JP5879280B2 - Liquid chromatograph liquid feeding device and liquid chromatograph device - Google Patents

Liquid chromatograph liquid feeding device and liquid chromatograph device Download PDF

Info

Publication number
JP5879280B2
JP5879280B2 JP2013020031A JP2013020031A JP5879280B2 JP 5879280 B2 JP5879280 B2 JP 5879280B2 JP 2013020031 A JP2013020031 A JP 2013020031A JP 2013020031 A JP2013020031 A JP 2013020031A JP 5879280 B2 JP5879280 B2 JP 5879280B2
Authority
JP
Japan
Prior art keywords
liquid
valve
liquid feeding
flow path
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013020031A
Other languages
Japanese (ja)
Other versions
JP2014153061A (en
Inventor
山崎 勝
勝 山崎
龍 解
龍 解
修大 塚田
修大 塚田
耕作 豊崎
耕作 豊崎
伊藤 正人
正人 伊藤
宏之 和田
宏之 和田
大介 秋枝
大介 秋枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2013020031A priority Critical patent/JP5879280B2/en
Publication of JP2014153061A publication Critical patent/JP2014153061A/en
Application granted granted Critical
Publication of JP5879280B2 publication Critical patent/JP5879280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、液体クロマトグラフに関し、特に送液の制御を高精度に行う液体クロマトグラフ用送液装置、液体クロマトグラフ装置に関する。   The present invention relates to a liquid chromatograph, and more particularly to a liquid chromatograph liquid feeding device and a liquid chromatograph device that perform liquid feeding control with high accuracy.

液体クロマトグラフを用いた分析技術は、高精度であることが求められている。そのため、送液装置による移動相の送液は、正確に制御されることが重要である。   An analysis technique using a liquid chromatograph is required to be highly accurate. For this reason, it is important that liquid feeding of the mobile phase by the liquid feeding device is accurately controlled.

ここで、低圧グラジエント送液の制御は、送液装置である送液ポンプ本体の送液動作と送液される液体の流路を切り換える弁の動作とを組み合わせることによって行われる。特許文献1には、送液される移動相中の複数の成分の検出及び濃度の算出を行い、当該成分濃度に基づいて設定混合比との混合比誤差を計算し、当該混合比誤差を電磁弁の切り換え時期にフィードバックする技術が開示されている。   Here, the control of the low pressure gradient liquid feeding is performed by combining the liquid feeding operation of the liquid feeding pump main body which is a liquid feeding device and the operation of the valve for switching the flow path of the liquid to be fed. In Patent Document 1, a plurality of components in a mobile phase to be fed are detected and the concentration is calculated, a mixing ratio error with a set mixing ratio is calculated based on the component concentration, and the mixing ratio error is electromagnetically detected. A technique for feeding back the valve switching timing is disclosed.

特開2002−243712号公報JP 2002-243712 A

特許文献1では、電磁弁の切り換え時期を調整することにより混合比の精度向上を図っている。しかし、実際には電磁弁の動作は瞬間的に行われるのではなく、ある時間幅を持ってなされている。ここで、電磁弁が開閉を切り換える動作を行う場合、この動作にばらつきが生じることにより、送液される移動相の流量にも影響する可能性がある。   In Patent Document 1, the accuracy of the mixing ratio is improved by adjusting the switching timing of the solenoid valve. However, in actuality, the operation of the solenoid valve is not performed instantaneously but with a certain time width. Here, when the solenoid valve performs an operation of switching between opening and closing, a variation in this operation may affect the flow rate of the mobile phase to be fed.

特許文献1に開示された技術では、この過渡動作のばらつきについては考慮されていないため、より高精度な制御を行うことはできない。   In the technique disclosed in Patent Document 1, since the variation in the transient operation is not taken into consideration, more accurate control cannot be performed.

本発明の目的は、流路上の弁の開閉動作のばらつきや特性に起因する移動相の流量や圧力の変化を低減し、より高精度な送液の制御を実現する装置、および方法を提供することである。   An object of the present invention is to provide an apparatus and a method for realizing a more precise control of liquid feeding by reducing a change in flow rate and pressure of a mobile phase due to variations and characteristics of valve opening / closing operations on a flow path. That is.

上記課題を解決するための一態様として、本発明では、以下の特徴を有する。   As an aspect for solving the above-described problems, the present invention has the following characteristics.

すなわち、液体を送液する送液部と、前記送液部から送液される液体の流路上に配置され、開閉動作を行う弁と、前記送液部、及び前記弁の動作を制御する制御部と、を備え、前記制御部は、前記弁の開閉動作のタイミングに基づいて、前記送液部の動作を制御する装置、及び当該装置を用いた方法を提供する。   That is, a liquid feeding section that feeds liquid, a valve that is disposed on a flow path of liquid fed from the liquid feeding section, and that performs an opening and closing operation, and a control that controls the operation of the liquid feeding section and the valve And the control unit provides a device for controlling the operation of the liquid feeding unit based on the timing of the opening / closing operation of the valve, and a method using the device.

本発明によれば、液体クロマトグラフの送液に関して、弁の開閉動作のばらつきが液体の流量や圧力に与える影響を低減し、高精度な送液制御を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, regarding the liquid feeding of a liquid chromatograph, the influence which the variation in the opening / closing operation | movement of a valve has on the flow volume and pressure of a liquid can be reduced, and highly accurate liquid feeding control can be implement | achieved.

本発明の実施の形態に係る送液装置の概略構成を示す図The figure which shows schematic structure of the liquid feeding apparatus which concerns on embodiment of this invention. 本発明の第二の実施の形態に係る送液装置の全体構成を示す図The figure which shows the whole structure of the liquid feeding apparatus which concerns on 2nd embodiment of this invention. 本発明の実施の形態に係る電磁弁の切り換えと移動相中の混合比との関係を説明する図The figure explaining the relationship between the switching of the solenoid valve which concerns on embodiment of this invention, and the mixing ratio in a mobile phase 本発明の実施の形態に係る電磁弁に与える開弁指令と、電磁弁の変位の関係を説明する図The figure explaining the valve opening instruction | command given to the solenoid valve which concerns on embodiment of this invention, and the displacement of a solenoid valve 従来の電磁弁の動作と送液ポンプの送液速度との関係を説明する図The figure explaining the relationship between operation | movement of the conventional solenoid valve, and the liquid feeding speed of a liquid feeding pump 本発明の実施の形態に係る電磁弁の動作と送液ポンプの送液速度との関係の第一の例を説明する図The figure explaining the 1st example of the relationship between operation | movement of the solenoid valve which concerns on embodiment of this invention, and the liquid feeding speed of a liquid feeding pump 本発明の実施の形態に係る電磁弁の動作と送液ポンプの送液速度との関係の第二の例を説明する図The figure explaining the 2nd example of the relationship between operation | movement of the solenoid valve which concerns on embodiment of this invention, and the liquid feeding speed of a liquid feeding pump. 本発明の実施の形態に係る電磁弁の動作と送液ポンプの送液速度との関係の第三の例を説明する図The figure explaining the 3rd example of the relationship between operation | movement of the solenoid valve which concerns on embodiment of this invention, and the liquid feeding speed of a liquid feeding pump. 本発明の実施の形態に係る電磁弁の動作と送液ポンプの送液速度との関係の第四の例を説明する図The figure explaining the 4th example of the relationship between operation | movement of the solenoid valve which concerns on embodiment of this invention, and the liquid feeding speed of a liquid feeding pump. 本発明の実施の形態に係る電磁弁の動作と送液ポンプの送液速度との関係の第五の例を説明する図The figure explaining the 5th example of the relationship between operation | movement of the solenoid valve which concerns on embodiment of this invention, and the liquid feeding speed of a liquid feeding pump. 本発明の第三の実施の形態に係る送液装置の全体構成を示す図The figure which shows the whole structure of the liquid feeding apparatus which concerns on 3rd embodiment of this invention. 本発明の第三の実施の形態に係る後流の切換え弁のα流路の開弁動作を示す図The figure which shows the valve opening operation | movement of (alpha) flow path of the wake switching valve which concerns on 3rd embodiment of this invention. 本発明の第三の実施の形態に係る後流の切換え弁のβ流路の開弁動作を示す図The figure which shows valve opening operation | movement of (beta) flow path of the wake switching valve which concerns on 3rd embodiment of this invention 本発明の第二の実施の形態に係る電磁弁の動作を説明する図。The figure explaining operation | movement of the solenoid valve which concerns on 2nd embodiment of this invention. 本発明の実施の形態に係る液体クロマトグラフ装置のシステム構成図1 is a system configuration diagram of a liquid chromatograph apparatus according to an embodiment of the present invention. 本発明の実施の形態に係る送液制御の基本動作フロー図Basic operation flow diagram of liquid feeding control according to an embodiment of the present invention 本発明の実施の形態に係る電磁弁の構成の例を示す図The figure which shows the example of a structure of the solenoid valve which concerns on embodiment of this invention 本発明の第四の実施の形態に係る流路切り換え弁の位置構成を示す図The figure which shows the position structure of the flow-path switching valve which concerns on 4th embodiment of this invention. 本発明の第四の実施の形態に係る液体クロマトグラフにおけるオートサンプラ(試料注入部)の全体構成を示す図The figure which shows the whole structure of the autosampler (sample injection part) in the liquid chromatograph which concerns on 4th embodiment of this invention. 本発明の第四の実施の形態に係る送液ポンプとオートサンプラとの間の同期信号の接続関係を示す図The figure which shows the connection relationship of the synchronizing signal between the liquid feeding pump and autosampler which concern on 4th embodiment of this invention. 本発明の第四の実施の形態に係る流路切り換え弁の動作と送液ポンプ送液速度との関係を示す図The figure which shows the relationship between the operation | movement of the flow-path switching valve which concerns on 4th embodiment of this invention, and a liquid feeding pump liquid feeding speed. 本発明の第四の実施の形態に係る流路切り換え弁の動作と送液ポンプのモータの回転との関係の第一の例を示す図The figure which shows the 1st example of the relationship between operation | movement of the flow-path switching valve which concerns on 4th embodiment of this invention, and rotation of the motor of a liquid feeding pump. 本発明の第四の実施の形態に係る流路切り換え弁の動作と送液ポンプのモータの回転との関係の第二の例を示す図The figure which shows the 2nd example of the relationship between operation | movement of the flow-path switching valve which concerns on 4th embodiment of this invention, and rotation of the motor of a liquid feeding pump. 本発明の第四の実施の形態に係る流路切り換え弁の動作と送液ポンプのモータの回転との関係の第三の例を示す図The figure which shows the 3rd example of the relationship between operation | movement of the flow-path switching valve which concerns on 4th embodiment of this invention, and rotation of the motor of a liquid feeding pump. 本発明の実施の形態に係る送液ポンプの制御方法を適用しない場合/適用した場合における送液ポンプの圧力を示す比較図The comparison figure which shows the pressure of the liquid feeding pump when not applying / applying the control method of the liquid feeding pump concerning embodiment of this invention 本発明の実施の形態に係る送液ポンプの制御方法を適用しない場合/適用した場合におけるカラム入口の圧力を示す比較図The comparison figure which shows the pressure of the column inlet in the case where the control method of the liquid feeding pump which concerns on embodiment of this invention is not applied / when it applies

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図15は、本発明の実施の形態に係る液体クロマトグラフ装置のシステム構成図である。この図に示す液体クロマトグラフ装置は、混合試料の分離・分析が行われる液体クロマトグラフ部1501と、液体クロマトグラフ部1501に係る各装置を所定の測定メソッドに基づいて制御するための制御装置である制御部1509を備えている。   FIG. 15 is a system configuration diagram of the liquid chromatograph apparatus according to the embodiment of the present invention. The liquid chromatograph apparatus shown in this figure is a liquid chromatograph unit 1501 where a mixed sample is separated and analyzed, and a control device for controlling each apparatus related to the liquid chromatograph unit 1501 based on a predetermined measurement method. A control unit 1509 is provided.

液体クロマトグラフ部1501は、制御部1509からの指令に基づいて溶離液を送る送液装置(送液部)1502と、送液装置1502から送液された溶離液に対して、制御部1509からの指令に基づいて試料を注入するオートサンプラと(試料注入部)1503、試料中の成分を分離するカラム(分離部)1504と、カラムにより分離された成分を検出して電気信号に変換して制御部1509に出力する検出器(検出部)1505を備えている。   The liquid chromatograph unit 1501 receives a liquid feeding device (liquid feeding unit) 1502 that sends an eluent based on a command from the control unit 1509 and the eluent sent from the liquid feeding device 1502 from the control unit 1509. Autosampler that injects a sample based on the command of the sample, (sample injection unit) 1503, a column (separation unit) 1504 that separates components in the sample, and components separated by the column are detected and converted into electrical signals. A detector (detection unit) 1505 that outputs to the control unit 1509 is provided.

制御部1509は、液体クロマトグラフ部1501に係る各装置との指令及びデータのやり取りを実行するデータ処理装置1507と、オペレータからの指示等が入力される入力装置1506と、検出器1505による検出結果や、液体クロマトグラフ部1501及び制御部1509の各種操作に係るグラフィカルユーザーインターフェース(GUI)等が表示される出力装置1508を備えている。検出器1505によって検出された各成分の測定値はデータ処理装置1507に取込まれ、試料の分析結果が出力装置1508に送信・表示される。   The control unit 1509 includes a data processing device 1507 that executes command and data exchange with each device related to the liquid chromatograph unit 1501, an input device 1506 that receives an instruction from the operator, and a detection result obtained by the detector 1505. And an output device 1508 for displaying a graphical user interface (GUI) and the like related to various operations of the liquid chromatograph unit 1501 and the control unit 1509. The measured value of each component detected by the detector 1505 is taken into the data processing device 1507, and the analysis result of the sample is transmitted and displayed on the output device 1508.

次に、図1を用いて、本発明の実施の形態に係る送液装置について説明する。   Next, the liquid delivery apparatus according to the embodiment of the present invention will be described with reference to FIG.

送液装置は送液制御部1、アクチュエータ95、送液ポンプ94、電磁弁93から構成される。   The liquid feeding device includes a liquid feeding control unit 1, an actuator 95, a liquid feeding pump 94, and an electromagnetic valve 93.

送液ポンプ94は、アクチュエータ95からの駆動力によって、送液を吸入口から吸い込み、吐出口から押し出すポンプ動作を行う。   The liquid feed pump 94 performs a pump operation of sucking the liquid feed from the suction port and pushing it out from the discharge port by the driving force from the actuator 95.

電磁弁93は、送液ポンプ94の吸入側に設置され、本例では送液タンク91からの流れを制御する構成となっている。電磁弁93は後述する送液制御部1からの指令によって動作し、通電されると開状態となり液体を通し、通電をやめるとばねの力で送液の流路を閉じ閉状態となる構成を有する。   The electromagnetic valve 93 is installed on the suction side of the liquid feed pump 94 and is configured to control the flow from the liquid feed tank 91 in this example. The solenoid valve 93 operates in accordance with a command from the liquid feeding control unit 1 described later, and is configured to open when energized and to pass liquid, and when energized, the flow path of the liquid is closed and closed by the force of the spring. Have.

送液制御部1は、図15に示すデータ処理装置1507に備えられている。データ処理装置1507により移動相の送液量、送液速度等に関する指令を受けて、アクチュエータ95の駆動指令や、電磁弁93の開閉指令を生成する。   The liquid feeding control unit 1 is provided in the data processing device 1507 shown in FIG. The data processor 1507 receives a command relating to the mobile phase feeding amount, the feeding rate, etc., and generates a driving command for the actuator 95 and an opening / closing command for the electromagnetic valve 93.

アクチュエータ95は、モータやセンサを備えており、送液制御部1からの駆動指令を受けてモータを回転させ、その動力を送液ポンプに与える構成となっている。   The actuator 95 includes a motor and a sensor, and is configured to receive a drive command from the liquid feeding control unit 1 to rotate the motor and supply the power to the liquid feeding pump.

図1に示した本実施の形態に係る送液装置の動作を以下に説明する。   The operation of the liquid delivery device according to the present embodiment shown in FIG. 1 will be described below.

なお、ここでは、必要な液体などの初期吸引操作、アクチュエータ95の原点復帰操作などは完了しており、送液装置を動かす準備は整っている状態であるものとする。   Here, it is assumed that the initial suction operation of the necessary liquid, the operation of returning the origin of the actuator 95, and the like have been completed, and the liquid feeding device is ready to be moved.

電磁弁93は、高精度な送液制御を行う場合、例えば、各部の圧力を一定に保つことや逆流による空気の吸い込みを防止したり、重力による液体の移動を防止するために、送液ポンプ94の前後に設置されている。   When performing highly precise liquid feeding control, the solenoid valve 93 is, for example, a liquid feeding pump for keeping the pressure of each part constant, preventing air suction due to backflow, and preventing liquid movement due to gravity. It is installed around 94.

本発明の実施形態では、送液ポンプ94の吸い込み流路92の液下がりを防止するため、図示されるように送液ポンプ94の吸入口と送液タンク91の間に電磁弁93を設置し、送液ポンプ94の停止時には液体の流れを遮断するようにしている。   In the embodiment of the present invention, an electromagnetic valve 93 is installed between the suction port of the liquid feed pump 94 and the liquid feed tank 91 as shown in the drawing in order to prevent the liquid flow of the suction flow path 92 of the liquid feed pump 94. The liquid flow is cut off when the liquid feed pump 94 is stopped.

ここで、送液ポンプ94を動作させて送液を行う場合には、電磁弁93を開状態にした状態で、送液が行われることとなる。しかし、電磁弁93の動作は瞬間的に行われるのではなく、開閉動作の開始から終了までの間にはある程度の時間幅を要する。   Here, when liquid feeding is performed by operating the liquid feeding pump 94, liquid feeding is performed in a state where the electromagnetic valve 93 is opened. However, the operation of the electromagnetic valve 93 is not performed instantaneously, and a certain amount of time is required between the start and end of the opening / closing operation.

図4は、本発明の実施の形態に係る電磁弁の動作を説明する図である。   FIG. 4 is a diagram for explaining the operation of the electromagnetic valve according to the embodiment of the present invention.

電磁弁93の開閉を切り換える過程においては、図示されるように電磁弁93の動作にばらつきがある。さらに、十分な開状態、又は十分な閉状態に至るまでの時間は、動作条件などによっても異なるものとなる。ここで、このように電磁弁93の状態がばらついている状態で送液ポンプ94を動作させると、送液ポンプ94の送液量と電磁弁93の開口面積の関係が変動するので、結果として流量のばらつきや、瞬間的な圧力変動などを招くおそれがある。   In the process of switching the opening and closing of the electromagnetic valve 93, the operation of the electromagnetic valve 93 varies as shown in the figure. Furthermore, the time required to reach a sufficiently open state or a sufficiently closed state varies depending on operating conditions and the like. Here, if the liquid feed pump 94 is operated in such a state that the state of the electromagnetic valve 93 varies, the relationship between the liquid feed amount of the liquid feed pump 94 and the opening area of the electromagnetic valve 93 varies, and as a result There is a risk of causing variations in flow rate and instantaneous pressure fluctuations.

本発明の実施形態に係る動作制御では、図1の時間経過に伴う送液ポンプの送液速度の変化を表すグラフ101、及び電磁弁93の開閉動作を表すグラフ102に示すように、電磁弁93が開閉動作の途中段階である間は、送液ポンプ94を停止させる制御を行う。すなわち、電磁弁93が十分に開状態になってから送液ポンプ94を動かし始め、送液ポンプ94を停止させてから電磁弁93を閉じる動作を行う。   In the operation control according to the embodiment of the present invention, as shown in a graph 101 representing a change in the liquid feeding speed of the liquid feeding pump over time and a graph 102 representing an opening / closing operation of the electromagnetic valve 93 in FIG. While 93 is in the middle of the opening / closing operation, the liquid feed pump 94 is controlled to stop. That is, after the electromagnetic valve 93 is sufficiently opened, the liquid feeding pump 94 is started to move, and after the liquid feeding pump 94 is stopped, the electromagnetic valve 93 is closed.

すなわち、電磁弁93が開動作を行う場合には、送液制御部1により、電磁弁93に開動作の開始を指示する信号を供給したのちに、送液ポンプ94に停止信号を出し、後述するセンサによって電磁弁93が完全に開いた状態となったことを検知したのちに送液ポンプ94の動作を開始させるよう指示を出す。次に、電磁弁93の閉動作を行う場合には、先に送液ポンプ94に停止信号を出し、動作を停止させてから電磁弁93に閉動作の開始を指示する信号を供給する。   That is, when the electromagnetic valve 93 performs an opening operation, the liquid supply control unit 1 supplies a signal instructing the electromagnetic valve 93 to start the opening operation, and then issues a stop signal to the liquid supply pump 94. After detecting that the electromagnetic valve 93 is fully opened by the sensor, the instruction to start the operation of the liquid feeding pump 94 is issued. Next, when performing the closing operation of the electromagnetic valve 93, a stop signal is first output to the liquid feed pump 94, and after stopping the operation, a signal instructing the electromagnetic valve 93 to start the closing operation is supplied.

ここで、図17は、本発明の実施形態に係る電磁弁93の構成を示す図である。上述の通り送液制御部1により開閉指令が電気回路1701に与えられると、ソレノイド1702によって電気エネルギーが機械的なエネルギーに変換される。当該機械的エネルギーにより、弁体1703が動かされて変位し、当該変位をホール素子1704等のセンサが検出する。このように弁の変位が検出されることに基づいて、送液ポンプ94の送液速度を調整する構成となる。   Here, FIG. 17 is a diagram showing a configuration of the electromagnetic valve 93 according to the embodiment of the present invention. As described above, when an opening / closing command is given to the electric circuit 1701 by the liquid feeding control unit 1, electric energy is converted into mechanical energy by the solenoid 1702. Due to the mechanical energy, the valve body 1703 is moved and displaced, and a sensor such as the Hall element 1704 detects the displacement. Thus, based on the detection of the displacement of the valve, the liquid feed speed of the liquid feed pump 94 is adjusted.

図16は、本発明の実施の形態に係る送液制御の基本動作フローを示す。本制御は、図15のデータ処理装置1507内における送液制御部1(図1参照)にて行われるものとする。   FIG. 16 shows a basic operation flow of liquid feeding control according to the embodiment of the present invention. This control is performed by the liquid feeding control unit 1 (see FIG. 1) in the data processing device 1507 of FIG.

まず、電磁弁93の開動作について説明する。電磁弁93に開動作の開始を指示したのち(S1601)送液ポンプ94に動作停止の指示を与える(S1602)。電磁弁93が完全に開状態になったことをホール素子1704等のセンサにより検知してから(S1603)、送液ポンプ94に動作の開始を指示する(S1604)。次に、電磁弁93の閉動作について説明する。この場合には、先に送液ポンプ94に動作を停止させる指示を出したのち(S1605)、電磁弁93に閉動作の開始を指示する(S1606)。上記の動作を分析終了まで繰り返し行う(S1607)。   First, the opening operation of the electromagnetic valve 93 will be described. After instructing the electromagnetic valve 93 to start the opening operation (S1601), the liquid feed pump 94 is instructed to stop the operation (S1602). After detecting that the electromagnetic valve 93 is fully opened by a sensor such as the hall element 1704 (S1603), the liquid feed pump 94 is instructed to start operation (S1604). Next, the closing operation of the electromagnetic valve 93 will be described. In this case, after instructing the liquid feed pump 94 to stop the operation (S1605), the solenoid valve 93 is instructed to start the closing operation (S1606). The above operation is repeated until the end of analysis (S1607).

このような制御により、上述の送液ポンプ94の送液量は、開閉動作途中における電磁弁93の開口面積の変動による影響を受けることがなく、送液動作を安定的に行うことができる。   By such control, the liquid feeding amount of the above-described liquid feeding pump 94 is not affected by the fluctuation of the opening area of the electromagnetic valve 93 during the opening / closing operation, and the liquid feeding operation can be performed stably.

ここで、本実施の形態では送液ポンプ94の吸入側に電磁弁93を設置する例を示したが、電磁弁93の設置場所を特定するものではなく、電磁弁93の設置位置は吐出側であっても良いし、両方であっても良い。   Here, in the present embodiment, an example in which the electromagnetic valve 93 is installed on the suction side of the liquid feed pump 94 is shown, but the installation location of the electromagnetic valve 93 is not specified, and the installation position of the electromagnetic valve 93 is the discharge side. Or both.

なお、電磁弁93の開閉動作時に送液ポンプ94を停止する例を示したが、その送液装置の目的に応じて、該動作時に送液ポンプ速度を低下させるか、増速させるかのいずれの速度の調整であっても良い。   In addition, although the example which stops the liquid feeding pump 94 at the time of the opening / closing operation | movement of the solenoid valve 93 was shown, according to the objective of the liquid feeding apparatus, either the liquid feeding pump speed was reduced or increased during the operation. The speed may be adjusted.

また、送液制御用の弁として電磁弁93を用いた例を示したが、これに限られず、弁はその他の動力によって送液制御する構造であっても良い。   Moreover, although the example which used the electromagnetic valve 93 as a valve for liquid feeding control was shown, it is not restricted to this, The structure which carries out liquid feeding control with other motive power may be sufficient.

以上、本実施の形態によれば、電磁弁93の開閉動作の状況に応じた送液送液ポンプ94の送液制御を行うことで、弁の動作のばらつきに起因する送液流量のばらつき量、及び圧力の変動を減らすことによって、より高精度な送液制御を実現できる。   As described above, according to the present embodiment, by performing the liquid feeding control of the liquid feeding pump 94 according to the state of the opening / closing operation of the electromagnetic valve 93, the variation amount of the liquid feeding flow rate due to the variation of the valve operation. Further, by reducing fluctuations in pressure, liquid feeding control with higher accuracy can be realized.

以下、本発明の第二の実施の形態に係る送液装置について、図2を用いて説明する。   Hereinafter, the liquid feeding device according to the second embodiment of the present invention will be described with reference to FIG.

図2に送液装置全体の構成を示す。   FIG. 2 shows the configuration of the entire liquid delivery device.

送液装置は送液コントローラ、アクチュエータ、送液ポンプ、送液切り換え弁(ここでは、電磁弁を使用する場合について説明する。以下、電磁弁43、53とする)から構成される。   The liquid feeding device includes a liquid feeding controller, an actuator, a liquid feeding pump, and a liquid feeding switching valve (here, a case where an electromagnetic valve is used will be described. Hereinafter, electromagnetic valves 43 and 53).

送液ポンプは2機のプランジャポンプを直列につないだ構成となっており、第一のプランジャ2Pと第二のプランジャ3Pをそれぞれ第一のアクチュエータ2Aと第二のアクチュエータ3Aで往復動させて、それぞれ第一のシリンダ2C、第二のシリンダ3C内の送液の加圧と減圧を行う。   The liquid feed pump has a structure in which two plunger pumps are connected in series. The first plunger 2P and the second plunger 3P are reciprocated by the first actuator 2A and the second actuator 3A, respectively. Pressurization and depressurization of the liquid feeding in the first cylinder 2C and the second cylinder 3C are performed.

ここで第一のシリンダ2Cの吸入口には第一の逆止弁2CVが設置され、第二のシリンダの吸入口には第二の逆止弁3CVが設置されている。それぞれ逆止弁はシリンダに吸入される方向に液体を通し、シリンダから吐出する方向には液体を通さない構成となるように設置されている。   Here, a first check valve 2CV is installed at the suction port of the first cylinder 2C, and a second check valve 3CV is installed at the suction port of the second cylinder. Each check valve is installed so as to allow liquid to be sucked into the cylinder and not to allow liquid to be discharged from the cylinder.

ここで、送液の流路は第一の逆止弁2CVから第一のシリンダ2C、次いで第二の逆止弁3CVから第二のシリンダ3C、吐出パイプ7の順に接続され、吐出パイプ7はオートサンプラ、カラム、検出器を含めた分析装置へと接続されている。   Here, the flow path of the liquid feeding is connected in the order of the first check valve 2CV to the first cylinder 2C, then the second check valve 3CV to the second cylinder 3C, and the discharge pipe 7. The discharge pipe 7 It is connected to analyzers including autosamplers, columns, and detectors.

このような接続とすることで、第一及び第二のプランジャにそれぞれ適切な往復運動を与えると、送液は第一の逆止弁2CVから吸入されて、2つのプランジャ2P、3Pで加圧・送液されて第二のシリンダ3Cを通過し、吐出パイプ7から吐出される。   With such a connection, when an appropriate reciprocating motion is given to each of the first and second plungers, the liquid is sucked from the first check valve 2CV and pressurized by the two plungers 2P and 3P. The liquid is sent, passes through the second cylinder 3C, and is discharged from the discharge pipe 7.

送液切り換え電磁弁(A電磁弁43、B電磁弁53)は、送液ポンプの吸入側に設置され、本例ではA液とB液の2種類の液体を切り換える構成となっている。A液においては、送液の流路はA液タンク41からA液吸入パイプ42を経てA電磁弁43、第一のシリンダへの吸入パイプ6と接続される。B液においては、送液の流路はB液タンク51からB液吸入パイプ52を経てB電磁弁53、第一のシリンダ2Cへの吸入パイプ6と接続される。   The liquid feed switching solenoid valves (A solenoid valve 43 and B solenoid valve 53) are installed on the suction side of the liquid feed pump, and in this example, are configured to switch between two types of liquids, A liquid and B liquid. In the liquid A, the flow path of the liquid is connected from the liquid A tank 41 through the liquid A suction pipe 42 to the solenoid valve 43 and the suction pipe 6 to the first cylinder. In the B liquid, the flow path of the liquid supply is connected from the B liquid tank 51 through the B liquid suction pipe 52 to the B electromagnetic valve 53 and the suction pipe 6 to the first cylinder 2C.

ここで、第一のシリンダ2Cへの吸入パイプ6は、T字型となっており、A液とB液の流れはここで合流する。A電磁弁43、B電磁弁53のそれぞれは、送液制御部1からの指令によって動作し、通電されると開状態となり液体を通し、通電をやめるとばねの力で送液の流路を閉じ閉状態となる。   Here, the suction pipe 6 to the first cylinder 2C is T-shaped, and the flows of the liquid A and the liquid B merge here. Each of the A solenoid valve 43 and the B solenoid valve 53 operates in response to a command from the liquid feeding control unit 1. When energized, the A solenoid valve 43 and the B electromagnetic valve 53 are in an open state. Closed and closed.

送液制御部1は、図15に示すデータ処理装置1507に備えられている。データ処理装置1507により移動相の送液量、送液速度等に関する指令を受けて、アクチュエータの駆動指令や、A電磁弁43、B電磁弁53の開閉指令を生成する。   The liquid feeding control unit 1 is provided in the data processing device 1507 shown in FIG. The data processor 1507 receives a command related to the mobile phase liquid supply amount, liquid supply speed, and the like, and generates an actuator drive command and an opening / closing command for the A solenoid valve 43 and the B solenoid valve 53.

アクチュエータの詳細な構造は図示しないが、モータとセンサ、回転直動変換機構等からなり、送液制御部1からの駆動指令を受けて、モータを回転させ、その運動を回転直動変換機構で直線運動に変えて、プランジャ2P、3Pを往復動させる構成となっている。   Although the detailed structure of the actuator is not shown in the figure, it is composed of a motor, a sensor, a rotation / linear motion conversion mechanism, etc., receives a drive command from the liquid feeding control unit 1, rotates the motor, and moves the motion by the rotation / linear motion conversion mechanism. Instead of linear motion, the plungers 2P and 3P are reciprocated.

ここで、本実施の形態では、A液とB液の2種類の液体を用いる構成を示したが、3種類以上の複数の液体を混合する構成であってもよい。   Here, in the present embodiment, a configuration using two types of liquids A and B is shown, but a configuration in which a plurality of three or more types of liquids are mixed may be used.

また、目的に応じて液体の流路にフィルタやミキサ等を設置することもできる。   In addition, a filter, a mixer, or the like can be installed in the liquid flow path depending on the purpose.

本実施の形態に係る送液装置の動作を図2を用いて以下に説明する。   The operation of the liquid delivery device according to the present embodiment will be described below with reference to FIG.

なお、必要な液体などの初期吸引操作、プランジャの原点復帰操作などは完了しており、送液装置を動かす準備は完了している状態であるとする。   It is assumed that the initial suction operation of the necessary liquid, the operation of returning the plunger to the origin, and the like are completed, and the preparation for moving the liquid feeding device is completed.

送液装置の基本動作は、第一のプランジャ2Pを一定の周期で往復動させて液体を吸入パイプ6から吸入して第二のプランジャ3Pへ送る動作をさせ、第二のプランジャ3Pは、第一のプランジャ2Pと同期させつつ逆相で往復動させる。すなわち、第一のプランジャ2Pが吸入の動作を行う区間で第二のプランジャ3Pは吐出動作をし、逆に第一のプランジャ2Pが吐出動作を行う区間で第二のプランジャ3Pは吸入動作を行うようにする。ここで、第一のプランジャ2Pの行程容積と第二のプランジャ3Pの行程容積の比を2:1にすると、二つのプランジャの送液動作の和として得られる第二のプランジャ3Pの吐出は常に一定の流量が連続して得られる。   The basic operation of the liquid feeding device is to reciprocate the first plunger 2P at a constant period to suck liquid from the suction pipe 6 and send it to the second plunger 3P. The second plunger 3P While reciprocating with one plunger 2P, it is reciprocated in the opposite phase. That is, the second plunger 3P performs a discharge operation in a section in which the first plunger 2P performs a suction operation, and conversely, the second plunger 3P performs a suction operation in a section in which the first plunger 2P performs a discharge operation. Like that. Here, when the ratio of the stroke volume of the first plunger 2P to the stroke volume of the second plunger 3P is 2: 1, the discharge of the second plunger 3P obtained as the sum of the liquid feeding operations of the two plungers is always performed. A constant flow rate is obtained continuously.

次に、送液ポンプの吸入動作、すなわち吸入パイプ6における液体の流れに着目すると、ここでは第一のプランジャ2Pの動作に同期して送液の吸入が間欠的に行われる。この吸入パイプ6の上流には電磁弁43、53が配置されており、それぞれA電磁弁43はA液の送液制御、B電磁弁53はB液の送液制御を行うことで、送液の混合比が調整される。   Next, paying attention to the suction operation of the liquid feed pump, that is, the flow of the liquid in the suction pipe 6, here, the suction of the liquid feed is intermittently performed in synchronization with the operation of the first plunger 2P. Solenoid valves 43 and 53 are disposed upstream of the suction pipe 6. The A solenoid valve 43 performs liquid feeding control of the A liquid, and the B electromagnetic valve 53 performs liquid feeding control of the B liquid. The mixing ratio is adjusted.

図3に本発明の実施の形態に係る電磁弁の切り換えと移動相中の混合比との関係を示す。   FIG. 3 shows the relationship between the switching of the solenoid valve and the mixing ratio in the mobile phase according to the embodiment of the present invention.

前述のように、送液ポンプの吸入動作は間欠的に行われ、この吸入にあたる区間を吸入行程として示してある。この吸入行程の間に、まず図示Aの部分でA電磁弁43を開状態とし、B電磁弁53を閉状態とする。次いで、図示Bの部分で、A電磁弁43を閉状態とし、B電磁弁53を開状態とする。吸入行程における送液ポンプの第一のプランジャ2Pの動作速度が一定であるとすると、吸入行程の各電磁弁43、53の開状態の時間に比例した量の液体が第一のシリンダ2Cに吸い込まれることとなる。よって、送液の混合比を変更する場合、図3に示すようにA電磁弁43とB電磁弁53の開状態の時間比率を変更すれば、要求される混合比を実現できる仕組みである。   As described above, the suction operation of the liquid feeding pump is performed intermittently, and a section corresponding to this suction is shown as a suction stroke. During this intake stroke, first, the A solenoid valve 43 is opened and the B solenoid valve 53 is closed in the portion A shown in the figure. Next, in the portion B shown in the figure, the A electromagnetic valve 43 is closed and the B electromagnetic valve 53 is opened. Assuming that the operating speed of the first plunger 2P of the liquid feed pump in the suction stroke is constant, an amount of liquid proportional to the open time of the electromagnetic valves 43 and 53 in the suction stroke is sucked into the first cylinder 2C. Will be. Therefore, when changing the mixing ratio of the liquid feeding, the required mixing ratio can be realized by changing the time ratio of the open state of the A solenoid valve 43 and the B solenoid valve 53 as shown in FIG.

ここで、電磁弁の動作に着目すると図4のように示される。図4は、電磁弁に与える開弁指令と、電磁弁の変位の関係を示す。電磁弁は開弁指令を受けると電磁石に通電して励磁し、発生する磁気吸引力によって弁を移動させ液体の流路の開閉を行う。   Here, when attention is paid to the operation of the electromagnetic valve, it is shown in FIG. FIG. 4 shows the relationship between the valve opening command given to the solenoid valve and the displacement of the solenoid valve. When the electromagnetic valve receives a valve opening command, the electromagnet is energized and excited, and the valve is moved by the generated magnetic attractive force to open and close the liquid flow path.

ここで、実際の電磁力の立ち上がりには遅れがあるし、磁性体の吸引によるインダクタンスの変化、また、弁が押しのける液体の抵抗等により、図示するように実際の弁変位にはばらつきが生じる。この弁の変位がばらつく区間を記号tdを用いて示す。   Here, there is a delay in the rise of the actual electromagnetic force, and variations in actual valve displacement occur as shown in the figure due to changes in inductance caused by the attraction of the magnetic material, resistance of the liquid that the valve pushes away, and the like. A section where the displacement of the valve varies is indicated by a symbol td.

図5は、吸入行程において2つの電磁弁を用いて吸入する液体を切り換える場合における、従来の電磁弁の動作と送液ポンプの送液速度との関係を示す。   FIG. 5 shows the relationship between the operation of the conventional solenoid valve and the liquid feed speed of the liquid feed pump when the liquid to be sucked is switched using two solenoid valves in the suction stroke.

この場合、送液ポンプ内の大きな負圧発生を防止するため、電磁弁を開いてから吸引し、切り換え時においてもA電磁弁43を閉じつつB電磁弁53を開き、全部の電磁弁が閉じる前に送液ポンプの送液速度を変更する動作を行う。図示されるように、電磁弁の変位がばらつく区間tdは3箇所存在し、その区間においても送液ポンプによる吸入動作が継続的に続けられるため、結果として電磁弁の動作のばらつきがそのまま吸入流量のばらつきとなって第一のシリンダ2C(図2参照)に吸い込まれることとなり、送液の混合比の精度悪化につながることとなる。   In this case, in order to prevent generation of a large negative pressure in the liquid feed pump, suction is performed after opening the electromagnetic valve, and even when switching, the B electromagnetic valve 53 is opened while the A electromagnetic valve 43 is closed, and all the electromagnetic valves are closed. The operation of changing the liquid feed speed of the liquid feed pump is performed before. As shown in the figure, there are three sections td where the displacement of the electromagnetic valve varies, and the suction operation by the liquid feeding pump is continued in that section as a result. , And is sucked into the first cylinder 2C (see FIG. 2), leading to deterioration in the accuracy of the liquid feed mixing ratio.

本実施の形態に係る送液装置の吸入行程における動作を図6に示す。本発明によると、A電磁弁43、B電磁弁53が動作している区間では、送液ポンプの送液速度を落として停止させる。つまり、A電磁弁43を開く指令を先に出し、A電磁弁43が十分に開状態になった後に送液ポンプの吸入動作を行う。次に送液ポンプの吸入動作を停止させてから、A電磁弁43を閉じ、B電磁弁53を開く指令を出す。A電磁弁43が十分に閉じ、B電磁弁53が十分に開状態になった後に送液ポンプの吸入動作を行う。次に送液ポンプの吸入動作を停止させてから、B電磁弁53を閉じる動作を行う。ここで、電磁弁が十分に開状態または閉状態になっているか否かは、図17を用いて上述した通り、ホール素子等のセンサによって弁体の変位を確認することにより判定される。 これにより、電磁弁の変位がばらつく区間tdでの吸入を行っていないので、安定で精度の高い吸入量の制御を実施することができる。なお、ここでは十分に弁が動作を完了するまで待ってから送液ポンプを動作させる例について説明したが、これに限定されず、弁変位の遅れ時間を考慮して所定の時間経過後に送液ポンプ動作を開始しても良い。   The operation | movement in the suction stroke of the liquid feeding apparatus which concerns on this Embodiment is shown in FIG. According to the present invention, in the section in which the A solenoid valve 43 and the B solenoid valve 53 are operating, the liquid feed speed of the liquid feed pump is decreased and stopped. That is, a command to open the A solenoid valve 43 is issued first, and the suction operation of the liquid feeding pump is performed after the A solenoid valve 43 is sufficiently opened. Next, after stopping the suction operation of the liquid feed pump, a command to close the A solenoid valve 43 and to open the B solenoid valve 53 is issued. After the A solenoid valve 43 is sufficiently closed and the B solenoid valve 53 is fully opened, the suction operation of the liquid feeding pump is performed. Next, after the suction operation of the liquid feeding pump is stopped, the B solenoid valve 53 is closed. Here, as described above with reference to FIG. 17, whether or not the electromagnetic valve is sufficiently opened or closed is determined by confirming the displacement of the valve element using a sensor such as a Hall element. Thereby, since the suction is not performed in the section td in which the displacement of the electromagnetic valve varies, the suction amount can be controlled stably and accurately. In addition, although the example which waits until a valve complete | finishes operation | movement fully and operates a liquid feeding pump was demonstrated here, it is not limited to this, Liquid feeding is considered after progress of delay time of valve displacement. The pump operation may be started.

図7は、本発明の実施の形態に係る電磁弁の動作と送液ポンプの送液速度との関係の第二の例を示す。本図に示すように、送液ポンプの送液速度を完全に停止させるのではなく、吸入時の速度よりも低速に落とす制御とすることもできる。このような制御によれば、電磁弁の開閉動作時間に比べて送液ポンプの速度変更時間が長く、速度の変更が追いつかない場合であっても対応することができる。   FIG. 7 shows a second example of the relationship between the operation of the solenoid valve and the liquid feed speed of the liquid feed pump according to the embodiment of the present invention. As shown in this figure, the liquid feeding speed of the liquid feeding pump is not completely stopped but can be controlled to be lower than the speed at the time of inhalation. According to such control, even if the speed change time of the liquid feed pump is longer than the opening / closing operation time of the solenoid valve and the speed change cannot catch up, it can be dealt with.

図8は、本発明の実施の形態に係る電磁弁の動作と送液ポンプの送液速度との関係の第三の例を示す。本図に示すように、送液ポンプの送液速度を電磁弁の切換え時に低下させた後、通常の速度まで復帰させずに、低速度のままでB電磁弁53からの吸入を行う制御としてもよい。この場合、B電磁弁53の開時間を通常の送液ポンプの速度の場合よりも長くとることができるので、相対的に電磁弁を切換える際のばらつきのある区間tdの時間の比率を下げることができる。従って、B電磁弁53の開時間が短く、送液ポンプの速度変更が追い付かない場合であっても、混合比制御の精度を向上させることができる。   FIG. 8 shows a third example of the relationship between the operation of the solenoid valve and the liquid feed speed of the liquid feed pump according to the embodiment of the present invention. As shown in the figure, after the liquid feeding speed of the liquid feeding pump is reduced at the time of switching of the solenoid valve, the suction from the B solenoid valve 53 is performed at a low speed without returning to the normal speed. Also good. In this case, since the opening time of the B solenoid valve 53 can be made longer than the normal speed of the liquid feed pump, the time ratio of the section td having a variation when switching the solenoid valve is relatively lowered. Can do. Therefore, even when the opening time of the B solenoid valve 53 is short and the speed change of the liquid feed pump cannot keep up, the accuracy of the mixture ratio control can be improved.

図9は、本発明の実施の形態に係る電磁弁の動作と送液ポンプの送液速度との関係の第四の例を示す。B電磁弁53の開時間が短く、送液ポンプの速度変更が追いつかない場合の別の対応として、本図に示す制御とすることもできる。本図に示されるように、送液ポンプの送液速度を低下させる区間が電磁弁を切り換える区間に入り込むか、あるいは、またがるように、送液ポンプの送液速度を電磁弁の切換え時に低下させた後、通常の速度まで復帰させずに、低速度のままでB電磁弁53からの吸入を行う制御とすることができる。このように制御する場合にも、図8の例と同様に、電磁弁を切り換える際にばらつきが生じる区間tdの時間の比率を相対的に下げることができ、混合比制御の精度を向上させることができる。   FIG. 9 shows a fourth example of the relationship between the operation of the solenoid valve and the liquid feed speed of the liquid feed pump according to the embodiment of the present invention. The control shown in this figure can also be performed as another countermeasure when the opening time of the B solenoid valve 53 is short and the speed change of the liquid feed pump cannot catch up. As shown in this figure, the section where the liquid feeding speed of the liquid feeding pump is reduced enters the section where the solenoid valve is switched, or the liquid feeding speed of the liquid feeding pump is reduced when switching the solenoid valve so as to straddle. After that, it is possible to perform the control for performing the suction from the B solenoid valve 53 at the low speed without returning to the normal speed. Also in the case of such control, as in the example of FIG. 8, the time ratio of the section td in which variation occurs when switching the solenoid valve can be relatively lowered, and the accuracy of the mixture ratio control can be improved. Can do.

図10は、本発明の実施の形態に係る電磁弁の動作と送液ポンプ送液速度との関係の第五の例を示す。B電磁弁53の開時間が短く、送液ポンプの速度変更が追いつかない場合の別の対応として、本図に示す制御とすることもできる。すなわち、送液ポンプの送液速度をB電磁弁53の切換え時に低下させた後通常の速度に復帰させずに通常の速度に比して低い速度にまで復帰させてB電磁弁53からの吸入を行う制御であってもよい。このように制御する場合にも、B電磁弁53の開時間を通常の送液ポンプの送液速度の場合よりも長くとることができるので、電磁弁を切換える際のばらつきのある区間tdの時間の比率を相対的に下げることができ、混合比制御の精度を向上させることができる。   FIG. 10 shows a fifth example of the relationship between the operation of the solenoid valve according to the embodiment of the present invention and the liquid feed pump liquid feed speed. The control shown in this figure can also be performed as another countermeasure when the opening time of the B solenoid valve 53 is short and the speed change of the liquid feed pump cannot catch up. That is, after the liquid feeding speed of the liquid feeding pump is reduced at the time of switching of the B solenoid valve 53, it is returned to a speed lower than the normal speed without returning to the normal speed, and the suction from the B solenoid valve 53 is performed. Control may be performed. Even in such a control, since the opening time of the B solenoid valve 53 can be made longer than the case of the liquid feed speed of a normal liquid feed pump, the time of the section td having a variation when switching the solenoid valve. This ratio can be lowered relatively, and the accuracy of the mixing ratio control can be improved.

なお、本実施例では送液ポンプの送液速度を低下させる旨説明をおこなっているが、同様の効果が得ることを目的として、片方の送液ポンプの送液速度を増速させるように制御を行ってもよい。   In this embodiment, the description has been made that the liquid feeding speed of the liquid feeding pump is reduced. However, in order to obtain the same effect, control is performed so as to increase the liquid feeding speed of one liquid feeding pump. May be performed.

以上、本実施例によれば、より高精度な混合比の制御を行おうとした場合、電磁弁の動作状況に応じた送液ポンプの動作制御を行うことで、弁の動作のばらつきに起因する流量のばらつき量を減らすことによって、より高精度な混合比を実現でき、高精度な液体クロマトグラフ用ポンプおよび液体クロマトグラフ装置を提供することができる。   As described above, according to the present embodiment, when the control of the mixing ratio is performed with higher accuracy, the operation control of the liquid feeding pump according to the operation status of the electromagnetic valve is performed, resulting in the variation in the operation of the valve. By reducing the variation amount of the flow rate, a more accurate mixing ratio can be realized, and a highly accurate liquid chromatograph pump and liquid chromatograph apparatus can be provided.

次に、本発明に係る第三の実施の形態における送液装置について図11を用いて説明する。図11は、本発明の第三の実施の形態に係る送液装置の全体構成を示す。   Next, a liquid feeding device according to a third embodiment of the present invention will be described with reference to FIG. FIG. 11 shows the overall configuration of the liquid delivery device according to the third embodiment of the present invention.

第三の実施の形態に係る送液装置の構成は多くの部分で第二の実施形態と同一である。以下、第二の実施形態に係る送液装置と異なった構成となる部分のみを説明する。   The configuration of the liquid delivery device according to the third embodiment is the same as that of the second embodiment in many parts. Hereinafter, only the part which becomes a different structure from the liquid feeding apparatus which concerns on 2nd embodiment is demonstrated.

吐出パイプ7の後流に多流路切り換え弁8が設置され、図示されるように、吐出パイプ7とα、β、γのいずれかの流路との接続を制御する。すなわち、送液ポンプから吐出される送液を流す流路の切り換えを行っている。ここで、多流路切換え弁8は本図のように3つの流路を切り換える構成を必須の構成とはしておらず、2本の流路への流入を切り換える弁であってもよいし、例えば、吐出パイプとα流路を接続し、β流路とγ流路を接続するような切り換え動作を複合化した構成であってもよい。   A multi-channel switching valve 8 is installed in the downstream of the discharge pipe 7 and controls the connection between the discharge pipe 7 and one of the flow paths α, β, and γ, as shown in the figure. That is, the flow path for flowing the liquid delivered from the liquid feed pump is switched. Here, the multi-channel switching valve 8 is not an essential configuration that switches the three channels as shown in the figure, and may be a valve that switches inflow into the two channels. For example, a configuration in which the switching operation of connecting the discharge pipe and the α flow path and connecting the β flow path and the γ flow path may be combined.

ここでは単純化して多流路切り換え弁8の動作を説明するため、吐出パイプ7とα流路を接続する場合と、吐出パイプ7とβ流路を接続する場合に限定し、それぞれ図12、図13に多流路切り換え弁8の模式断面図を示す。多流路切り換え弁8は弁ボディ8Aに対して弁体8Bを相対的に動かして流路を切り換える。ここで、摺動する部分からの液漏れを防ぎ、液体を封止するために、付勢ばね8Cを用いて弁体8Bを弁ボディ8Aに押しつけている。このように、隙間からの漏れを圧力をかけて封止している構造であるので、多流路切換え弁の中を流れる液体の圧力が増加すると摺動抵抗が増加し、弁体8Bの動作が鈍くなることがある。このため、弁体8Bのスムーズな動作ができず、弁動作の遅れによる弁の切り換えの遅れ、すなわち、ばらつきで送液ポンプからの送液の切り換え制御を悪化させて送液の流れ制御の精度が低下してしまう懸念がある。   Here, in order to simplify and explain the operation of the multi-channel switching valve 8, it is limited to the case where the discharge pipe 7 and the α channel are connected and the case where the discharge pipe 7 and the β channel are connected, respectively, FIG. FIG. 13 shows a schematic cross-sectional view of the multi-channel switching valve 8. The multi-channel switching valve 8 switches the channel by moving the valve body 8B relative to the valve body 8A. Here, in order to prevent liquid leakage from the sliding portion and seal the liquid, the valve body 8B is pressed against the valve body 8A using the biasing spring 8C. As described above, since the leakage from the gap is sealed by applying pressure, the sliding resistance increases when the pressure of the liquid flowing through the multi-channel switching valve increases, and the operation of the valve body 8B. May become dull. Therefore, smooth operation of the valve body 8B cannot be performed, and the switching control of the liquid feeding from the liquid feeding pump is deteriorated due to the delay in switching of the valve due to the delay of the valve operation, that is, the variation, and the accuracy of the liquid feeding flow control is deteriorated. There is a concern that will decrease.

本実施の形態における送液ポンプ動作の様子を図14に示す。上述の切り換え動作によって、流路面積が変動し、吐出パイプとα流路の接続流路をα、吐出パイプとβ流路の接続流路をβで表わすと、本図に示されるような状態となる。   The state of the liquid feed pump operation in this embodiment is shown in FIG. By the above switching operation, the flow area changes, and the connection flow path between the discharge pipe and the α flow path is expressed as α, and the connection flow path between the discharge pipe and the β flow path is expressed as β, as shown in FIG. It becomes.

本発明による送液ポンプ動作では、αの流路が十分の開状態になってから送液ポンプの動作を起動し、その動作が停止してから、αの流路を閉じている。次いでβの流路が十分の開状態になってから送液ポンプの動作を起動し、その動作が停止してから、βの流路を閉じる。   In the liquid feeding pump operation according to the present invention, the operation of the liquid feeding pump is started after the α channel is sufficiently opened, and after the operation is stopped, the α channel is closed. Next, the operation of the liquid feeding pump is started after the β channel is sufficiently opened, and after the operation is stopped, the β channel is closed.

ここでさらに、図11に示されるように、吐出側に多流路切換え弁8がある場合には、流路の切り換え前に吐出パイプの圧力が低下するように、送液ポンプの逆転動作を行っている。この逆転動作により吐出圧力が低下するので、多流路切換え弁8による送液の切り換えが悪化することもなく、送液制御の精度の低下を防ぐことできる。   Further, as shown in FIG. 11, when there is a multi-flow path switching valve 8 on the discharge side, the reverse operation of the liquid feed pump is performed so that the pressure of the discharge pipe is lowered before the flow path is switched. Is going. Since the discharge pressure is lowered by the reverse operation, the switching of the liquid feeding by the multi-channel switching valve 8 is not deteriorated, and the deterioration of the precision of the liquid feeding control can be prevented.

なお、本実施例では送液ポンプを逆転させる動作を行う例を示したが、装置の仕様によっては逆転まで行わずに、速度を低下させる制御としてもよい。また、弁体の切り換え区間も送液ポンプを必ずしも停止させなくてもよい。   In addition, although the example which performs the operation | movement which reverses a liquid feeding pump was shown in a present Example, depending on the specification of an apparatus, it is good also as control which reduces speed, without performing until reverse. In addition, the liquid feeding pump does not necessarily have to be stopped in the valve element switching section.

以上、本実施の形態によれば、電磁弁と送液ポンプを組み合わせた送液装置において、電磁弁が吐出側にある場合であっても、電磁弁の動作状況に応じた送液送液ポンプの動作制御を行うことで、弁の動作のばらつきに起因する流量のばらつき量や圧力変動を減らすことができる。   As described above, according to the present embodiment, in the liquid feeding device in which the electromagnetic valve and the liquid feeding pump are combined, even when the solenoid valve is on the discharge side, the liquid feeding liquid pump according to the operation status of the electromagnetic valve. By performing this operation control, it is possible to reduce the amount of flow variation and pressure fluctuation caused by variation in valve operation.

次に、本発明に係る第四の実施の形態について説明する。本実施の形態では、移動相の流路上に試料を注入後に流路の切り換えを行う弁の動作に基づいて、送液装置の送液制御を行うものである。また、本実施の形態は、実施例1〜3のように、低圧グラジエント送液の制御に限定されず、送液装置として送液ポンプ本体の動作のみによって行われるものも含まれるものとする。   Next, a fourth embodiment according to the present invention will be described. In the present embodiment, the liquid feeding control of the liquid feeding device is performed based on the operation of a valve that switches the flow path after injecting the sample onto the mobile phase flow path. Further, the present embodiment is not limited to the control of the low-pressure gradient liquid feeding as in the first to third embodiments, and includes one that is performed only by the operation of the liquid feeding pump main body as the liquid feeding device.

図18は、それぞれ、試料導入流路接続時、流路切り換え時、分析流路接続時における流路切り換え弁の位置構成を示す。本図に示すように、弁体に設けられた溝が試料導入流路に接続されている状態から、回転により切り換え動作を経て、分析流路に接続される。ここで、流路切り換え弁は、切り換えの動作の間(約100〜300ms)、溝が塞がれているため、送液ポンプ側から分析流路へ液体は流れない。そして、分析流路と接続直後には、液体の圧力が上昇した状態で流れ込むこととなるという現象が生じる。   FIG. 18 shows the positional configuration of the channel switching valve when the sample introduction channel is connected, when the channel is switched, and when the analysis channel is connected. As shown in this figure, from the state where the groove provided in the valve body is connected to the sample introduction flow path, it is connected to the analysis flow path through a switching operation by rotation. Here, since the groove of the flow path switching valve is closed during the switching operation (about 100 to 300 ms), no liquid flows from the liquid feed pump side to the analysis flow path. Then, immediately after connection with the analysis channel, a phenomenon occurs in which the liquid flows in a state where the pressure of the liquid is increased.

図19は、本実施の形態に係る液体クロマトグラフにおけるオートサンプラ(試料注入部)の全体構成図である。   FIG. 19 is an overall configuration diagram of an autosampler (sample injection unit) in the liquid chromatograph according to the present embodiment.

試料は、ニードル22を介してシリンジ20により計量される。ニードル22は注入ポート23に接続し、試料が流路切り換え弁24側へ注入される。注入された試料は、流路切り換え弁24内の試料導入流路に導入される。流路切り換え弁24を切り換えることで、試料導入流路から分析流路(カラム15より後流)に切り換わり、試料がカラム側へ導入される。   The sample is weighed by the syringe 20 through the needle 22. The needle 22 is connected to the injection port 23, and the sample is injected into the flow path switching valve 24 side. The injected sample is introduced into the sample introduction channel in the channel switching valve 24. By switching the flow path switching valve 24, the sample introduction flow path is switched to the analysis flow path (the downstream flow from the column 15), and the sample is introduced to the column side.

液体クロマトグラフに用いられるカラムは、圧力上限よりも高い圧力で使用されると、内部に充填される充填剤が劣化し、分離性能の低下や、寿命の短命化が生じる。したがって、カラムをより長期間にわたって使用するためには、送液ポンプから吐出され、分析流路に到達する液体の圧力がカラムの圧力上限を超えない範囲内となるようにする必要がある。   When a column used in a liquid chromatograph is used at a pressure higher than the upper limit of pressure, the packing material packed therein deteriorates, resulting in a decrease in separation performance and a shortened life. Therefore, in order to use the column for a longer period of time, it is necessary to make the pressure of the liquid discharged from the liquid feed pump and reaching the analysis flow path be in a range not exceeding the upper limit of the column pressure.

図20は、本実施の形態に係る送液ポンプとオートサンプラとが信号ケーブルにより接続され、同期されることを示す。同期信号は、送液ポンプ12またはオートサンプラ13のいずれからも出力可能であり、一方のサイクルに合わせて出力信号を他方へ供給することで同期させることができる。   FIG. 20 shows that the liquid feed pump and the autosampler according to the present embodiment are connected by a signal cable and synchronized. The synchronization signal can be output from either the liquid feed pump 12 or the autosampler 13, and can be synchronized by supplying the output signal to the other in accordance with one cycle.

図21は、本実施の形態における流路切り換え弁24の動作と送液ポンプ12の送液速度との関係を示す図である。本図に示すように、送液ポンプ12はモータの回転速度を減速させて液体の送液速度を低速または停止させる動作を開始し、このとき送液ポンプ12から出力された同期信号によって、オートサンプラ13は流路切り換え弁24を試料導入流路から分析流路へ切り換える動作を開始する。   FIG. 21 is a diagram showing the relationship between the operation of the flow path switching valve 24 and the liquid feeding speed of the liquid feeding pump 12 in the present embodiment. As shown in the figure, the liquid feed pump 12 starts the operation of reducing or stopping the liquid feed speed by reducing the rotation speed of the motor. The sampler 13 starts the operation of switching the flow path switching valve 24 from the sample introduction flow path to the analysis flow path.

流路切り換えに要する時間は、使用する弁の種類や制御部1509による制御方法により決定されるため、送液ポンプが送液速度を減速させる時間は、当該切り換え時間に基づいて入力される。   Since the time required for switching the flow path is determined by the type of valve to be used and the control method by the control unit 1509, the time for the liquid feeding pump to decelerate the liquid feeding speed is input based on the switching time.

図22は、オートサンプラ13から送液ポンプ12へ同期信号を出力することで、流路切り換え弁24の切り換えの間に、送液ポンプ12のモータを停止させる動作を行うことを示している。流路切り換え弁24の切り換え動作の開始により、オートサンプラ13より送液ポンプ12へ同期信号が出力され、当該出力に応じて、送液ポンプ12のモータは所定のパルスレート(ここでは9600[pps])で動作させている状態から、停止状態(0[pps])へ変化させる。これにより、当該切り換えの区間においては送液ポンプ12はさらなる送液を行っていないため、圧力の増加を防ぐことができる。   FIG. 22 shows that the operation of stopping the motor of the liquid feeding pump 12 is performed during the switching of the flow path switching valve 24 by outputting a synchronization signal from the autosampler 13 to the liquid feeding pump 12. When the switching operation of the flow path switching valve 24 is started, a synchronization signal is output from the autosampler 13 to the liquid feeding pump 12, and the motor of the liquid feeding pump 12 responds to the output by a predetermined pulse rate (9600 [pps here). ]) Is changed from the operating state to the stopped state (0 [pps]). Thereby, in the section of the change concerned, since liquid feeding pump 12 is not performing further liquid feeding, it can prevent an increase in pressure.

図23は、オートサンプラ13から送液ポンプ12へ同期信号を出力することで、流路切り換え弁24の切り換えの間に、送液ポンプ12のモータを徐々に減速して停止する動作を行うことを示している。図22の例では、140[MPa]といった高圧条件の下では、当該区間内に動作中のパルスレートから瞬間的に停止状態とすることは、モータのトルク性能の面から困難である。したがって、本図に示すようにモータを所定のパルスレート(ここでは9600[pps])から徐々に減速させて0[pps]としたのちに、再び徐々に加速させて変更前のパルスレートとなるようにする。このような制御とすることで、送液ポンプ12のモータへの負担を抑えつつ、流路切り換え弁24の切り換え時における流体の圧力の増加を防ぐことができる。   FIG. 23 shows that the motor of the liquid feed pump 12 is gradually decelerated and stopped during the switching of the flow path switching valve 24 by outputting a synchronization signal from the autosampler 13 to the liquid feed pump 12. Is shown. In the example of FIG. 22, under a high pressure condition of 140 [MPa], it is difficult from the aspect of the motor torque performance to instantaneously stop the operation from the pulse rate during operation in the section. Therefore, as shown in the figure, the motor is gradually decelerated from a predetermined pulse rate (here, 9600 [pps]) to 0 [pps] and then gradually accelerated again to the pulse rate before the change. Like that. By adopting such control, it is possible to prevent an increase in the fluid pressure when the flow path switching valve 24 is switched while suppressing a burden on the motor of the liquid feeding pump 12.

図24は、オートサンプラ13から送液ポンプ12へ同期信号を出力することで、流路切り換え弁24の切り換えの間に、送液ポンプ12のモータを停止せずに減速する動作を行うことを示している。送液ポンプ12のモータのトルク性能及び切り換え時間との関係から、送液ポンプ12を完全に停止させる状態とすることが困難な場合には、本図に示されるように流路切り換えの間はモータのパルスレートを減速させるのみとすることもできる。本制御によっても、送液ポンプ12のモータへの負担を抑えつつ、流路切り換え弁24の切り換え時における流体の圧力の増加を防ぐことができる。   FIG. 24 shows that by outputting a synchronization signal from the autosampler 13 to the liquid feed pump 12, the operation of decelerating without stopping the motor of the liquid feed pump 12 is performed during the switching of the flow path switching valve 24. Show. In the case where it is difficult to completely stop the liquid feed pump 12 due to the relationship between the torque performance of the motor of the liquid feed pump 12 and the switching time, as shown in FIG. It is also possible to only decelerate the pulse rate of the motor. Also by this control, it is possible to prevent an increase in fluid pressure when the flow path switching valve 24 is switched while suppressing a burden on the motor of the liquid feeding pump 12.

図25は、本実施の形態に係る送液ポンプの制御方法を適用した場合/適用した場合における送液ポンプ12にて検出される圧力を示す。本実施の形態を適用しない場合では、流路切り換え弁24の切り換え動作中においても、設定されたパルスレートでモータを動かし続けるため、上図のように圧力の増加が生じていることがわかる。一方、上述の制御方法を適用した場合では、送液ポンプ12の圧力の増加を大幅に低減することができた。   FIG. 25 shows the pressure detected by the liquid feed pump 12 when the liquid feed pump control method according to the present embodiment is applied / applied. In the case where this embodiment is not applied, it can be seen that the pressure continues to increase as shown in the above figure because the motor continues to operate at the set pulse rate even during the switching operation of the flow path switching valve 24. On the other hand, when the above-described control method was applied, the increase in the pressure of the liquid feed pump 12 could be significantly reduced.

図26は、本実施の形態に係る送液ポンプの制御方法を適用した場合/適用した場合におけるカラム入口にて検出される圧力を示す。図25に示した通り、送液ポンプ12における圧力の上昇はカラム入口に加わるため、本発明によればカラムに加わる圧力の増加も抑制することができた。   FIG. 26 shows the pressure detected at the column inlet when the liquid pump control method according to the present embodiment is applied / applied. As shown in FIG. 25, since the increase in pressure in the liquid feed pump 12 is applied to the column inlet, according to the present invention, the increase in pressure applied to the column can also be suppressed.

以上、本実施の形態によれば、オートサンプラにおいて試料を導入する際の流路切り換え弁の特性による送液ポンプおよびカラムの圧力上昇を低減できるため、高精度な送液の制御を実現でき、かつカラムの劣化を防止し、分析精度を高めることができる。   As described above, according to the present embodiment, it is possible to reduce the pressure increase of the liquid feed pump and the column due to the characteristics of the flow path switching valve when introducing the sample in the autosampler, so that it is possible to realize high-precision liquid feed control, In addition, deterioration of the column can be prevented and analysis accuracy can be increased.

1・・・送液制御部
2A・・・第一のアクチュエータ
3A・・・第二のアクチュエータ
2C・・・第一のシリンダ
3C・・・第二のシリンダ
2CV・・・第一の逆止弁
3CV・・・第二の逆止弁
2P・・・第一のプランジャ
3P・・・第二のプランジャ
8A・・・弁ボディ
8B・・・弁体
8C・・・付勢ばね
43・・・A電磁弁
53・・・B電磁弁
7・・・吐出パイプ
8・・・多流路切り換え弁
8A・・・弁体
8B・・・弁ボディ
10・・・試料導入流路
11・・・分析流路
12、94・・・送液ポンプ
13、1503・・・オートサンプラ(試料注入部)
15、1504・・・カラム(分析部)
19・・・試料瓶
20・・・シリンジ
21・・・バッファチューブ
22・・・ニードル
23・・・注入ポート
24・・・流路切り換え弁
25・・・廃液
91・・・送液タンク
92・・・吸い込み流路
93・・・電磁弁
95・・・アクチュエータ
1501・・・液体クロマトグラフ部
1502・・・送液装置(送液部)
1505・・・検出器(検出部)
1506・・・入力装置
1507・・・データ処理装置
1508・・・出力装置
1509・・・制御部
1701・・・電気回路
1702・・・ソレノイド
1703・・・弁体
1704・・・ホール素子
1705・・・検出電気回路
DESCRIPTION OF SYMBOLS 1 ... Liquid feeding control part 2A ... 1st actuator 3A ... 2nd actuator 2C ... 1st cylinder 3C ... 2nd cylinder 2CV ... 1st check valve 3CV ... second check valve 2P ... first plunger 3P ... second plunger 8A ... valve body 8B ... valve body 8C ... biasing spring 43 ... A Solenoid valve 53 ... B solenoid valve 7 ... discharge pipe 8 ... multi-channel switching valve 8A ... valve body 8B ... valve body 10 ... sample introduction channel 11 ... analytical flow Channels 12, 94 ... liquid pumps 13, 1503 ... autosampler (sample injection part)
15, 1504 ... column (analysis section)
19 ... Sample bottle 20 ... Syringe 21 ... Buffer tube 22 ... Needle 23 ... Injection port 24 ... Flow path switching valve 25 ... Waste liquid 91 ... Liquid feed tank 92- ··· Suction channel 93 ··· Solenoid valve 95 ··· Actuator 1501 ··· Liquid chromatograph portion 1502 ··· Liquid feeding device (liquid feeding portion)
1505 ... Detector (detector)
1506 ... Input device 1507 ... Data processing device 1508 ... Output device 1509 ... Control unit 1701 ... Electric circuit 1702 ... Solenoid 1703 ... Valve element 1704 ... Hall element 1705 ..Detection electric circuit

Claims (11)

液体を送液する送液部と、
前記送液部から送液される液体の流路上に配置され、開閉動作を行う弁と、
前記送液部、及び前記弁の動作を制御する制御部と、を備えた液体クロマトグラフ用送液装置であって、
前記制御部は、前記弁の開閉動作にタイミングに基づいて、
前記送液部が液体を送液する速度を変化させるように、前記送液部の動作を制御することを特徴とする液体クロマトグラフ用送液装置。
A liquid feeding section for feeding a liquid;
A valve that is disposed on the flow path of the liquid fed from the liquid feeding section and performs an opening and closing operation;
A liquid feeding device for a liquid chromatograph comprising the liquid feeding unit and a control unit for controlling the operation of the valve,
Based on the timing of the opening and closing operation of the valve, the control unit,
A liquid feeding device for a liquid chromatograph , wherein operation of the liquid feeding unit is controlled so as to change a speed at which the liquid feeding unit feeds a liquid.
請求項1に記載された液体クロマトグラフ用送液装置において、
前記制御部は、前記弁の開閉動作のタイミングに基づいて、
前記送液部が液体を送液する速度が、前記弁が開状態における送液速度よりも低速になるように、前記送液部の動作を制御することを特徴とする液体クロマトグラフ用送液装置。
In the liquid chromatograph liquid feeding device according to claim 1,
Based on the timing of the opening and closing operation of the valve, the control unit,
Speed said liquid feed unit for feeding the liquid, the valve is in so that such slower than feeding speed in the open state, feeding liquid chromatograph and controls the operation of the liquid supply portion Liquid device.
請求項1に記載された液体クロマトグラフ用送液装置において、
前記送液部は、複数種類の液体を吸引するポンプであって、
前記弁は前記ポンプの吸引側に少なくとも2個以上配置され、開閉動作により前記ポンプが吸引する液体の種類を切り換え可能に構成され、
前記制御部は、
前記弁のうちの一方が開状態から閉状態に遷移を開始するタイミングと、他方が閉状態から開状態に遷移し終わるタイミングと、に基づいて、前記ポンプが液体を送液する速度が、前記弁が開状態における送液速度よりも低速になるように、前記ポンプの動作を制御することを特徴とする液体クロマトグラフ用送液装置。
In the liquid chromatograph liquid feeding device according to claim 1,
The liquid feeding part is a pump for sucking a plurality of types of liquids,
The valve is arranged at least two on the suction side of the pump, and is configured to be able to switch the type of liquid sucked by the pump by opening and closing operations,
The controller is
And when one of the valve starts to transition from the open state to the closed state, and when the other finishes transition from a closed state to an open state, based on the rate at which the pump for feeding the liquid, the A liquid chromatograph liquid feeding device, characterized in that the operation of the pump is controlled such that the valve is slower than the liquid feeding speed in the open state.
請求項に記載された液体クロマトグラフ用送液装置において、
前記制御部は、
少なくとも、前記弁のうちの一方が開状態から閉状態に遷移を開始するタイミングよりも前から、他方が閉状態から開状態に遷移し終わるタイミングよりも後までの間、前記送液ポンプが液体を送液する速度が、前記弁が開状態における送液速度よりも低速になるように、前記ポンプの動作を制御することを特徴とする液体クロマトグラフ用送液装置。
In the liquid chromatograph liquid feeding device according to claim 3 ,
The controller is
At least before the timing at which one of the valves starts to transition from the open state to the closed state and after the timing at which the other ends the transition from the closed state to the open state, the liquid feed pump is liquid. The liquid chromatograph liquid feeding device controls the operation of the pump so that the liquid feeding speed is lower than the liquid feeding speed when the valve is open .
請求項に記載された液体クロマトグラフ用送液装置において、
前記制御部は、前記ポンプが吸引する複数種類の液体のうち、各々の液体の流量を決定し、
当該決定された流量に基づいて、対応する各々の弁が開状態における前記ポンプの送液速度と、前記弁のうちの一方が開状態から閉状態に遷移を開始するタイミングよりも前から、他方が閉状態から開状態に遷移し終わるタイミングよりも後までの間の前記ポンプの送液速度を求めることを特徴とする液体クロマトグラフ用送液装置。
In the liquid chromatograph liquid feeding device according to claim 3 ,
The control unit determines a flow rate of each liquid among a plurality of types of liquid sucked by the pump,
Based on the determined flow rate, the liquid feeding speed of the pump when each corresponding valve is in the open state, and before the timing at which one of the valves starts transition from the open state to the closed state, the other There liquid transfer device for a liquid chromatograph, wherein Rukoto seek feed rate of the pump until after the timing to be completely transition from a closed state to an open state.
液体を吸引・吐出する送液ポンプと、
前記送液ポンプの吐出側に配置され、当該吐出された液体の複数の流路を切り換える流路切り換え弁と、
前記送液ポンプ、及び前記流路切り換え弁の動作を制御する制御部と、を備えた液体クロマトグラフ用送液装置において、
前記制御部は、
前記流路切り換え弁が閉状態から開状態に移行している間、または、開状態から閉状態に移行している間のどちらか一方または両方において、
前記送液ポンプの送液速度を変化させるように制御することを特徴とする液体クロマトグラフ用送液装置。
A liquid feed pump that sucks and discharges liquid;
A flow path switching valve that is disposed on the discharge side of the liquid feed pump and switches a plurality of flow paths of the discharged liquid;
In the liquid feeding device for a liquid chromatograph comprising the liquid feeding pump and a control unit that controls the operation of the flow path switching valve ,
The controller is
Either or both while the flow path switching valve is transitioning from the closed state to the open state, or while the flow path switching valve is transitioning from the open state to the closed state,
Control to liquid transfer device for a liquid chromatograph, wherein Rukoto to vary the feed rate of the liquid feed pump.
請求項6に記載された液体クロマトグラフ用送液装置において、
前記制御部は、
前記流路切り換え弁が閉状態から開状態に移行している間、または、開状態から閉状態に移行している間のどちらか一方または両方において、
前記流路切り換え弁の吐出圧力が低くなるように前記送液ポンプの動作を制御することを特徴とする液体クロマトグラフ用送液装置。
In the liquid chromatograph liquid feeding device according to claim 6 ,
The controller is
Either or both while the flow path switching valve is transitioning from the closed state to the open state, or while the flow path switching valve is transitioning from the open state to the closed state,
Wherein the so that a low discharge pressure of the flow path switching valve, the liquid feed liquid chromatograph liquid transfer apparatus characterized by controlling the operation of the pump.
請求項に記載された液体クロマトグラフ用送液装置において、
前記弁の開閉状態を検出するセンサをさらに備え、
前記制御部は、
前記センサの検出結果に基づいて、前記送液部の動作を制御することを特徴とする液体クロマトグラフ用送液装置。
In the liquid chromatograph liquid feeding device according to claim 1 ,
A sensor for detecting an open / closed state of the valve;
The controller is
A liquid chromatograph liquid feeding device that controls an operation of the liquid feeding unit based on a detection result of the sensor .
液体を送液する送液部と、
前記送液部から送液される液体の流路上に配置され、開閉動作を行う弁と、
前記送液部、及び前記弁の動作を制御する制御部と、を備えた液体クロマトグラフ装置であって、
前記制御部は、前記弁の開閉動作にタイミングに基づいて、
前記送液部が液体を送液する速度を変化させるように、前記送液部の動作を制御することを特徴とする液体クロマトグラフ装置。
A liquid feeding section for feeding a liquid;
A valve that is disposed on the flow path of the liquid fed from the liquid feeding section and performs an opening and closing operation;
A liquid chromatograph device comprising: the liquid feeding unit; and a control unit that controls the operation of the valve,
Based on the timing of the opening and closing operation of the valve , the control unit,
The way feeding unit alters the speed of feeding the liquid, the liquid chromatograph Fuso location, characterized by controlling the operation of the liquid supply portion.
移動相を送液する送液部と、
当該送液された移動相流路中に試料を注入する試料注入部と、
当該注入された試料を含む移動相流路を切り換える流路切り換え弁と、
当該注入された試料中の成分を分離する分離部と、
当該分離された試料成分を検出する検出部と、
前記送液部、前記試料注入部、前記流路切り換え弁、前記分離部、前記検出器の動作を制御する制御部と、を備えた液体クロマトグラフ装置であって、
前記制御部は、前記流路切り換え弁が移動相流路を切り換えるタイミングに基づいて、
前記送液部の動作を制御することを特徴とする液体クロマトグラフ装置。
A liquid feeding part for feeding the mobile phase;
A sample injection portion for injecting a sample into the liquid phase mobile phase flow path,
A flow path switching valve for switching the mobile phase flow path containing the injected sample;
A separation unit for separating components in the injected sample;
A detection unit for detecting the separated sample components;
A liquid chromatograph apparatus comprising: the liquid feeding unit , the sample injection unit, the flow path switching valve, the separation unit, and a control unit that controls the operation of the detector ,
The control unit , based on the timing when the flow path switching valve switches the mobile phase flow path,
A liquid chromatograph apparatus for controlling an operation of the liquid feeding section.
請求項10に記載された液体クロマトグラフ装置であって、
前記流路切り換え弁は、
当該試料の注入後、前記送液部と前記分離部とを接続するように移動相流路を切り換えることを特徴とする液体クロマトグラフ装置。
The liquid chromatograph apparatus according to claim 10 ,
The flow path switching valve is
After injection of the sample, the liquid supply portion and the liquid chromatograph and wherein the Rukoto switched mobile phase flow path so as to connect the separation unit.
JP2013020031A 2013-02-05 2013-02-05 Liquid chromatograph liquid feeding device and liquid chromatograph device Active JP5879280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013020031A JP5879280B2 (en) 2013-02-05 2013-02-05 Liquid chromatograph liquid feeding device and liquid chromatograph device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013020031A JP5879280B2 (en) 2013-02-05 2013-02-05 Liquid chromatograph liquid feeding device and liquid chromatograph device

Publications (2)

Publication Number Publication Date
JP2014153061A JP2014153061A (en) 2014-08-25
JP5879280B2 true JP5879280B2 (en) 2016-03-08

Family

ID=51575085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013020031A Active JP5879280B2 (en) 2013-02-05 2013-02-05 Liquid chromatograph liquid feeding device and liquid chromatograph device

Country Status (1)

Country Link
JP (1) JP5879280B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192929A1 (en) 2020-03-24 2021-09-30 株式会社日立ハイテク Liquid feeding device and liquid feeding method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7011921B2 (en) * 2017-10-31 2022-02-10 アークレイ株式会社 Liquid feeding method
CN112198261A (en) * 2020-11-02 2021-01-08 山东悟空仪器有限公司 Sample introduction method of suction type sample injector, suction type sample injector and liquid chromatograph

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574548A (en) * 1980-06-10 1982-01-11 Shimadzu Corp Mixer for liquid chromatographic solvent
JPS57198864A (en) * 1981-05-30 1982-12-06 Shimadzu Corp Mixing device for solvent of high-speed liquid chromatograph
JP2636699B2 (en) * 1993-09-07 1997-07-30 株式会社島津製作所 Liquid chromatograph
JP4590750B2 (en) * 2001-02-16 2010-12-01 株式会社島津製作所 Liquid feeding device, correction method thereof, and liquid chromatograph
JP4709629B2 (en) * 2005-10-19 2011-06-22 株式会社日立ハイテクノロジーズ Pump device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192929A1 (en) 2020-03-24 2021-09-30 株式会社日立ハイテク Liquid feeding device and liquid feeding method
JPWO2021192929A1 (en) * 2020-03-24 2021-09-30
JP7307271B2 (en) 2020-03-24 2023-07-11 株式会社日立ハイテク Liquid transfer device and liquid transfer method

Also Published As

Publication number Publication date
JP2014153061A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
US20230135114A1 (en) Sample Injector With Metering Device Balancing Pressure Differences In An Intermediate Valve State
US7992429B2 (en) Chromatography system with fluid intake management
JP5624825B2 (en) Liquid chromatograph pump and liquid chromatograph
JP4377761B2 (en) Liquid chromatograph
SG186589A1 (en) Continuous liquid feed system and control method thereof
JP5879280B2 (en) Liquid chromatograph liquid feeding device and liquid chromatograph device
JP4377900B2 (en) Liquid chromatograph
US20170322187A1 (en) Metering device with defined enabled flow direction
JP2006292392A (en) Liquid sending system
JP6207872B2 (en) Liquid chromatograph apparatus and liquid chromatograph analysis method
US20150059451A1 (en) Prevention of phase separation upon proportioning and mixing fluids
JP2013217816A (en) Liquid chromatograph
JP6055720B2 (en) Liquid chromatograph
CN102879482A (en) Supercutical fluid chromatograph (SFC) instrument and automatic back pressure apparatus used therein
JP6078422B2 (en) Liquid chromatograph liquid feeding device and liquid chromatograph device
JP2014095613A (en) Liquid sample analyzer and liquid sample introduction device
CN113795673A (en) Binary pump and liquid chromatograph
JP2003014719A (en) Liquid chromatograph
WO2019151062A1 (en) Liquid chromatograph
JPWO2009151096A1 (en) Liquid chromatograph and gradient liquid feeder
WO2020179160A1 (en) Liquid feeding pump and liquid chromatograph device
JP2006118374A (en) Liquid feeding system
WO2006087037A1 (en) Fluid pump having high pressure metering and high pressure delivering
JP2010014453A (en) Liquid sending device and liquid chromatograph
JP2006348780A (en) Liquid feeding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5879280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350