.

第3図に示すドライブ回路でツエナーダイオー
ド14とダイオード15の直列回路をコイル13
に並列に設けているのは、換言すれば前記OFF
遅延時間が長くなるのを防止するためである。
In the drive circuit shown in FIG. 3, a series circuit of a Zener diode 14 and a diode 15 is connected to a coil 13.
In other words, the OFF
This is to prevent the delay time from increasing.

電磁弁には様々の特性のものがあるが、この装
置を構成しているすべての電磁弁は各2つを各々
比較した場合次式を満足しうる特性のものを選ん
である。
Although solenoid valves have various characteristics, all the solenoid valves making up this device are selected to have characteristics that satisfy the following formula when comparing each two.

O<Δt<10mS () ただし、 Δt=(t′1−t′0)−(t2−t0) () ここで(t′1−t′0)は1つの電磁弁のON遅延時
間であり(t2−t0)はもう1つの電磁弁のOFF作
動時間である。
O<Δt<10mS () However, Δt=(t' 1 - t' 0 ) - (t 2 - t 0 ) () Here, (t' 1 - t' 0 ) is the ON delay time of one solenoid valve. (t 2 −t 0 ) is the OFF operation time of the other solenoid valve.

またこの10mSという時間は1ストロークの容
量が異るポンプの場合は、ちがつた値にすること
が可能である。
Also, this time of 10 mS can be set to a different value if the pump has a different capacity per stroke.

プログラマ10は、第5図に示すようなタイム
チヤートでポンプ2および電磁弁4a,4bを駆
動するべくドライブ信号を発する。つまり、第5
図イに示すポンプ2の吸入プロフイールに同期さ
せて、所定の濃度になるように電磁弁4aに第5
図ロに示すドライブ信号を発し、また、電磁弁4
bに第5図ハに示すドライブ信号を送る。ポンプ
2の吸入行程中に電磁弁4a,4bへのドライブ
信号が反転するタイミングは同時である。
The programmer 10 issues a drive signal to drive the pump 2 and the solenoid valves 4a, 4b according to a time chart as shown in FIG. In other words, the fifth
In synchronization with the suction profile of the pump 2 shown in Figure A, the fifth solenoid valve 4a is connected to the
It emits the drive signal shown in Figure B, and also outputs the solenoid valve 4.
A drive signal shown in FIG. 5c is sent to b. The drive signals to the electromagnetic valves 4a and 4b are inverted at the same time during the suction stroke of the pump 2.

電磁弁4a,4bは、先に説明したような特性
をもつているため、ドライブ信号のON・OFFよ
りも少し遅れて“開”・“閉”する。第5図ニおよ
びホは、それぞれ電磁弁4aおよび4bの
“開”・“閉”のタイミングを示し、前記()式
の特性から、必ずΔt時間の“全閉”状態があ
る。
Since the solenoid valves 4a and 4b have the characteristics described above, they "open" and "close" a little later than when the drive signal is turned on and off. FIGS. 5D and 5E show the "open" and "close" timings of the electromagnetic valves 4a and 4b, respectively, and from the characteristics of the above equation (), there is always a "fully closed" state for a time Δt.

この発明の溶媒混合装置は以上のように構成さ
れているので、次のような優れた効果を有してい
る。
Since the solvent mixing device of the present invention is configured as described above, it has the following excellent effects.

(i) 従来装置は制御弁の切換時に“全閉”状態を
経由するよう構成されていなかつたので、2つ
の制御弁のドライブ信号が同時に反転した場合
に、制御弁のOFF作動時間がON作動時間より
長いときには、2つの制御弁が同時に“開”状
態となることがあり、そのため、“開”から
“閉”に向う制御弁側の溶媒が制御弁の弁棒の
移動により押出され“閉”から“開”に向う制
御弁側へ一部逆流する(第1図においては制御
弁4aの出口から3′aを経て、3′bにまた制
御弁4bの出口から3′bを経て3′aに逆流す
る)現象を生じ、また“閉”から“開”に制御
弁が作動する時他の制御弁が“開”状態にある
ため“閉”から“開”への弁棒の移動により制
御弁内部に吸入される溶媒が弁の入口からだけ
でなく、もう一方の“開”状態にある制御弁を
通しても一部吸入され同様に溶媒の逆流の現象
を生じ、これらの現象の程度が溶媒相互の粘性
のちがい、溶媒槽の液面高さの変化、配管抵抗
のちがい等で変化して実際の溶媒の混合比を変
動させ、これが溶媒混合濃度の不安定性および
混合濃度が不正確になる原因になつていた。
(i) Conventional equipment was not configured to go through a "fully closed" state when switching control valves, so if the drive signals of two control valves were reversed at the same time, the OFF operation time of the control valves would be reduced to ON operation. If the time is longer than that, the two control valves may be in the "open" state at the same time, and as a result, the solvent on the control valve side that is moving from "open" to "closed" is pushed out by the movement of the valve stem of the control valve and "closed". A part of the flow flows backward from the outlet of the control valve 4a through 3'a and 3'b, and from the outlet of the control valve 4b through 3'b in Fig. 1. When a control valve operates from "closed" to "open", other control valves are in the "open" state, so the valve stem moves from "closed" to "open". The solvent sucked into the control valve is not only sucked in from the inlet of the valve, but also partially through the other control valve that is in the "open" state, causing the phenomenon of solvent backflow, and the extent of these phenomena varies. This changes due to differences in the viscosity of the solvents, changes in the liquid level in the solvent tank, differences in piping resistance, etc., and the actual mixing ratio of the solvents fluctuates, resulting in instability of the solvent mixture concentration and inaccurate mixture concentration. It had become the cause of

これに対し、この発明装置では制御弁が必ず
“全閉”状態を経由して切換えられるので、上
記現象が生じる余地はなく、従つてそれだけ溶
媒混合濃度の安定性および正確度が改善され
る。
In contrast, in the apparatus of the present invention, the control valve is always switched through the "fully closed" state, so there is no room for the above phenomenon to occur, and the stability and accuracy of the solvent mixture concentration are accordingly improved.

ただし、“全閉”状態の時間が長いとポンプ
の吸入動作に影響がでるので、制御弁の特性の
バラツキも考慮して、“全閉”の状態が生じる
時間をこの装置では10mS以下としている。こ
の程度ならば、通常の分析流量0.5〜3ml/分
では、ポンプの吸入時間が12秒〜2秒の範囲内
であるためその影響を無視できる。
However, if the time in the "fully closed" state is long, it will affect the suction operation of the pump, so in consideration of variations in the characteristics of the control valve, the time during which the "fully closed" state occurs is set to 10 mS or less in this device. . If this is the case, the effect can be ignored because the pump suction time is within the range of 12 seconds to 2 seconds at a normal analysis flow rate of 0.5 to 3 ml/min.

(ii) 従来装置では制御弁と送液ポンプの入口とが
通常テフロンパイプで接続されていたので、仮
に制御弁のOFF作動時間がON作動時間より短
くて“全閉”状態になつたとしても、“開”か
ら“閉”へ向う制御弁の弁棒の弁移動速度がき
わめて早いため(通常1〜3mS)、弁内部から
弁棒の作動にともなつて押出される溶媒(通常
5〜6μ)が一部は溶媒槽に逆流するが一部
はポンプに吸入されずにテフロンパイプを押し
拡げ、そして、次の制御弁が“閉”から“開”
になるときにその押し拡げた体積分の溶媒がそ
の“閉”から“開”へ向う制御弁へ逆流し、こ
れが前記した現象と同様に溶媒混合濃度の不安
定性の原因になつていた。
(ii) In conventional devices, the control valve and the inlet of the liquid pump were usually connected with a Teflon pipe, so even if the OFF operation time of the control valve was shorter than the ON operation time and the control valve reached a "fully closed" state, Since the movement speed of the valve stem of the control valve from "open" to "close" is extremely fast (usually 1 to 3 mS), the solvent (usually 5 to 6μ) that is pushed out from inside the valve as the valve stem operates ) flows back into the solvent tank, but some of it is not sucked into the pump and expands the Teflon pipe, causing the next control valve to change from "closed" to "open".
When this happens, the expanded volume of solvent flows back into the control valve as it moves from "closed" to "open," causing instability in the solvent mixture concentration, similar to the phenomenon described above.

これに対し、この発明装置では制御弁と送液
ポンプ間の接続配管がほとんど押し拡げられな
いので、上記の不安定性原因がなく、それだけ
溶媒混合濃度の安定性が改善される。
On the other hand, in the device of the present invention, the connecting pipe between the control valve and the liquid pump is hardly expanded, so there is no cause for instability as described above, and the stability of the solvent mixture concentration is improved accordingly.

(iii) 従来装置では、ミキサーが送液ポンプの吸口
側すなわち制御弁と送液ポンプ間の接続配管中
に介設されることが多かつたが、送液ポンプの
吸入口側は低圧側であり、かつミキサーの容量
は比較的大きくする必要がるため溶媒の種類に
よつてはあらかじめある程度脱気された溶媒で
も混合時にミキサー内に気泡が発生しやすく、
これが溶媒の混合比を変動させる一因となつて
いた。
(iii) In conventional equipment, the mixer was often installed on the suction side of the liquid pump, that is, in the connecting pipe between the control valve and the liquid pump, but the mixer was often installed on the suction side of the liquid pump on the low pressure side. In addition, since the capacity of the mixer needs to be relatively large, depending on the type of solvent, bubbles may easily occur in the mixer during mixing, even if the solvent has been degassed to some extent in advance.
This was one of the causes of fluctuations in the mixing ratio of the solvents.

これに対し、この発明装置ではミキサーを高
圧側である送液ポンプの吐出口側に設けたの
で、気泡が発生しにくくなつている。
In contrast, in the device of the present invention, the mixer is provided on the high-pressure side, which is the discharge port side of the liquid pump, so that bubbles are less likely to occur.

なお、この発明装置ではミキサーが送液ポン
プより後にあるので、溶媒の実質的混合は送液
ポンプから吐出された後で行われることにな
る。
In the apparatus of this invention, since the mixer is located after the liquid pump, substantial mixing of the solvents is performed after the solvent is discharged from the liquid pump.

この発明の溶媒混合装置は、上記のごとく溶媒
混合濃度の安定性および正確度が極めて良好であ
り、従つて高速液体クロマトグラフにおける高感
度分析が可能になるだけでなく実際の濃度と設定
濃度をきわめて小さくできる。実際、前記実施例
の高速液体クロマトグラフでは、溶媒として、水
とメタノールを用いて混合した時、検出器の波長
が短波長(210nm)であつたが、極めて高感度
(0.01AμFS)でも安定して分析が行えるもので
あつた。
As mentioned above, the solvent mixing device of the present invention has extremely good stability and accuracy of the solvent mixture concentration, and therefore not only enables high-sensitivity analysis in high-performance liquid chromatography, but also enables the difference between the actual concentration and the set concentration. It can be made extremely small. In fact, in the high-performance liquid chromatograph of the above example, when water and methanol were mixed as solvents, the wavelength of the detector was short (210 nm), but it was stable even at extremely high sensitivity (0.01 AμFS). It was possible to conduct an analysis using this method.

さらに、溶媒混合濃度の不安定性の主たる原因
が除去されたので、小容量のミキサーでも充分安
定に使用可能になり、時間おくれの小さい精度、
再現性のよいグラジエント溶出ができるようにな
つた。
Furthermore, since the main cause of instability in the solvent mixture concentration has been removed, even small-capacity mixers can be used stably, allowing for precision and precision with little time lag.
Gradient elution with good reproducibility is now possible.

なお、溶媒が3種以上の場合にもこの発明を容
易に適用しうることは言うまでもない。
It goes without saying that the present invention can be easily applied to cases where three or more types of solvents are used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の溶媒混合装置の一実施例の
構成説明図、第2図は第1図に示す溶媒混合装置
に用いる電磁弁の弁部の部分断面図、第3図は第
1図に示す溶媒混合装置における電磁弁のドライ
ブ回路、第4図は同電磁弁の動作特性のタイムチ
ヤート、第5図は第1図に示す溶媒混合装置にお
けるデユアル小プランジヤポンプと電磁弁の動作
特性のタイムチヤートである。 1……溶媒混合装置、2……デユアル小プラン
ジヤポンプ、3……接続配管、4a,4b……電
磁弁、6a,6b……溶媒槽、7……ミキサー、
10……プログラマ、100……高速液体クロマ
トグラフの試料導入口、カラム、検出器。
FIG. 1 is an explanatory diagram of the configuration of one embodiment of the solvent mixing device of the present invention, FIG. 2 is a partial sectional view of the valve part of the solenoid valve used in the solvent mixing device shown in FIG. 1, and FIG. 3 is the same as that shown in FIG. Figure 4 is a time chart of the operating characteristics of the solenoid valve, and Figure 5 is a diagram of the operating characteristics of the dual small plunger pump and the solenoid valve in the solvent mixing apparatus shown in Figure 1. It is a time chart. 1... Solvent mixing device, 2... Dual small plunger pump, 3... Connection piping, 4a, 4b... Solenoid valve, 6a, 6b... Solvent tank, 7... Mixer,
10...programmer, 100...sample inlet of high performance liquid chromatograph, column, detector.

Claims (1)

【特許請求の範囲】 1 送液ポンプの吸入口に移動相用の複数個の溶
媒槽を各々制御弁を介して接続し、送液ポンプの
吸入行程中にそれらの制御弁を順次開閉して送液
ポンプに各溶媒を所定の比率で吸入し混合する方
式の溶媒混合装置において、 吸入行程中におけるひとつの制御弁の“開”状
態と次の他のひとつの制御弁の“開”状態の間に
制御弁のすべてが“閉”になる“全閉”状態をご
くわずかの時間で設けるとともに、 制御弁と送液ポンプ入口間の接続配管を圧力変
形小にかつ容量小に構成し、さらに送液ポンプの
吐出口側にミキサーを配置したことを特徴とする
高速液体クロマトグラフの溶媒混合装置。
[Scope of Claims] 1. A plurality of solvent tanks for the mobile phase are connected to the suction port of the liquid feeding pump through respective control valves, and the control valves are sequentially opened and closed during the suction stroke of the liquid feeding pump. In a solvent mixing device that sucks each solvent into a liquid feeding pump at a predetermined ratio and mixes them, the "open" state of one control valve and the "open" state of the next control valve during the suction stroke are In addition to creating a "fully closed" state in which all of the control valves are "closed" in a very short time, the connecting piping between the control valve and the liquid pump inlet is configured to have small pressure deformation and small capacity. A solvent mixing device for a high performance liquid chromatograph, characterized in that a mixer is arranged on the discharge port side of a liquid sending pump.
JP8281881A 1981-05-30 1981-05-30 Mixing device for solvent of high-speed liquid chromatograph Granted JPS57198864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8281881A JPS57198864A (en) 1981-05-30 1981-05-30 Mixing device for solvent of high-speed liquid chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8281881A JPS57198864A (en) 1981-05-30 1981-05-30 Mixing device for solvent of high-speed liquid chromatograph

Publications (2)

Publication Number Publication Date
JPS57198864A JPS57198864A (en) 1982-12-06
JPS6251424B2 true JPS6251424B2 (en) 1987-10-29

Family

ID=13784979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8281881A Granted JPS57198864A (en) 1981-05-30 1981-05-30 Mixing device for solvent of high-speed liquid chromatograph

Country Status (1)

Country Link
JP (1) JPS57198864A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5001757B2 (en) * 2007-08-31 2012-08-15 シーケーディ株式会社 Fluid mixing system and fluid mixing apparatus
JP5754298B2 (en) * 2011-08-18 2015-07-29 東ソー株式会社 Analytical device with sample dilution device
JP5879280B2 (en) * 2013-02-05 2016-03-08 株式会社日立ハイテクノロジーズ Liquid chromatograph liquid feeding device and liquid chromatograph device

Also Published As

Publication number Publication date
JPS57198864A (en) 1982-12-06

Similar Documents

Publication Publication Date Title
US7921696B2 (en) Liquid chromatograph device
US4883409A (en) Pumping apparatus for delivering liquid at high pressure
US7699990B2 (en) Separation analyzer
US5089124A (en) Gradient generation control for large scale liquid chromatography
US10005006B2 (en) Method for adjusting a gradient delay volume
US2738946A (en) Selective dual flow flush valves
US8992778B2 (en) Methods and apparatus for generating solvent gradients in liquid chromatography
EP1764603A1 (en) Sampler system
JP4377900B2 (en) Liquid chromatograph
JPS6251424B2 (en)
WO2004010134A1 (en) Equipment and method for feeding liquid gradient in nano/micro liquid chromatography
CN109944762B (en) Four-channel binary high-pressure pump system of high-performance liquid chromatograph
US2870944A (en) Dispensing assembly
US2888953A (en) Valve system timing device
JP3389649B2 (en) Liquid sending device
USRE29454E (en) Method for producing a gradient elution
JP2014095613A (en) Liquid sample analyzer and liquid sample introduction device
JP2006343271A (en) Autosampler
JP4254958B2 (en) Gradient liquid feeding system
JP7011921B2 (en) Liquid feeding method
JP2006118374A (en) Liquid feeding system
JPS6226625Y2 (en)
KR20150079775A (en) Pump priming systems
JPH0110594Y2 (en)
JP3343661B2 (en) Pulsating damper