JPS6250761B2 - - Google Patents

Info

Publication number
JPS6250761B2
JPS6250761B2 JP7893981A JP7893981A JPS6250761B2 JP S6250761 B2 JPS6250761 B2 JP S6250761B2 JP 7893981 A JP7893981 A JP 7893981A JP 7893981 A JP7893981 A JP 7893981A JP S6250761 B2 JPS6250761 B2 JP S6250761B2
Authority
JP
Japan
Prior art keywords
metal tube
wall thickness
thickness
electromagnetic ultrasonic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7893981A
Other languages
Japanese (ja)
Other versions
JPS57192811A (en
Inventor
Katsuhiro Kawashima
Shoji Murota
Hiroshi Soga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7893981A priority Critical patent/JPS57192811A/en
Publication of JPS57192811A publication Critical patent/JPS57192811A/en
Publication of JPS6250761B2 publication Critical patent/JPS6250761B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

【発明の詳細な説明】 本発明は電磁超音波による金属管の円周及び長
手方向の肉厚、偏肉率の測定方法及びその装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for measuring the circumferential and longitudinal wall thickness and thickness unevenness of a metal tube using electromagnetic ultrasound.

金属管を熱間にて押圧し、穿孔、圧延等によつ
て製造する場合、素材の不均一加熱、穿孔バーや
圧延ロールの設定位置の変動、曲り、歪みなどの
操業条件によつてその肉厚が均一にならず偏肉を
生ずる。従つて、操業中あるいは、冷間状態にお
ける金属管の偏肉率を自動測定することに対して
強いニーズがある。
When manufacturing metal tubes by hot pressing, perforation, rolling, etc., the thickness of the material may deteriorate due to operational conditions such as uneven heating of the material, fluctuations in the position of perforation bars and rolling rolls, bending, and distortion. The thickness is not uniform and uneven thickness occurs. Therefore, there is a strong need for automatic measurement of the uneven thickness of metal pipes during operation or in a cold state.

従来、超音波探傷法や本発明者らが特願昭52−
98458号に開示した測定方法があるが、前者は水
晶、チタン酸バリウム等で製作された超音波探触
子から金属管に超音波を透入・検出するために
水、油などの接触媒質を必要とし、金属管の表面
状況(スケール、汚れ、凹凸など)が悪い場合、
あるいは、金属管が高温の場合には接触媒質を一
定の状態で保持することが不可能となり、測定が
困難となる。
Conventionally, the ultrasonic flaw detection method and the present inventors proposed a patent application in 1972.
There is a measurement method disclosed in No. 98458, but the former uses a couplant such as water or oil to penetrate and detect ultrasonic waves from an ultrasonic probe made of crystal, barium titanate, etc., into a metal tube. If necessary, and the surface condition of the metal pipe is poor (scale, dirt, unevenness, etc.),
Alternatively, if the metal tube is at a high temperature, it becomes impossible to maintain the couplant in a constant state, making measurement difficult.

また、後者では金属管の肉厚測定用検出端を金
属管の全円周方向にわたつて回転させる必要があ
るため、その検出端の回転・保持機構が複雑とな
り、設備的にもメンテナンス面においても実用上
の難点が多い。さらに、粗圧延工程における管は
真円ではなく、形状が悪いため検出端を管円周方
向に倣わせることは不可能となる場合がある。
In addition, in the latter case, it is necessary to rotate the detection end for measuring the wall thickness of the metal tube in the entire circumferential direction of the metal tube, which makes the rotation and holding mechanism of the detection end complicated, which makes it difficult to maintain equipment. There are also many practical difficulties. Furthermore, since the tube in the rough rolling process is not a perfect circle and has a poor shape, it may be impossible to make the detection end follow the circumferential direction of the tube.

本発明は、製造過程の金属管の内径、外径があ
らかじめ機械的に設定されることに着目し、金属
管表面の円周方向の適正な二ケ所に検出端を配置
して、管の長手方向に走査することによつて得ら
れる管各位置における肉厚信号をもとに、管全長
にわたる偏肉率を測定することを可能とする方法
及び装置を提供することを目的とする。
The present invention focuses on the fact that the inner and outer diameters of metal tubes are set mechanically in advance during the manufacturing process, and detecting ends are placed at two appropriate locations on the surface of the metal tube in the circumferential direction. It is an object of the present invention to provide a method and a device that make it possible to measure the wall thickness unevenness over the entire length of a pipe based on the wall thickness signal at each position of the pipe obtained by scanning in the same direction.

以下、実施例を用いて詳細に説明する。第1図
は、縦波電磁超音波発生検出器を用いて金属管の
肉厚測定を行う場合の原理図を示している。これ
において金属管1に対向して一定の間隙2を設け
て電磁超音波発生検出器3が配置してある。電磁
超音波発生検出器3は、超音波発生コイル5、検
出コイル6、磁界発生用コイル7、マグネツト8
および保護カバー9で構成されている。磁界発生
用電源10より磁界発生用コイル7に電圧を印加
すると、金属管1の表層域に磁界11が発生す
る。一方、高周波パルス電源12から超音波発生
用コイル5に高周波パルス電流を流すと、金属管
1の表層域に誘導により渦電流13が生じ、同時
に磁界14が発生する。この渦電流13と磁界1
4の相互作用によりフレミングの左手の法則によ
り矢印で示すパルス状振動力15を生ずる、この
振動力15は、以後電磁超音波として矢印16の
方向に進行する。この電磁超音波は金属管1の内
壁に達すると反射されて矢印17の方向に戻り、
金属管1の表層域に到達すると、その振動力18
と磁界11との相互作用の結果、フレミングの右
手の法則により渦電流19を生ずる。この渦電流
19は検出コイル6によつて検出される。その検
出信号は増幅器20によつて増幅され、肉厚演算
処理器21に送られる。肉厚演算処理器21に
は、高周波パルス電源12から金属管1に超音波
が発生する瞬間の同期信号が送られ、その同期信
号を基準として処理器21が、検出コイル6によ
つて検出信号が検出されるまでの時間間隔tを演
算し、同時にあらかじめ与えられた金属管1中で
の超音波伝播速度vとを掛け算して肉厚hをh=
v×tによつて算出し、表示器21を表示付勢す
る。
Hereinafter, it will be explained in detail using examples. FIG. 1 shows a principle diagram when measuring the wall thickness of a metal tube using a longitudinal wave electromagnetic ultrasonic generation detector. In this, an electromagnetic ultrasonic generation detector 3 is placed opposite the metal tube 1 with a certain gap 2 provided therebetween. The electromagnetic ultrasonic generation detector 3 includes an ultrasonic generation coil 5, a detection coil 6, a magnetic field generation coil 7, and a magnet 8.
and a protective cover 9. When a voltage is applied to the magnetic field generating coil 7 from the magnetic field generating power supply 10, a magnetic field 11 is generated in the surface layer region of the metal tube 1. On the other hand, when a high frequency pulse current is passed from the high frequency pulse power source 12 to the ultrasonic generation coil 5, an eddy current 13 is generated by induction in the surface layer region of the metal tube 1, and at the same time a magnetic field 14 is generated. This eddy current 13 and magnetic field 1
4 produces a pulsed vibration force 15 shown by an arrow according to Fleming's left-hand rule. This vibration force 15 then travels in the direction of an arrow 16 as an electromagnetic ultrasonic wave. When this electromagnetic ultrasonic wave reaches the inner wall of the metal tube 1, it is reflected and returns in the direction of the arrow 17.
When reaching the surface layer of the metal tube 1, the vibration force 18
As a result of the interaction between the magnetic field 11 and the magnetic field 11, an eddy current 19 is generated according to Fleming's right-hand rule. This eddy current 19 is detected by the detection coil 6. The detection signal is amplified by an amplifier 20 and sent to a thickness calculation processor 21. A synchronization signal at the moment when an ultrasonic wave is generated in the metal tube 1 is sent from the high-frequency pulse power source 12 to the wall thickness calculation processor 21. Based on the synchronization signal, the processor 21 calculates a detection signal using the detection coil 6. Calculate the time interval t until the detection of
It is calculated by v×t, and the display device 21 is energized for display.

第2図は、本発明による金属管の偏肉率測定の
原理図を示すものである。金属管1の或る断面に
おける外円の半径をr1、内円の半径をr2、第1図
で述べた金属管1の円周方向上の適正な2ケ所の
肉厚を測定するための電磁超音波発生検出器3,
3′で測定される肉厚をd1,d2、2ケ所の電磁超
音波発生検出器3,3′の間の角度の補角をθと
する。ここで、金属管1の偏肉率を(1)式で定義す
る。外円の中心点を原点0とするX−Y座標を考
えて、外円を(2)式にて表す。内円の中心点は金属
管1の偏肉率に応じて外円内を移動すると考え、
この中心点の座標(p,q)で表わすとすれば、
内円は(3)式にて表すことができる。
FIG. 2 shows a diagram of the principle of measuring the uneven thickness of a metal pipe according to the present invention. In order to measure the wall thickness at two appropriate locations in the circumferential direction of the metal tube 1 as described in FIG. electromagnetic ultrasonic generation detector 3,
Let d 1 and d 2 be the wall thicknesses measured at 3', and θ be the supplementary angle of the angle between the two electromagnetic ultrasonic generation detectors 3 and 3'. Here, the thickness unevenness rate of the metal tube 1 is defined by equation (1). Considering the X-Y coordinates with the center point of the outer circle as the origin 0, the outer circle is expressed by equation (2). Considering that the center point of the inner circle moves within the outer circle according to the uneven thickness of the metal tube 1,
If it is expressed by the coordinates (p, q) of this center point, then
The inner circle can be expressed by equation (3).

いま、(3)式のx,yに内円の肉厚測定点の座標
値を代入した(3−1)式と(3−2)式から内
円の中心点の座標p,qを求めると、各々(4)式お
よび(5)式にて表すことができる。この両式のA,
Bは、各々(6),(7)式で置き換えたものである。
Now, calculate the coordinates p, q of the center point of the inner circle from equations (3-1) and (3-2), in which the coordinate values of the wall thickness measurement point of the inner circle are substituted for x, y in equation (3). and can be expressed by equations (4) and (5), respectively. A of both these expressions,
B is replaced by equations (6) and (7), respectively.

外円と内円の中心点間の距離は(8)式のδで表せ
る。したがつて、このδを用いれば、金属管の偏
肉率は(9)式のεとして求めることができる。
The distance between the center points of the outer circle and the inner circle can be expressed as δ in equation (8). Therefore, by using this δ, the uneven thickness of the metal pipe can be determined as ε in equation (9).

偏肉率(%)=最大肉厚−最小肉厚/平均肉厚×100(
1) x2+y2=r (2) (x−p)+(y−q)=r (3) {(r1−d1)cosθ−p} +{(r1−d1)sinθ−q}=r
(3−1) {(−r1+d2)−P}+q2=r (3−2) q=Ap+B (5) A=−{(r−d)cosθ+(r−d)}
/(r−d)sinθ(6) B={(r−d−(r−d}/2(
−d)sinθ(7) δ=√22 (8) ε=2δ/r−r (9) 第3図は、本発明の一実施例金属管の偏肉測定
装置のブロツク図を示しており、第3図のaは金
属管の進行方向に平向な方向から見た側面図、第
3図のbは金属管の進行方向に垂直な方向から見
た正面図を示している。
Thickness unevenness rate (%) = Maximum wall thickness - Minimum wall thickness / Average wall thickness x 100 (
1) x 2 + y 2 = r 2 1 (2) (x-p) 2 + (y-q) 2 = r 2 2 (3) {(r 1 − d 1 )cosθ−p} 2 + {(r 1 −d 1 ) sinθ−q} 2 = r 2 2
(3-1) {(-r 1 +d 2 )-P} 2 +q 2 = r 2 2 (3-2) q=Ap+B (5) A=-{(r 1 - d 1 ) cos θ+(r 1 - d 2 )}
/(r 1 - d 1 ) sin θ(6) B={(r 1 - d 1 ) 2 -(r 1 - d 2 ) 2 }/2(
r 1 − d 1 ) sin θ(7) δ=√ 22 (8) ε=2δ/r 1 − r 2 (9) FIG. Figure 3a shows a side view as seen from a direction parallel to the direction of travel of the metal tube, and b of Figure 3 shows a front view seen from a direction perpendicular to the direction of travel of the metal tube. It shows.

第3図のaおよびbにおいて、高温の金属管2
3が搬送ローラーによつて矢印24の方向に進行
すると、高温金属検知器25によつて金属管23
の先端が検知される。この検知信号は制御装置2
6に送られる。制御装置26はその検知信号を受
けると、電磁超音波発生検出器3,3′の保持・
倣い装置27,27′を駆動させ、電磁超音波発
生検出器3,3′に冷却水管28,28′から冷却
水を供給した後、金属管23に接管させる。同時
に、高周波パルス電源29および、磁界発生用電
源30に起動信号が送られ、各電源が起動され
る。第1図で述べた原理にもとずいて各電磁超音
波発生検出器3,3′によつて、金属管23の2
ケ所の肉厚に対応した検出信号が得られる。この
際、高周波パルス電源29から2つの電磁超音波
発生検出器3,3′に送られる高周波パルス電流
は交互に発生されるため、肉厚に応じた検出信号
も交互に各々専用の増幅器31,31′に送られ
る。この信号は加算器32によつて加算され、肉
厚信号処理器33に送られる。肉厚信号処理器3
3は、高周波パルス電源29から送られる各電磁
超音波発生検出器3,3′の超音波発生における
瞬間の同期信号を識別し、対応する検出信号を検
出して、金属管23の2ケ所の肉厚を第1図で述
べた原理から演算する。
In a and b of FIG. 3, the high temperature metal tube 2
3 moves in the direction of the arrow 24 by the conveyance roller, the metal tube 23 is detected by the high temperature metal detector 25.
The tip of the is detected. This detection signal is transmitted to the control device 2.
Sent to 6. Upon receiving the detection signal, the control device 26 controls the holding and holding of the electromagnetic ultrasonic generation detectors 3 and 3'.
The copying devices 27 and 27' are driven to supply cooling water to the electromagnetic ultrasonic generation detectors 3 and 3' from the cooling water pipes 28 and 28', and then the metal pipe 23 is connected to the cooling water. At the same time, a start signal is sent to the high-frequency pulse power supply 29 and the magnetic field generation power supply 30, and each power supply is started. Based on the principle described in FIG. 1, two of the metal tubes 23 are
A detection signal corresponding to the thickness of the wall can be obtained. At this time, since the high frequency pulse currents sent from the high frequency pulse power supply 29 to the two electromagnetic ultrasonic generation detectors 3 and 3' are generated alternately, the detection signals according to the wall thickness are also alternately sent to the dedicated amplifiers 31 and 3'. 31'. These signals are added by an adder 32 and sent to a thick signal processor 33. Thick signal processor 3
3 identifies the instantaneous synchronization signal in the ultrasonic generation of each electromagnetic ultrasonic generation detector 3, 3' sent from the high frequency pulse power source 29, detects the corresponding detection signal, and detects the two positions of the metal tube 23. The wall thickness is calculated based on the principle described in FIG.

この様な測定が金属管23の後端近傍まで繰返
し行なわれ高温金属検知器25が全属管23の後
端を検知すると、その検知信号が再び制御装置2
6に送られる。制御装置26はその検知信号を受
けると保持・倣い装置27,27′を駆動して、
電磁超音波発生検出器3,3′を管23より離隔
させる。離隔後各電源は起動を停止し、冷却水の
供給も停止する。この間に、肉厚演算処理器33
によつて演算された肉厚信号は、順次偏肉演算器
34に送られる。偏肉演算器34は、金属管23
の各円周方向2ケ所の肉厚信号をもとに、第2図
を用いて説明した原理によつて金属管23の偏肉
率を演算する。同時に、制御装置26によつて起
動・停止する搬送ローラーに取付けられた測定器
35から送られる電磁超音波発生検出器3,3′
の接管から離管までの測長信号を受け、金属管2
3の長さ方向位置に対応した偏肉率の演算結果を
表示器36に出力する。
When such measurements are repeated up to the vicinity of the rear end of the metal pipe 23 and the high temperature metal detector 25 detects the rear end of all the metal pipes 23, the detection signal is sent to the control device 2 again.
Sent to 6. When the control device 26 receives the detection signal, it drives the holding/copying devices 27 and 27'.
The electromagnetic ultrasonic generation detectors 3 and 3' are separated from the tube 23. After separation, each power supply will stop starting and the supply of cooling water will also stop. During this time, the wall thickness calculation processor 33
The thickness signals calculated by are sequentially sent to the thickness deviation calculator 34. The thickness deviation calculator 34 is a metal tube 23
Based on the wall thickness signals at two locations in the circumferential direction, the wall thickness deviation rate of the metal tube 23 is calculated based on the principle explained using FIG. At the same time, electromagnetic ultrasonic generation detectors 3, 3' are sent from a measuring device 35 attached to a conveying roller that is started and stopped by the control device 26.
Metal pipe 2 receives a length measurement signal from the connecting pipe to the separating pipe.
The calculation result of the thickness unevenness ratio corresponding to the longitudinal position of No. 3 is output to the display 36.

この様にして、金属管の偏肉率を測定するが、
本発明においては、測定中、金属管23の円周方
向2ケ所の電磁超音波発生検出器3,3′の設置
角度をどの程度の精度で維持しかつ、倣わせうる
かが、偏肉率の測定精度に大きな影響を与える。
In this way, the uneven thickness of the metal pipe is measured.
In the present invention, the degree of wall thickness unevenness is determined by how accurately the installation angles of the electromagnetic ultrasonic wave generation detectors 3 and 3' at two locations in the circumferential direction of the metal tube 23 can be maintained and followed during measurement. This has a significant impact on measurement accuracy.

第4図に偏肉率をパラメータとして電磁超音波
発生検出器の設置角度に対する偏肉率測定値の変
動の検討結果の一例を示す。設置角度を90゜と
135゜とにした場合において、その各々が測定時
±10゜の範囲で設置角度が変動するとした場合、
90゜では14%偏肉率測定値において約±1.25%
の、28%偏肉率測定値において約±2.5%のバラ
ツキを生ずるが、135゜では11%の偏肉率測定値
で約±0.4%の、22%の偏肉率測定値で約±0.8%
のバラツキでしかないことがわかる。
FIG. 4 shows an example of the results of examining the variation of the measured value of the thickness unevenness with respect to the installation angle of the electromagnetic ultrasonic generation detector using the thickness unevenness as a parameter. Installation angle is 90°
135°, and the installation angle varies within a range of ±10° during measurement.
At 90°, 14% thickness deviation measurement value is approximately ±1.25%
However, at 135°, the measured value of thickness unevenness at 11% is approximately ±0.4%, and the measured value of thickness unevenness at 22% is approximately ±0.8. %
It can be seen that this is just a variation in

したがつて、設置角度は大きくとつた方が設置
角度の変動に対する偏肉率測定値の誤差は小さい
ことがわかる。
Therefore, it can be seen that the larger the installation angle is, the smaller the error in the thickness unevenness measurement value due to fluctuations in the installation angle is.

また、第2図の原理説明から明らかなごとく、
金属管23の2点の肉厚値を用いて算出される偏
肉率値は2つ存在する場合がある。したがつて、
この二値のいずれが正しいかを判別する必要があ
る。即ち、(4)式における根号内の判別式によつて
得られる値には実根、重根、虚根の場合があり、
虚根の場合は演算不可として無視する。重根では
演算値は一つであり問題ない。故に、実根の場合
の二値の算出が問題となる。しかし、これについ
ては、次の条件を満足する値を適正値と判定すれ
ば実用上何ら支障なく偏肉率測定が可能である。
即ち、穿孔・圧延機の設計精度によつて、金属管
23に生ずる偏肉率は50%を越えることは皆無で
あることがわかつている。また、一本の金属管2
3の穿孔・圧延開始点における偏肉率は常に5%
以下であり、また金属管23の先端域から後端域
にわたる偏肉率は局所的に急変することはなく、
通常は漸増傾向を有している。故に、各金属管2
3の先端域での偏肉率に対して漸増傾向にある値
のみを適正値として取り扱い、50%を越える急変
値は無視する。このような演算を後端まで繰返せ
ば金属管23の全長にわたる偏肉率を測定するこ
とが可能となる。
Also, as is clear from the explanation of the principle in Figure 2,
There may be two thickness unevenness ratio values calculated using wall thickness values at two points of the metal tube 23. Therefore,
It is necessary to determine which of these two values is correct. In other words, the value obtained by the discriminant in the radical in equation (4) may be a real root, a multiple root, or an imaginary root,
If it is an imaginary root, it is ignored as it cannot be calculated. With multiple roots, there is only one calculation value, so there is no problem. Therefore, the calculation of binary values in the case of real roots becomes a problem. However, regarding this, if a value that satisfies the following conditions is determined to be an appropriate value, it is possible to measure the thickness unevenness ratio without any practical problem.
That is, it has been found that depending on the design accuracy of the punching and rolling mill, the uneven thickness of the metal tube 23 never exceeds 50%. Also, one metal tube 2
Thickness unevenness rate at the starting point of drilling and rolling in step 3 is always 5%.
In addition, the thickness unevenness rate from the tip region to the rear end region of the metal tube 23 does not suddenly change locally.
Usually has a gradual increasing trend. Therefore, each metal tube 2
Only values that tend to gradually increase with respect to the thickness unevenness rate in the tip region of 3 are treated as appropriate values, and values that suddenly change by more than 50% are ignored. By repeating such calculations up to the rear end, it becomes possible to measure the thickness unevenness over the entire length of the metal tube 23.

第5図に高温シームレスパイプの長さ方向にお
ける偏肉率測定の結果の一例を示す。これは、熱
間オンラインにて製造初期工程である穿孔・圧延
後のシームレスパイプ素管の全長にわたつて偏肉
率を測定したものであり、パイプ穿孔・圧延過程
の偏肉率の増加する状況が良好に測定されてい
る。二つの電磁超音波発生・検出器3,3′の設
置角度を135゜とし、パイプ外径は200〜400mm
φ、肉厚50〜100mm、パイプ表面温度1150℃〜
1200℃である。使用した電磁超音波発生検出器の
サイズは直径80mmφ、高さ80mmとし、パイプに対
向する面は、パイプ外径に合致した曲率のものを
用いた。電磁超音波発生検出器3,3′の先端面
とパイプ表面の間隙は2.0mmに設定した。また、
電磁超音波の適用周波数は0.4〜1.0MHzのものが
有効であつた。
FIG. 5 shows an example of the results of measuring the thickness unevenness in the length direction of a high-temperature seamless pipe. This is a measurement of the thickness unevenness rate over the entire length of a seamless pipe after drilling and rolling, which is the initial manufacturing process, in a hot online process. has been well measured. The installation angle of the two electromagnetic ultrasonic generators/detectors 3 and 3' is 135°, and the outer diameter of the pipe is 200 to 400 mm.
φ, wall thickness 50~100mm, pipe surface temperature 1150℃~
The temperature is 1200℃. The size of the electromagnetic ultrasonic generation detector used was 80 mm in diameter and 80 mm in height, and the surface facing the pipe had a curvature that matched the outer diameter of the pipe. The gap between the tip surfaces of the electromagnetic ultrasonic generators 3 and 3' and the pipe surface was set to 2.0 mm. Also,
The applicable frequency of electromagnetic ultrasound was 0.4-1.0MHz.

この様な測定結果は、順次操業側にフイードバ
ツクされ、製造初期から製品工程における偏肉率
減少のための制御情報として利用されたり、製品
パイプの熱処理工程での制御などにも用いられ
る。
Such measurement results are sequentially fed back to the operation side and are used as control information to reduce uneven thickness in the product process from the early stage of manufacturing, and are also used for control in the heat treatment process of product pipes.

以上のように、本発明による金属管の偏肉率測
定方法及び装置を用いることによつて、各種製造
工程における金属管の偏肉状況を適正に測定する
ことが可能となり、各工程での偏肉減少、歩留向
上、寸法精度向上などの品質管理上からも極めて
大きな成果をあげることができる。
As described above, by using the method and device for measuring the thickness unevenness ratio of metal pipes according to the present invention, it is possible to appropriately measure the uneven thickness of metal pipes in various manufacturing processes, and the unevenness of thickness in each process can be measured. It can also produce significant results in terms of quality control, such as reducing wall thickness, improving yield, and improving dimensional accuracy.

なお、本発明は金属管の冷間、熱間のいづれの
過程においても適用可能である。金属管の外径、
肉厚に対しても適用する電磁超音波発生検出器の
サイズ、曲率を変え周波数を適宜変更することに
よつて制限は受けない。また、実施例における原
理説明では縦波電磁超音波を用いているが、横波
を適用しても何ら問題はない。金属管の円周方向
2ケ所の電磁超音波発生検出器の設置角度の制限
はないが、設置角度は180゜に近いほど精度上良
好である。更には、金属管の円周方向の適正な3
ケ所に電磁超音波発生検出器を配置し、その3点
の肉厚値にもとずいて偏肉率を測定する方法も可
能である。この方法によれば、本発明に比べ偏肉
率の測定値は一義的に決まり、かつ測定精度も良
好である利点があるが、電磁超音波発生検出器や
その保持・倣い機構の増設、非要な各電源の容量
増大を必要とするため、設備費が大きくなる欠点
があり、この意味から電磁超音波発生検出器は1
対とするのが好ましい。
Note that the present invention is applicable to both cold and hot processing of metal tubes. The outer diameter of the metal tube,
There are no restrictions on the wall thickness by changing the size and curvature of the electromagnetic ultrasonic generation detector and changing the frequency as appropriate. Further, although longitudinal electromagnetic ultrasonic waves are used in the explanation of the principles in the embodiments, there is no problem in applying transverse waves. Although there is no restriction on the installation angle of the electromagnetic ultrasonic generation detectors at two locations in the circumferential direction of the metal tube, the closer the installation angle is to 180°, the better the accuracy. Furthermore, the proper 3 in the circumferential direction of the metal tube
It is also possible to arrange electromagnetic ultrasonic generation detectors at these three points and measure the thickness unevenness rate based on the wall thickness values at those three points. Compared to the present invention, this method has the advantage that the measured value of the thickness unevenness rate is uniquely determined and the measurement accuracy is also good. Since it is necessary to increase the capacity of each necessary power source, there is a drawback that the equipment cost increases, and in this sense, the electromagnetic ultrasonic generation detector is
A pair is preferable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は縦波電磁超音波発生検出器を用いる金
属管の肉厚測定の原理を説明するための検出器断
面図である。第2図は本発明による金属管の偏肉
率測定の原理図を説明するための管断面図であ
る。第3図のaおよびbは本発明による金属管の
偏肉測定装置構成を示すブロツク図であり、aは
金属管の進行方向に平行な方向から見た側面図、
bは金属管の進行方向に垂直な方向から見た正面
図である。第4図は偏肉率をパラメータとして電
磁超音波発生検出器の設置角度に対する偏肉率測
定値を示すグラフである。第5図は高温シームレ
スパイプの長さ方向における偏肉率測定結果を示
すグラフである。 1,23:金属管、2:間隙、3,3′:電磁
超音波発生検出器、4:回転対称軸、5:超音波
発生コイル、6:検出コイル、7:磁界発生用コ
イル、8:マグネツト、9:保護カバー、10,
30:磁界発生用電源、11:磁界、12,2
9:高周波パルス電源、13:渦電流、14:磁
界、15:振動力、16,17,24:矢印、1
8:振動力、19:渦電流、20,31,3
1′:増幅器、21,33:肉厚演算処理器、2
2,36:表示器、25:高温金属検知器、2
6:制御装置、27,27′:保持・倣い装置、
28,28′:冷却水管、32:加算器、34:
偏肉演算器、35:測定器。
FIG. 1 is a cross-sectional view of a detector for explaining the principle of measuring the wall thickness of a metal tube using a longitudinal wave electromagnetic ultrasonic generation detector. FIG. 2 is a cross-sectional view of a metal tube for explaining the principle of measuring the uneven thickness of a metal tube according to the present invention. FIGS. 3a and 3b are block diagrams showing the configuration of a metal pipe thickness unevenness measuring device according to the present invention, and a is a side view seen from a direction parallel to the direction of movement of the metal pipe;
b is a front view seen from a direction perpendicular to the traveling direction of the metal tube. FIG. 4 is a graph showing the measured value of the thickness unevenness rate with respect to the installation angle of the electromagnetic ultrasonic generation detector using the thickness unevenness rate as a parameter. FIG. 5 is a graph showing the measurement results of the thickness unevenness ratio in the length direction of a high-temperature seamless pipe. 1, 23: metal tube, 2: gap, 3, 3': electromagnetic ultrasonic generation detector, 4: rotational symmetry axis, 5: ultrasonic generation coil, 6: detection coil, 7: magnetic field generation coil, 8: Magnet, 9: Protective cover, 10,
30: Magnetic field generation power supply, 11: Magnetic field, 12,2
9: High frequency pulse power supply, 13: Eddy current, 14: Magnetic field, 15: Vibration force, 16, 17, 24: Arrow, 1
8: Vibration force, 19: Eddy current, 20, 31, 3
1': Amplifier, 21, 33: Thickness arithmetic processor, 2
2, 36: Display, 25: High temperature metal detector, 2
6: Control device, 27, 27': Holding/copying device,
28, 28': Cooling water pipe, 32: Adder, 34:
Measuring device, 35: Measuring device.

Claims (1)

【特許請求の範囲】 1 磁界発生用マグネツトと、渦電流を金属管外
周面に発生せしめる超音波発生用コイルと、金属
管内部からの反射超音波によつて生起せしめられ
る渦電流を検出する検出コイルとからなる少なく
とも一対の電磁超音波発生および検出器を、その
1つが金属管外周面に臨む方向と所定の角度を以
つて金属管外周面に臨む如く他の1つを配設し、
各々の電磁超音波検出器によつて得られる金属管
の肉厚の値から金属管の偏肉の円周方向における
所在位置およびその率を測定するようにしたこと
を特徴とする電磁超音波による金属管の偏肉率測
定方法。 2 磁界発生用マグネツトと、渦電流を金属管外
周面に発生せしめる超音波発生用コイルと、金属
管内部からの反射超音波によつて生起せしめられ
る渦電流を検出する検出コイルとからなる少なく
とも一対の電磁超音波発生および検出器を、その
1が金属管外面に臨む方向と所定の角度を以つて
他の1つが金属管外周面に臨む如く、金属管の半
径方向に進退自在に配設するとともに、金属管の
接近を検出する検知器を設けさらに、各々の電磁
超音波発生および検出器によつて得られる金属管
の肉厚に対応する信号を、前記電磁超音波発生用
コイルに高周波パルス電流を供給する高周波パル
ス電源からの同期信号による金属管周方向におけ
る各箇所の検出信号として識別し、その肉厚に対
応する検出信号に基づいて各々の箇所の肉厚値を
演算する肉厚演算処略器と、金属管の測長器と該
測長器からの金属管の軸方向における位置信号と
前記肉厚演算処理器からの金属管の周方向におけ
る各々の肉厚信号とから金属管の軸方向における
偏肉率を演算する偏肉率演算器とを設けてなる電
磁超音波による金属管の偏肉率測定装置。
[Claims] 1. A magnetic field generating magnet, an ultrasonic generating coil that generates eddy currents on the outer circumferential surface of a metal tube, and a detection device that detects eddy currents generated by reflected ultrasonic waves from inside the metal tube. at least a pair of electromagnetic ultrasonic generators and detectors each comprising a coil, one of which is arranged so as to face the outer circumferential surface of the metal tube at a predetermined angle with the direction in which the other one faces the outer circumferential surface of the metal tube;
A method using electromagnetic ultrasound characterized in that the position and rate of uneven thickness of a metal tube in the circumferential direction are measured from the wall thickness values of the metal tube obtained by each electromagnetic ultrasonic detector. Method for measuring uneven wall thickness of metal pipes. 2. At least one pair consisting of a magnetic field generating magnet, an ultrasonic generating coil that generates eddy currents on the outer peripheral surface of the metal tube, and a detection coil that detects eddy currents generated by reflected ultrasonic waves from inside the metal tube. electromagnetic ultrasonic generators and detectors are disposed so that they can move forward and backward in the radial direction of the metal tube such that one of them faces the outer circumferential surface of the metal tube at a predetermined angle with the direction in which it faces the outer surface of the metal tube. In addition, a detector for detecting the approach of a metal tube is provided, and a signal corresponding to the wall thickness of the metal tube obtained by each electromagnetic ultrasonic generator and detector is sent to the electromagnetic ultrasonic generator coil by a high-frequency pulse. Thickness calculation that identifies each location in the circumferential direction of the metal tube as a detection signal based on a synchronized signal from a high-frequency pulse power supply that supplies current, and calculates the wall thickness value of each location based on the detection signal corresponding to the wall thickness. a metal tube length measuring device, a position signal in the axial direction of the metal tube from the length measuring device, and each wall thickness signal in the circumferential direction of the metal tube from the wall thickness calculation processor. An apparatus for measuring thickness unevenness of a metal pipe using electromagnetic ultrasonic waves, comprising a thickness unevenness calculator for calculating a thickness unevenness in the axial direction of a metal tube.
JP7893981A 1981-05-25 1981-05-25 Method and apparatus for measuring thickness deviation rate of metal pipe by electromagnetic ultrasonic wave Granted JPS57192811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7893981A JPS57192811A (en) 1981-05-25 1981-05-25 Method and apparatus for measuring thickness deviation rate of metal pipe by electromagnetic ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7893981A JPS57192811A (en) 1981-05-25 1981-05-25 Method and apparatus for measuring thickness deviation rate of metal pipe by electromagnetic ultrasonic wave

Publications (2)

Publication Number Publication Date
JPS57192811A JPS57192811A (en) 1982-11-27
JPS6250761B2 true JPS6250761B2 (en) 1987-10-27

Family

ID=13675845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7893981A Granted JPS57192811A (en) 1981-05-25 1981-05-25 Method and apparatus for measuring thickness deviation rate of metal pipe by electromagnetic ultrasonic wave

Country Status (1)

Country Link
JP (1) JPS57192811A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173105A (en) * 1985-01-29 1986-08-04 Mitsubishi Heavy Ind Ltd Instrument for measuring wall thickness of hot pipe
US5029476A (en) * 1989-09-07 1991-07-09 Westinghouse Electric Corp. Ultrasonic system for determining the profile of solid bodies
CN105021143B (en) * 2015-06-25 2018-07-06 沈阳中科韦尔腐蚀控制技术有限公司 A kind of high temperature resistance pipeline wall thickness on-line monitoring probe

Also Published As

Publication number Publication date
JPS57192811A (en) 1982-11-27

Similar Documents

Publication Publication Date Title
US6078397A (en) Method and apparatus for mapping the wall thickness of tubes during production
JP4826949B2 (en) Seamless pipe manufacturing status monitoring apparatus and method, and seamless pipe manufacturing equipment
CN100364695C (en) Method for detecting solidification completion position of continuous casting cast piece, detector, and method for producing continuous casting cast piece
JP6490048B2 (en) Measurement of roll thermal expansion and thermal crown
JPS6250761B2 (en)
US10935361B2 (en) Method for the hot measuring, during rolling, of a size of metal profiles
US4545249A (en) Acoustical position gage
JP2004037460A (en) Method for determining eccentricity of hollow block and device therefor
JP4736716B2 (en) Hot wall thickness measurement method for steel pipes
JPS6245761Y2 (en)
JPS61219810A (en) Method for ultrasonic measurement of wall thickness
JP2001246407A (en) Device for rolling shape
JP2021171790A (en) Method for manufacturing steel plate, method for manufacturing steel pipe, apparatus for manufacturing steel plate and program
JPH0242411B2 (en)
JPS5850407A (en) Device for measuring bending of tube body end part
JP2550896Y2 (en) Rolling control device for steel pipe
JPS60177907A (en) Rolling method of seamless pipe
JPH04319009A (en) Method for rolling steel tube by on-line measuring displacement of surface of rolling roll in high-speed hot rolling process for steel tube
US20050155402A1 (en) Method and apparatus for detecting roll eccentricity utilizing pulse generator in rolling mill
US10948279B2 (en) Device and method for the hot measuring, during rolling, of a size of metal profiles
JPH0619270B2 (en) Detection method of inner surface grinding shape of ERW pipe weld
JP3593589B2 (en) Roll profile measurement method
JPH05277571A (en) Small r tube bending method
JPH03245026A (en) Measuring method for internal temperature of cast metal
JPS59159218A (en) Method and device for monitoring condition of wall thickness deviation of seamless pipe