JPH0242411B2 - - Google Patents

Info

Publication number
JPH0242411B2
JPH0242411B2 JP58162319A JP16231983A JPH0242411B2 JP H0242411 B2 JPH0242411 B2 JP H0242411B2 JP 58162319 A JP58162319 A JP 58162319A JP 16231983 A JP16231983 A JP 16231983A JP H0242411 B2 JPH0242411 B2 JP H0242411B2
Authority
JP
Japan
Prior art keywords
steel pipe
thickness
measured
temperature
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58162319A
Other languages
Japanese (ja)
Other versions
JPS6053806A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16231983A priority Critical patent/JPS6053806A/en
Publication of JPS6053806A publication Critical patent/JPS6053806A/en
Publication of JPH0242411B2 publication Critical patent/JPH0242411B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness

Description

【発明の詳細な説明】 本発明は鋼管の冷間時厚さを極めて精度良く測
定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the cold thickness of a steel pipe with extremely high accuracy.

近年油井管等の鋼管は需要の増大に伴つて高品
質化が要求されている。この要求に対応するため
には鋼管製造中に厚さ等を計測し、計測結果を製
造ラインに反映させるのが臨ましい。鋼管製造中
にその厚さを測定する方法として電磁超音波を利
用する方法が知られている。この方法は鋼管に直
流磁界を付与しておき、その表面に臨ませたコイ
ルに高周波電流を瞬時印加することによつて表面
に渦電流を生ぜしめて該直流磁界とのローレンツ
力により歪を生じさせ、これにより発生した超音
波を鋼管内面に向けて伝播させて、超音波発生時
点より内表面からのエコーの検出時点までの時間
Tを計測し、このT値を下記(1)式に代入すること
により厚さDを測定する方法である。
In recent years, as demand for steel pipes such as oil country tubular goods has increased, higher quality has been required. In order to meet this demand, it is desirable to measure the thickness, etc. during steel pipe manufacturing and reflect the measurement results on the manufacturing line. A method using electromagnetic ultrasound is known as a method for measuring the thickness of steel pipes during manufacture. In this method, a DC magnetic field is applied to the steel pipe, and a high-frequency current is instantaneously applied to a coil facing the surface of the pipe to generate eddy currents on the surface, causing distortion due to the Lorentz force with the DC magnetic field. The ultrasonic waves thus generated are propagated toward the inner surface of the steel pipe, and the time T from the time the ultrasonic waves are generated to the time an echo is detected from the inner surface is measured, and this T value is substituted into the following equation (1). This is a method for measuring the thickness D.

D=T・V/2 ……(1) 但し、V:鋼管内の音速 しかしながらこの方法を用いて鋼管製造工程中
のように、熱間材の厚さを測定する場合には次の
ような難点があつた。即ち、被測定材の温度ムラ
により音速Vが測定部ごとに異なり、この音速V
の値として固定値を用いている場合には測定誤差
が大きい。更に製造ラインに反映させるためには
熱管で測定する必要があるが、成品の品質管理寸
法は冷間時のものであり、同様の理由で十分な温
度補正が行えておらず有効な制御情報となり得て
いなかつた。
D=T・V/2...(1) However, V: Sound velocity inside a steel pipe However, when using this method to measure the thickness of hot material, such as during the steel pipe manufacturing process, the following There was a problem. In other words, the sound velocity V varies depending on the measuring section due to temperature unevenness of the material to be measured, and this sound velocity V
When a fixed value is used as the value of , the measurement error is large. Furthermore, it is necessary to measure with a hot tube in order to reflect it on the manufacturing line, but the quality control dimensions of the finished product are for when it is cold, and for the same reason, sufficient temperature correction cannot be performed and it is not effective control information. I wasn't getting it.

本発明は斯かる事情に鑑みてなされたものであ
り、その目的とするところはストレツチレデユー
サミル出側にて電磁超音波により熱管の被測定材
の厚さを計測すると同時に鋼管の表面温度を計測
し、これにより鋼管の温度に依存する音速の補正
及び収縮による厚さ補正を行つてストレツチレデ
ユーサミル出側の熱間時に、冷間時の鋼管の厚さ
を精度よく測定することで後の精整ラインにおい
て寸法測定、材料の取り合わせ配分等の工程を不
必要化し得るようにした厚さ測定方法を提供する
にある。
The present invention has been made in view of the above circumstances, and its purpose is to measure the thickness of the material to be measured in the heat tube using electromagnetic ultrasonic waves at the exit side of the stretching reducer mill, and at the same time measure the surface temperature of the steel tube. To accurately measure the thickness of the steel pipe when it is hot and when it is cold at the exit side of the stretch reducer mill by measuring the sound velocity that depends on the temperature of the steel pipe and correcting the thickness due to contraction. It is an object of the present invention to provide a thickness measuring method that makes it possible to eliminate steps such as dimension measurement and material arrangement/distribution in a subsequent finishing line.

本発明に係る厚さ測定方法は鋼管の縮径圧延を
行うストレツチレデユーサミルの出側で鋼管の厚
さを測定する方法において、前記ストレツチレデ
ユーサミルの出側における鋼管温度が720℃〜880
℃になる位置で、直流磁場を付与した鋼管に電磁
誘導にて渦電流を生ぜしめて該直流磁場とのロー
レンツ力により縦波の超音波振動を生じさせ、こ
の振動又はその反射波を鋼管表面に臨ませたコイ
ルにて検出して、前記超音波振動の伝播時間を求
める一方、鋼管の表面温度を計測し、伝播時間を
求めた鋼管の位置に対応する計測温度Sにより鋼
管中の前記超音波振動の伝播速度Vsを、 Vs=b−a・S 但しa、bは定数 として求め、該Vsと鋼管の熱膨張量と、前記伝
播時間とを用いて、鋼管の冷間時での厚さを求め
ることを特徴とする。
The thickness measuring method according to the present invention is a method of measuring the thickness of a steel pipe at the exit side of a stretching reduction mill that performs diameter reduction rolling of the steel pipe, wherein the steel pipe temperature at the exit side of the stretching reduction mill is 720°C. ~880
℃, an eddy current is generated by electromagnetic induction in the steel pipe to which a DC magnetic field is applied, and longitudinal ultrasonic vibration is generated by the Lorentz force with the DC magnetic field, and this vibration or its reflected wave is applied to the surface of the steel pipe. The propagation time of the ultrasonic vibration is determined by detecting the ultrasonic vibration with a coil placed in front of it, while the surface temperature of the steel pipe is measured, and the ultrasonic wave in the steel pipe is determined by the measured temperature S corresponding to the position of the steel pipe where the propagation time is determined. The propagation speed of vibration Vs is determined as Vs = b-a・S, where a and b are constants. Using Vs, the amount of thermal expansion of the steel pipe, and the propagation time, calculate the thickness of the steel pipe when it is cold. It is characterized by seeking.

次に本発明の図面に基づき具体的に説明する。
第1図は本発明の実施状態を示す模式図、第2図
は第1図の−線による模式的断面図である。
図中1は電磁超音波発生部を示しており、電磁超
音波発生部1は表面温度が720〜880℃の鋼管Pを
直流磁化して前記原理により鋼管P内に超音波を
伝播せしめるものであり、全体として円筒状をな
し、鋼管Pはその内部に挿通されて軸長方向へ移
動されている。
Next, the present invention will be specifically explained based on the drawings.
FIG. 1 is a schematic diagram showing an implementation state of the present invention, and FIG. 2 is a schematic sectional view taken along the - line in FIG. 1.
In the figure, 1 indicates an electromagnetic ultrasonic generator. The electromagnetic ultrasonic generator 1 magnetizes a steel pipe P with a surface temperature of 720 to 880°C with direct current and propagates the ultrasonic wave inside the steel pipe P according to the above-mentioned principle. It has a cylindrical shape as a whole, and the steel pipe P is inserted into the inside and moved in the axial direction.

そして発生部1には厚さ測定部、即ち後述する
コイル51,52に可及的に近接するように放射
温度計10が配設されている。
A radiation thermometer 10 is disposed in the generating section 1 so as to be as close as possible to a thickness measuring section, that is, coils 51 and 52, which will be described later.

前記電磁超音波発生部1は次のような構成とし
ている。即ち鉄心2a,2bはその軸長方向に2
分割され、夫々中心部に切欠き部を有する断面コ
字状(図面は軸心線の一側を断面で表しているの
で到立L形に現れる)の円筒形に作られ、鉄心2
a,2b夫々の切欠き部には先端部が先細り状に
された円筒形鉄心2′a,2′bが挿着されてい
る。夫々の鉄心2a,2′a,2b,2′b内部に
は励磁コイル3a,3bが固着されている。鉄心
2′a,2′bの先細りの先端部にはコイル収納ブ
ロツク4が介装されている。このブロツク4は非
磁性体からなる円筒状物であり、その6等配の位
置には内周側に位置させて、即ち鋼管P外周に臨
ませて送信コイル51及び受信コイル52が同心
状に組合されて、その軸心方向を鋼管Pの半径方
向として配置してあり、このコイル51,52は
ブロツク4の内周側に露出することなく非導電性
のカバー6にて覆われている。そして熱間の鋼管
Pに近接する鉄心2′a,2′b及びブロツク4に
は夫々導水管7,8を通して冷却水が通流されて
これによる冷却が行われ、また冷却水通流のため
に形成した導水管7に沿わせてコイル51,52
へのケーブルが挿通されている。このように構成
された電磁超音波発生部1のうち励磁コイル3
a,3bには図示しない直流電源が接続されてお
り、またコイル51,52夫々にはパルス電流発
生回路11及び増幅器13が接続されている。
The electromagnetic ultrasonic wave generator 1 has the following configuration. That is, the iron cores 2a and 2b are 2 in the axial direction.
It is divided into cylindrical parts, each having a U-shaped cross section with a notch in the center (the drawing shows a cross section of one side of the axis line, so it appears as an L-shape), and the iron core 2
Cylindrical iron cores 2'a and 2'b each having a tapered tip are inserted into the notches a and 2b, respectively. Excitation coils 3a, 3b are fixed inside the respective iron cores 2a, 2'a, 2b, 2'b. A coil storage block 4 is interposed at the tapered tip of the iron cores 2'a, 2'b. This block 4 is a cylindrical object made of a non-magnetic material, and a transmitting coil 51 and a receiving coil 52 are arranged concentrically at six equally spaced positions on the inner circumferential side, that is, facing the outer circumference of the steel pipe P. The coils 51 and 52 are assembled and arranged so that the axial direction thereof is the radial direction of the steel pipe P, and the coils 51 and 52 are covered with a non-conductive cover 6 without being exposed to the inner peripheral side of the block 4. Cooling water is passed through the iron cores 2'a, 2'b and block 4, which are close to the hot steel pipe P, through water conduit pipes 7 and 8, respectively, for cooling. Coils 51 and 52 are installed along the water conduit 7 formed in the
The cable to is inserted. The excitation coil 3 of the electromagnetic ultrasonic generator 1 configured in this way
A DC power supply (not shown) is connected to a and 3b, and a pulse current generating circuit 11 and an amplifier 13 are connected to the coils 51 and 52, respectively.

励磁コイル3a,3bに直流電流を通流せしめ
ると鉄心2′a,2′b管、つまりブロツク4に臨
む鋼管P表面には鋼管軸方向の直流磁界が与えら
れる。一方同期パルス発生回路12からのトリガ
一信号に基づきパルス電流発生回路11はパルス
電流を発し、これを送信コイル51に通流するこ
とにより鋼管Pの半径方向の磁束が変化し、この
磁束変化に伴つて鋼管P表面に渦電流が発生す
る。この渦電流と前記磁界とによるローレンツ力
にて鋼管P表面と垂直な方向に変化する歪(フレ
ミングの左手の法則)が発生し、該歪は鋼管Pの
表面と垂直な方向に伝播する。即ち鋼管P表面か
らの縦波の超音波発生する。この超音波は鋼管P
中を伝播し、その内周面で反射し、この反射超音
波は外表面に到達し前述と逆の過程(フレミング
の右手の法則)により渦電流を発生し受信コイル
52で渦電流により発生する誘起電圧として検出
される。検出された信号は増幅器13へ送られ
る。
When a DC current is passed through the excitation coils 3a and 3b, a DC magnetic field is applied to the surface of the steel pipe P facing the iron cores 2'a and 2'b, that is, the block 4, in the axial direction of the steel pipe. On the other hand, the pulse current generation circuit 11 emits a pulse current based on a trigger signal from the synchronous pulse generation circuit 12, and by passing this through the transmitting coil 51, the magnetic flux in the radial direction of the steel pipe P changes, and due to this magnetic flux change. Accordingly, an eddy current is generated on the surface of the steel pipe P. The Lorentz force caused by this eddy current and the magnetic field generates a strain (Fleming's left-hand rule) that changes in a direction perpendicular to the surface of the steel pipe P, and the strain propagates in a direction perpendicular to the surface of the steel pipe P. That is, longitudinal ultrasonic waves are generated from the surface of the steel pipe P. This ultrasonic wave is a steel pipe P
The reflected ultrasonic wave propagates through the inside and is reflected by its inner circumferential surface, and this reflected ultrasonic wave reaches the outer surface and generates an eddy current by the process opposite to the above (Fleming's right-hand rule), which is generated by the eddy current in the receiving coil 52. Detected as induced voltage. The detected signal is sent to amplifier 13.

増幅器13は入力信号を増幅し、増幅された信
号は同期検波器14により包絡線検波されてゲー
ト回路16へ送られる。このとき増幅器13出力
のピーク値は感度補正回路15によりほぼ所定値
となるように調整されている。
The amplifier 13 amplifies the input signal, and the amplified signal is subjected to envelope detection by the synchronous detector 14 and sent to the gate circuit 16. At this time, the peak value of the output of the amplifier 13 is adjusted by the sensitivity correction circuit 15 so that it becomes approximately a predetermined value.

上記ゲート回路16には同期パルス発生回路1
2からのトリガ一信号が与えられており、これに
よりゲート回路16はパルス電流を送信コイル5
1に通電した時点から最初のエコーを検出した時
点まで計数を行わせるべき信号を時間計数回路1
7に送つている。
The gate circuit 16 includes a synchronous pulse generation circuit 1
2, the gate circuit 16 sends a pulse current to the transmitting coil 5.
The time counting circuit 1 generates a signal that should be counted from the time when the circuit 1 is energized to the time when the first echo is detected.
I am sending it to 7.

時間計数回路17にはクロツクパルス発生回路
18から一定周波数のクロツクパルスが与えられ
ており、これをゲート回路16からの信号が与え
られている期間、つまり鋼管Pの表面に超音波が
発生した時点からその内表面よりのエコーが検出
された時点までのクロツクパルス個数を求め、こ
の値を演算回路19へ与える。
A clock pulse of a constant frequency is supplied to the time counting circuit 17 from a clock pulse generation circuit 18, and the clock pulse is applied to the time counting circuit 17 from the period when the signal from the gate circuit 16 is supplied, that is, from the time when the ultrasonic wave is generated on the surface of the steel pipe P. The number of clock pulses until the echo from the inner surface is detected is determined and this value is provided to the arithmetic circuit 19.

前記放射温度計10は鋼管Pの表面温度を検出
し、検出信号はA/D変換器20を介して演算回
路19へ与えられる。
The radiation thermometer 10 detects the surface temperature of the steel pipe P, and a detection signal is given to the arithmetic circuit 19 via the A/D converter 20.

第3図は鋼管P表面温度と縦波音速との関係を
示す実験結果であり、本発明方法同様電磁超音波
と放射温度計を利用して測定したものであり、再
現性のよい測定結果が得られている。そして変態
点近傍では不規則な変化をするが他の温度域、特
に熱間鋼管の温度720℃〜880℃の範囲ではよいリ
ニアリテイを示す。
Figure 3 shows the experimental results showing the relationship between the surface temperature of the steel pipe P and the longitudinal sound velocity, which was measured using electromagnetic ultrasound and a radiation thermometer, similar to the method of the present invention, and the measurement results have good reproducibility. It has been obtained. Although it changes irregularly near the transformation point, it shows good linearity in other temperature ranges, especially in the temperature range of 720°C to 880°C for hot-worked steel pipes.

演算回路19にはこの温度範囲の鋼管表面温度
−音速の関係を示す下記(2)式を設定してあり、 Vs=b−a・S ……(2) 但し、 S:鋼管表面温度 Vs:鋼管表面温度Sでの鋼管内の音速 a・b:定数 A/D変換器20からの入力Sによつて鋼管表
面温度Sでの鋼管内の音速Vsを算出し、次いで
下記(3)的により音速Vsを用いたときの厚さDsを
算出する。
The calculation circuit 19 is set with the following equation (2) that indicates the relationship between the steel pipe surface temperature and the sound speed in this temperature range, Vs = b - a · S ... (2) where, S: steel pipe surface temperature Vs: Sound velocity a and b in the steel pipe at the steel pipe surface temperature S: Constant The sound velocity Vs in the steel pipe at the steel pipe surface temperature S is calculated using the input S from the A/D converter 20, and then according to the following (3). Calculate the thickness Ds using the sound speed Vs.

Ds=T・Vs/2 ……(3) なおTを計測した位置とSを計測した位置とのず
れは演算回路19で補正する。
Ds=T·Vs/2 (3) Note that the difference between the position where T is measured and the position where S is measured is corrected by the arithmetic circuit 19.

また演算回路19には前記温度域の熱膨脹計数
αsを設定してあり、下記(4)式に従い冷間常温温
度S0での厚さD′sを算出する。
Further, the arithmetic circuit 19 is set with a thermal expansion coefficient αs in the temperature range, and calculates the thickness D's at the cold room temperature S 0 according to the following equation (4).

D′s=Ds−Ds・∫S S0α(S)dS ……(4) このD′sは表示器21に表示させる。 D′s=Ds−Ds・∫ S S0 α(S)dS (4) This D′s is displayed on the display 21.

なお演算回路19は鋼管P周りの6組のコイル
に共通して設けることとし、各コイルの組につき
順次的に情報を取り込むようにすればよい。表示
器21は各コイルによる測定値を各別に表示する
ように6つ設けてもよく、また1つだけ設けて選
択的に表示するようにしてもよい。また表示器2
1と共に又は表示器21に替えて記録計を設けて
もよい。更に演算回路19をミニコンピユータ等
の計算機として、結果をフロツピーデイスク等に
格納するようにしてもよい。計算はオンラインで
もオフラインでも行えることは勿論である。
Note that the arithmetic circuit 19 may be provided in common to the six sets of coils around the steel pipe P, and information may be taken in sequentially for each set of coils. Six indicators 21 may be provided to display the measured values of each coil separately, or only one may be provided to selectively display the values. Also, display 2
1 or in place of the display 21, a recorder may be provided. Furthermore, the arithmetic circuit 19 may be a calculator such as a minicomputer, and the results may be stored in a floppy disk or the like. Of course, calculations can be performed both online and offline.

上記説明ではコイルを送信用と受信用とを各別
にした構成としているがコイルを1つだけ設けて
送受信兼用としてもよい。また鋼管Pを直流磁化
する装置としては前述の如く電磁石に限らず永久
磁石を用いてもよい。更に鋼管Pの厚さを測定す
る場合を示したが管以外でも測定できる。そし
て、更に反射法による場合を示しているがこのも
のに限らず被測定材を挟んでコイルを対向させて
透過法によつても良いことは勿論である。
In the above description, the coils are used separately for transmission and reception, but only one coil may be provided for both transmission and reception. Further, as a device for DC magnetizing the steel pipe P, not only the electromagnet as described above but also a permanent magnet may be used. Furthermore, although the case where the thickness of the steel pipe P is measured is shown, measurements can also be made on other materials other than pipes. Further, although the case where a reflection method is used is shown, the method is not limited to this, and it goes without saying that a transmission method may also be used in which the coils are opposed to each other with the material to be measured interposed therebetween.

次に本発明の実施例につき説明する。電磁超音
波発生部1をストレツチレデユーサミルの出側か
ら2番目のロール上流側に配し、ミルにて処理中
の鋼管の厚さを測定した。測定対象の管の鋼種は
S50Cのカーボン鋼であり、外径42.7mmφ、60.3mm
φ、114.3mmφの3種類、厚さ3.2〜25mmt、長さ
14〜90mのもの400本を全長に亘つて4ミリ秒毎
(約20mmピツチの長さに相当)にて測定した。な
お前記(2)式のa値は温度100℃当り90m/秒、b
値は5600m/秒を用いた。
Next, examples of the present invention will be described. The electromagnetic ultrasonic wave generator 1 was placed upstream of the second roll from the outlet side of the stretching reduction mill, and the thickness of the steel pipe being processed in the mill was measured. The steel type of the pipe to be measured is
S50C carbon steel, outer diameter 42.7mmφ, 60.3mm
Three types: φ, 114.3mmφ, thickness 3.2~25mmt, length
Measurements were taken every 4 milliseconds (corresponding to a length of about 20 mm pitch) over the entire length of 400 pieces measuring 14 to 90 m. Note that the a value in the above equation (2) is 90 m/sec per 100°C temperature, and b
A value of 5600 m/sec was used.

第4図は横軸に鋼管先端からの長さmをとり縦
軸に測定厚さmmをとつて、本発明により求めた厚
さD′s(実線)を示したグラフであり、比較のため
に温度に関する補正を行わない場合の厚さD(破
線)を併せて示している。この図より本発明によ
り求めた厚さD′aは温度による補正を行わない場
合の厚さDより小さく、また圧延終了端近傍の低
温部では熱収縮による補正量が小さいため若干な
がら補正によるD′s〜Dの差は小さくなつている
ことがわかる。
Figure 4 is a graph showing the thickness D's (solid line) determined by the present invention, with the horizontal axis representing the length m from the tip of the steel pipe and the vertical axis representing the measured thickness mm. Also shown is the thickness D (dashed line) when no temperature-related correction is performed. From this figure, the thickness D'a obtained by the present invention is smaller than the thickness D without temperature correction, and since the amount of correction due to heat shrinkage is small in the low temperature part near the end of rolling, the thickness D′a obtained by the present invention is slightly corrected. It can be seen that the difference between 's~D is becoming smaller.

第5図は横軸に本発明方法による測定値D′s−
冷間での測定値をとり縦軸に測定度数をとつて、
本発明により求めた厚さD′sと冷間で実測したと
きの厚さとの差を求めその度数分布を示したグラ
フであり、比較のために第6図に温度による補正
をしない場合の度数分布を横軸に補正をしない場
合の測定値D−冷間での実測値をとり縦軸に測定
度数をとつて示している。これら両図より本発明
による場合はその分布が冷間での実測値に近づ
き、±0.1mmの精度で測定でき、これにより測定精
度が向上したことがわかる。
In FIG. 5, the horizontal axis shows the measured value D′s− by the method of the present invention.
Take the cold measurement value and plot the measured frequency on the vertical axis,
This is a graph showing the frequency distribution of the difference between the thickness D's determined by the present invention and the thickness actually measured in cold conditions.For comparison, FIG. The horizontal axis shows the measured value D without correction - the actual measured value in the cold, and the vertical axis shows the measured frequency. From these two figures, it can be seen that in the case of the present invention, the distribution approaches the actual measured value in the cold, and measurement can be performed with an accuracy of ±0.1 mm, thereby improving measurement accuracy.

本発明は以上の如き方法であるのでストレツチ
レデユーサミル出側にて熱間で鋼管における冷間
時の厚さを正確に測定することができる。
Since the present invention employs the above-described method, it is possible to accurately measure the cold thickness of a steel pipe while hot at the exit side of a stretch reduction mill.

特に本発明においては、表面温度を測定するだ
けでしかも計算の容易な1次式を用いてストレツ
チレデユーサミル出側における鋼管中の超音波振
動の伝播速度を求めることができ、正確な測定が
容易に且つ迅速に行えるのである。
In particular, in the present invention, it is possible to determine the propagation velocity of ultrasonic vibration in the steel pipe at the exit side of the stretch reduction mill by simply measuring the surface temperature and using a linear equation that is easy to calculate. This can be done easily and quickly.

従つて製造ラインへその測定結果を反映させ
得、製品の寸法精度の向上を図れることは勿論、
後の精整ラインでの寸法測定、材料の取り合わせ
配分等を行う工程を省略し得る等優れた効果を奏
する。
Therefore, it is possible to reflect the measurement results on the production line, and of course improve the dimensional accuracy of the product.
This has excellent effects, such as the ability to omit the steps of measuring dimensions, assembling and distributing materials, etc. on the finishing line later.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施状態を示す模式図、第2
図は第1図の−線による模式的断面図、第3
図は鋼管表面温度と音速との関係を示すグラフ、
第4図は本発明による測定結果を示したグラフ、
第5図は本発明の測定誤差を示したグラフ、第6
図は温度による補正を行わない場合の測定誤差を
示したグラフである。 P……鋼管、3a,3b……励磁コイル、10
……放射温度計、19……演算回路、51……送
信コイル、52……受信コイル。
Figure 1 is a schematic diagram showing the implementation state of the present invention, Figure 2 is a schematic diagram showing the implementation state of the present invention.
The figure is a schematic sectional view taken along the - line in Figure 1.
The figure is a graph showing the relationship between steel pipe surface temperature and sound speed.
FIG. 4 is a graph showing measurement results according to the present invention.
Figure 5 is a graph showing the measurement error of the present invention, Figure 6 is a graph showing the measurement error of the present invention.
The figure is a graph showing measurement errors when no temperature correction is performed. P... Steel pipe, 3a, 3b... Excitation coil, 10
... Radiation thermometer, 19 ... Arithmetic circuit, 51 ... Transmission coil, 52 ... Receiving coil.

Claims (1)

【特許請求の範囲】 1 鋼管の縮径圧延を行うストレツチレデユーサ
ミルの出側で鋼管の厚さを測定する方法におい
て、 前記ストレツチレデユーサミルの出側における
鋼管温度が720℃〜880℃になる位置で、直流磁場
を付与した鋼管に電磁誘導にて渦電流を生ぜしめ
て該直流磁場とのローレンツ力により縦波の超音
波振動を生じさせ、この振動又はその反射波を鋼
管表面に臨ませたコイルにて検出して、前記超音
波振動の伝播時間を求める一方、鋼管の表面温度
を計測し、伝播時間を求めた鋼管の位置に対応す
る計測温度Sにより鋼管中の前記超音波振動の伝
播速度Vsを、 Vs=b−a・S 但しa、bは定数 として求め、該Vsと鋼管の熱膨張量と、前記伝
播時間とを用いて、鋼管の冷間時での厚さを求め
ることを特徴とする厚さ測定方法。
[Claims] 1. A method for measuring the thickness of a steel pipe at the exit side of a stretching reduction mill that performs diameter reduction rolling of the steel pipe, wherein the steel pipe temperature at the exit side of the stretching reduction mill is 720°C to 880°C. ℃, an eddy current is generated by electromagnetic induction in the steel pipe to which a DC magnetic field is applied, and longitudinal ultrasonic vibration is generated by the Lorentz force with the DC magnetic field, and this vibration or its reflected wave is applied to the surface of the steel pipe. The propagation time of the ultrasonic vibration is determined by detecting the ultrasonic vibration with a coil placed in front of it, while the surface temperature of the steel pipe is measured, and the ultrasonic wave in the steel pipe is determined by the measured temperature S corresponding to the position of the steel pipe where the propagation time is determined. The propagation speed of vibration Vs is determined as Vs = b-a・S, where a and b are constants. Using Vs, the amount of thermal expansion of the steel pipe, and the propagation time, calculate the thickness of the steel pipe when it is cold. A thickness measurement method characterized by determining .
JP16231983A 1983-09-02 1983-09-02 Thickness measuring method Granted JPS6053806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16231983A JPS6053806A (en) 1983-09-02 1983-09-02 Thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16231983A JPS6053806A (en) 1983-09-02 1983-09-02 Thickness measuring method

Publications (2)

Publication Number Publication Date
JPS6053806A JPS6053806A (en) 1985-03-27
JPH0242411B2 true JPH0242411B2 (en) 1990-09-21

Family

ID=15752266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16231983A Granted JPS6053806A (en) 1983-09-02 1983-09-02 Thickness measuring method

Country Status (1)

Country Link
JP (1) JPS6053806A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648183B2 (en) * 1988-08-22 1994-06-22 新日本製鐵株式会社 Cast solidification thickness calculator
KR100635697B1 (en) 2004-07-29 2006-10-17 한국표준과학연구원 Method for thickness measurement using ultrasonics with the function of temperature correction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432347A (en) * 1977-08-17 1979-03-09 Nippon Steel Corp Measuring apparatus of mean thickness of metal pipe by electromagnetic ultrasonic waves
JPS5432346A (en) * 1977-08-17 1979-03-09 Nippon Steel Corp Measuring apparatus of thickness deviation of metal pipes by electromagnetic ultrasonic waves
JPS5450359A (en) * 1977-09-29 1979-04-20 Toshiba Corp Radiation thickness gauge
JPS5454664A (en) * 1977-10-08 1979-05-01 Nippon Steel Corp Measuring apparatus for thickness of billet solidification in continuous casting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432347A (en) * 1977-08-17 1979-03-09 Nippon Steel Corp Measuring apparatus of mean thickness of metal pipe by electromagnetic ultrasonic waves
JPS5432346A (en) * 1977-08-17 1979-03-09 Nippon Steel Corp Measuring apparatus of thickness deviation of metal pipes by electromagnetic ultrasonic waves
JPS5450359A (en) * 1977-09-29 1979-04-20 Toshiba Corp Radiation thickness gauge
JPS5454664A (en) * 1977-10-08 1979-05-01 Nippon Steel Corp Measuring apparatus for thickness of billet solidification in continuous casting

Also Published As

Publication number Publication date
JPS6053806A (en) 1985-03-27

Similar Documents

Publication Publication Date Title
US6920792B2 (en) Transducer guided wave electromagnetic acoustic
US5225148A (en) Method for checking the thickness and the cohesion of the interface of a duplex tube
KR20050081574A (en) Transducer for generating and sensing torsional waves, and apparatus and method for structural diagnosis using it
Murayama et al. Study of magnetic pole materials for static magnetic field and dynamic magnetic field that compose an electromagnetic acoustic transducer for Lamb waves using the magnetostriction effect
JPH0242411B2 (en)
JPH0587780A (en) Method and apparatus for nondestructive inspection of metal pipe
WO2004106913A1 (en) Guided wave electromagnetic acoustic transducer
JP2018059804A (en) Calibration device for nondestructive inspection measurement system, and nondestructive inspection measurement method
JPH073406B2 (en) Hardness measuring method
JP4411734B2 (en) Hot ultrasonic thickness gauge and thickness measurement method
JPS6261884B2 (en)
WO1988006268A1 (en) Apparatus for measuring or testing dimension or contour through measuring distance
JPS60177907A (en) Rolling method of seamless pipe
JP2591188B2 (en) Electromagnetic characteristic detection method and device
JPS6186121A (en) Tube cutting method
JPH1038862A (en) Method and device for iron loss value evaluation
YAMAGUCHI et al. Development of hot seamless tube wall thickness gauge by electromagnetic acoustic transducer
JPH03160361A (en) Transformation quantity measuring apparatus for steel material
JPS61230018A (en) Electromagnetic ultrasonic wave measuring instrument
JPH05215617A (en) Method for measuring average temperature on cross-section of object
JPS59151030A (en) Vortex type axial force measuring method
JPH02248824A (en) Apparatus for measuring residual stress
JPH11166918A (en) Method and device for measuring rate of transformation
JPS61210942A (en) Device for measuring transformation quantity of steel
JPS609562A (en) Device for measuring solidification thickness of billet