JPS6250645A - Chemical analysis - Google Patents

Chemical analysis

Info

Publication number
JPS6250645A
JPS6250645A JP19126885A JP19126885A JPS6250645A JP S6250645 A JPS6250645 A JP S6250645A JP 19126885 A JP19126885 A JP 19126885A JP 19126885 A JP19126885 A JP 19126885A JP S6250645 A JPS6250645 A JP S6250645A
Authority
JP
Japan
Prior art keywords
data
absorbance
determined
absorbancy
regression line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19126885A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kawashima
川嶋 潔
Minoru Ineji
稲次 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP19126885A priority Critical patent/JPS6250645A/en
Publication of JPS6250645A publication Critical patent/JPS6250645A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)

Abstract

PURPOSE:To make the exact analysis of a reaction speed by carrying out plural times of the operation to determined the regression line of an absorbancy curve by a method of least squares from plural sets of absorbancy data and to determined the regression line by excluding the absorbancy data exceeding the standard deviation therefrom and making the analytical measurement of the reaction speed from the finally remaining data. CONSTITUTION:The regression line for the absorbancy curve is determined by the method of least squares from the absorbancy data at the plural points of the time sent from a device body 1 by a control device 2. The data of which the absolute value of the difference in the absorbancy data at the various points of the time with respect to the standard deviation thereof exceeds the prescribed coefft. times of the standard deviation is removed from the data and the regression line is determined. Such operation is carried out plural times and the exact analytical measurement of the reaction speed is made in accordance with the finally remaining data. The result thereof is displayed on a display device 3.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は正確な反応速度測定を可能にした化学分析方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a chemical analysis method that enables accurate reaction rate measurement.

[従来の技術] 最近、血液や尿等の生体液の分析に化学分析方法が頻繁
に使用されている。この分析方法は、被検液と試薬を反
応させ、この反応具合を、例えば、光学的に測定しよう
とするものである。この様な化学分析方法に、被検液と
試薬が反応している最中に、吸光度等の変化を一定時間
測定する反応速度分析法(Reaction Rate
 As5ay)  (以模、RRAと称す)があり、例
えば、酵素の活性値を測定する場合等に使用される。
[Prior Art] Recently, chemical analysis methods have been frequently used to analyze biological fluids such as blood and urine. This analysis method involves reacting a test liquid with a reagent and measuring the extent of this reaction optically, for example. In addition to these chemical analysis methods, there is a reaction rate analysis method that measures changes in absorbance, etc. over a certain period of time while the test solution and reagent are reacting.
As5ay) (hereinafter referred to as RRA) is used, for example, when measuring the activity value of an enzyme.

第3図は化学分析装置を使用して、血清を成る分析項目
(例えばGOT)についてRRA測定により分析しよう
とした場合の被検液Aの時間−吸光度特性線を示したち
のである。さて、RRA測定を行なう事は、簡単には、
この時間−吸光度特性線の傾きを求める事である。即ち
、例えば、反応開始からtlとjnの間の吸光度(夫々
OD+ 。
FIG. 3 shows the time-absorbance characteristic line of test liquid A when an analysis item (for example, GOT) consisting of serum is to be analyzed by RRA measurement using a chemical analyzer. Now, to perform RRA measurement, it is easy to do the following:
The purpose is to find the slope of this time-absorbance characteristic line. That is, for example, the absorbance between tl and jn (OD+, respectively) from the start of the reaction.

OD、)の変化である次のΔODを測定している。The next ΔOD, which is the change in OD, ), is measured.

Δ00− (ODn −OD+ )/ (tn −t+
 )[発明が解決しようとする問題点] 所で、実際に、反応開始からit、jz、tz。
Δ00− (ODn −OD+ )/(tn −t+
) [Problems to be Solved by the Invention] Actually, it, jz, tz from the start of the reaction.

・・・・・・・・・・・・、tnにおける吸光度を測定
すると一1第4図に示す様に、測定した吸光度値が理想
的直線状の時間−吸光度特性線上に必ずしも無く、この
理想的な時間−吸光度特性線の上下に分散している。こ
の様な分散は、光学的検出器のSN比2反応容器の機械
的振動や位置ずれ等による反応時のSN比、副反応等に
よる反応自身のSN比不足等が原因で起こる。
When absorbance at tn is measured, as shown in Figure 4, the measured absorbance value is not necessarily on the ideal linear time-absorbance characteristic line. They are distributed above and below the typical time-absorbance characteristic line. Such dispersion occurs due to the S/N ratio of the optical detector being 2 during the reaction due to mechanical vibration or positional shift of the reaction vessel, or insufficient S/N ratio of the reaction itself due to side reactions.

従って、この様な分散がある侭、ΔODを測定しても、
正確なRRA測定を行なった事にはならない。
Therefore, even though there is such a dispersion, even when measuring ΔOD,
This does not mean that an accurate RRA measurement has been performed.

本発明は、この様な問題を解決する事を目的としたもの
である。
The present invention aims to solve such problems.

[問題点を解決するための手段] そこで、本発明は、反応開始時点以後、複数の各時点に
おいて吸光度を測定し、測定された各時点における吸光
度データから最小二乗法を用いて吸光度特性線を表す回
帰式を求め、この回帰式を用いて前記データの標準偏差
を求め、前記測定された各時点における吸光度データの
内、前記回帰式によって算出される値とこの吸光度デー
タとの差の絶対値が、この標準偏差に基づいて設定した
許容範囲より大きいデータを除外し、残った各時点にお
ける吸光度データから最小二乗法により新たな回帰式を
求める一連の過程を複数回繰り返し、最終的に残った吸
光度データに基づいてRRA測定を行なう様にした。
[Means for Solving the Problems] Therefore, the present invention measures absorbance at each of a plurality of time points after the start of the reaction, and calculates an absorbance characteristic line from the absorbance data at each measured time point using the least squares method. Find a regression equation to represent the data, use this regression equation to find the standard deviation of the data, and calculate the absolute value of the difference between the value calculated by the regression equation and this absorbance data among the absorbance data at each measured time point. However, data larger than the tolerance range set based on this standard deviation was excluded, and the process of calculating a new regression equation using the least squares method from the remaining absorbance data at each time point was repeated multiple times. RRA measurements were performed based on absorbance data.

[実施例] 第1図は本発明の化学分析方法を実施する為の化学分析
装置のブロック図である。
[Example] FIG. 1 is a block diagram of a chemical analysis apparatus for carrying out the chemical analysis method of the present invention.

この化学分析装置は、被検液が収容された容器。This chemical analyzer is a container containing a test liquid.

この容器から被検液を吸い上げ反応容器へ送る為のサン
プリング機構、測定する項目に適した試薬を試薬容器か
ら吸い上げ前記反応容器へ送る試薬供給機構、この反応
容器での被検液の吸光度を反応開始以後複数の時点にお
いて検出する為の反応及び検出機構等から成る装置本体
1、この装置本体の作動を制御したり、この装置本体で
検出された吸光度値に基づいて種々の演算を行ない、R
RA測定値等を算出する制御装置2、及び、この制御装
置の指令に従い、測定されたRRA測定値を表示する表
示袋M3から構成される。
A sampling mechanism that sucks up the test liquid from this container and sends it to the reaction container, a reagent supply mechanism that sucks up a reagent suitable for the item to be measured from the reagent container and sends it to the reaction container, and reacts the absorbance of the test liquid in this reaction container. The device main body 1 consists of a reaction and detection mechanism for detection at multiple times after the start, controls the operation of this device main body, performs various calculations based on the absorbance value detected by this device main body, and performs R.
It is composed of a control device 2 that calculates RA measurement values, etc., and a display bag M3 that displays the measured RRA measurement values according to instructions from this control device.

先ず、反応開始時点以後、複数の各時点(tl。First, after the start of the reaction, a plurality of time points (tl.

jz、 tz、tn、ts、is、tz、・・・・・・
・・・。
jz, tz, tn, ts, is, tz,...
....

jn−+、tn)において吸光度が検出される様に、制
御装置2は装置本体1に指令を与える。この指令により
、装置本体1から送られて来る被検液の反応開始時点以
後の複数の各時点(tn 、tz。
The control device 2 gives a command to the device main body 1 so that the absorbance is detected at the points jn-+, tn). This command causes a plurality of time points (tn, tz) after the reaction start time of the test liquid sent from the main body 1 of the apparatus.

tz、1:4.i:s、tg、i7+・・・・・・・・
・、tTl−I。
tz, 1:4. i:s, tg, i7+...
, tTl-I.

in)の吸光度データに基づいて、制御装置2は次の様
な演算を行なう。
Based on the absorbance data of in), the control device 2 performs the following calculation.

今、装置本体1から送られて来た被検液の反応開始時点
以後の複数の各時点・(tl 、tz、ts。
Now, each time point (tl, tz, ts) after the reaction start time of the test liquid sent from the main body 1 of the apparatus.

t4.ts、tg、tz、・・・・・・・・・、 in
−+、 tn )の吸光度が、第2図に示す様に、夫々
○D+ 、 OD2 、OD3 、OD4 、ODs 
、ODg 、007 。
t4. ts, tg, tz, ......, in
-+, tn) as shown in Figure 2, the absorbance of ○D+, OD2, OD3, OD4, ODs, respectively.
, ODg, 007.

・・・・・・・・・、0Dn−+、ODnになったとす
る。ここで、前記制御装置2は吸光度特性線を直線と仮
定して、前記t1〜tT1間に測定したN個の吸光度デ
ータを元にして最小二乗法を用いた演算を行ない、前記
特性線を表す回帰直線の弐〇〇=a1t+bを求める。
......, 0Dn-+, ODn. Here, the control device 2 assumes that the absorbance characteristic line is a straight line, performs a calculation using the least squares method based on the N pieces of absorbance data measured between t1 and tT1, and expresses the characteristic line. Find the regression line 2〇〇=a1t+b.

尚、この式中のalは単位時間当りの吸光度の変化値、
bはこの式の(V)切片である。
In addition, al in this formula is the change value of absorbance per unit time,
b is the (V) intercept of this equation.

第2図の実線ODはこの回帰直線の式を表した時間吸光
度特性線である。次に、この回帰直線の式を使用して、
各時点(tn 、tz、tz、tn 。
The solid line OD in FIG. 2 is a time absorbance characteristic line representing the equation of this regression line. Then, using this regression line formula,
Each time point (tn, tz, tz, tn.

ts 、js 、t7−・・・・・・、jT、4.tn
 )の吸光度を算出し、前記測定した同各時点における
吸光度OD1,002.003.004.00s 、O
D6、○D7 、・・・・・・・・・、○Dn−10D
nと各算出値との差X1.X2 、X3 、X4 、X
s 、X6 、X7、・・・・・・・・・* xn−+
 l X nを算出し、これらの算出−nx2L/ (
n−1))(但し、マ=Σx/Nである)を算出する。
ts, js, t7-..., jT, 4. tn
), and the absorbance at each time point measured above is OD1,002.003.004.00s, O
D6,○D7,・・・・・・・・・,○Dn-10D
Difference between n and each calculated value X1. X2, X3, X4, X
s, X6, X7, ......*xn-+
l X n, and these calculations - nx2L/ (
n-1)) (where Ma=Σx/N) is calculated.

次に、この標準偏差Sx1に許容範囲を考慮して係数k
を掛けたものの絶対値I SX+  ・klと前記各時
点における差の絶対値IX+  l (i= 1〜n)
を比較し、分散許容範囲を越える吸光度データを除外す
る。次に、残った各時点における、例えば、(NQl)
個の吸光度データを元にして、最小二乗法を用いて新た
な回帰直線の式Q[)=82i+bを求める。次に、こ
の回帰直線の式を使用して、前記残った各時点の吸光度
を算出し、この算出値と前記残った各時点における吸光
度との差から、標準偏差S X zを算出する。次に、
この標準偏差SXzに許容範囲を考慮して係数kを掛け
たものの絶対値1sXz・klと前記各時点における差
の絶対値を比較し、許容範囲を越える吸光度を除外する
。そして、又、残った各時点における、例えば、(NQ
z)個の吸光度データを元にして、更に新たな回帰直線
の弐〇D−ast+bを求め、前記演算を繰り返す。こ
の様にして、予め設定された回数、前記演算を繰り返し
て行くと、回帰直線の式のaの値、即ち、単位時間当り
の吸光度変化は、真のΔOO値、即ち、理想的吸光度特
性線の傾きに著しく近似して来る。従って、最終的に残
った、例えば、P個の吸光度データに基づいて求められ
た回帰直線の式のaの値は、真のΔ0Dfaに最も近い
ものとなる。尚、前記演算の繰り返しの回数は、最初に
測定されるデータの個数により適宜法められる。
Next, considering the allowable range for this standard deviation Sx1, a coefficient k
The absolute value of the product multiplied by I SX+ ・kl and the absolute value of the difference at each time point IX+ l (i = 1 to n)
and exclude absorbance data that exceeds the dispersion tolerance. Next, at each remaining time point, for example, (NQl)
Based on the absorbance data, a new regression line equation Q[)=82i+b is determined using the least squares method. Next, using this regression line equation, the absorbance at each of the remaining time points is calculated, and the standard deviation S x z is calculated from the difference between this calculated value and the absorbance at each of the remaining time points. next,
The absolute value 1sXz·kl of this standard deviation SXz multiplied by a coefficient k taking into account the tolerance range is compared with the absolute value of the difference at each time point, and absorbance exceeding the tolerance range is excluded. And, for example, (NQ
Based on the z) pieces of absorbance data, a new regression line 2〇D-ast+b is determined, and the above calculation is repeated. In this way, by repeating the above calculation a preset number of times, the value of a in the regression line equation, that is, the absorbance change per unit time, becomes the true ΔOO value, that is, the ideal absorbance characteristic line. The slope closely approximates that of . Therefore, the value of a in the equation of the regression line finally remaining, for example, determined based on the P absorbance data, is closest to the true Δ0Dfa. Note that the number of repetitions of the above-mentioned calculation is appropriately multiplied by the number of pieces of data to be measured first.

[発明の効果] 本発明によれば、光学的検出器のSN比9反応容器の機
械的振動や位置ずれ等による反応時のSN比、副反応等
による反応自身のSN比不足等が原因で起こる分散があ
っても、正確なRRA測定を行なう事が出来る。
[Effects of the Invention] According to the present invention, the S/N ratio of the optical detector is 9. The S/N ratio during the reaction due to mechanical vibration or positional shift of the reaction vessel, or the insufficient S/N ratio of the reaction itself due to side reactions, etc. Even with the dispersion that occurs, accurate RRA measurements can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の化学分析方法を実施する為の化学分析
装置のブロック図、第2図は本発明の詳細な説明を補足
する為のもの、第3図は理想的な吸光度特性線を表わし
たもの、第4図は実際の時間に対する吸光度値の分布を
表わしたものである。 1:装置本体   2:制御装置   3:表示装置 図面の1:i・合浩容に変更なし) 映藺 −チ 手続補正書(方式) 昭τ、、−,r1tr ’1・i 4FtfiiM昭和
60年12月13日 1、事件の表示 昭和60年特許願第191268号 2、発明の名称 化学分析方法 3、補正をする者 事件との関係 特許出願人 住所 東京都昭島市中神町1418番地(T E L 
0425 (43) 1165)4、補正命令の日付 昭和60年11月26日 5、補正の対象 図面 6、補正の内容 昭和60年8月30日付願書に添付した図面の浄書・別
紙のとおり(内容に変更なし)。 以上
Figure 1 is a block diagram of a chemical analyzer for carrying out the chemical analysis method of the present invention, Figure 2 is to supplement the detailed explanation of the present invention, and Figure 3 is an ideal absorbance characteristic line. FIG. 4 shows the distribution of absorbance values over actual time. 1: Apparatus body 2: Control device 3: Display device drawing 1:i・No change in general content) Film correction procedure amendment (method) Showa τ,, -, r1tr '1・i 4FtfiiM 1985 December 13th 1, Display of the case Patent Application No. 191268 of 1985 2, Name of the invention Chemical analysis method 3, Person making the amendment Relationship to the case Patent applicant address 1418 Nakagami-cho, Akishima-shi, Tokyo (T.E. L
0425 (43) 1165) 4. Date of amendment order November 26, 1985 5. Drawings subject to amendment 6. Contents of amendment As per the engraving of the drawing attached to the application dated August 30, 1985 (contents (no change). that's all

Claims (1)

【特許請求の範囲】[Claims] 反応開始時点以後、複数の各時点において吸光度を測定
し、測定された各時点における吸光度データから最小二
乗法を用いて吸光度特性線を表す回帰式を求め、この回
帰式を用いて前記データの標準偏差を求め、前記測定さ
れた各時点における吸光度データの内、前記回帰式によ
って算出される値とこの吸光度データとの差の絶対値が
、この標準偏差に基づいて設定した許容範囲より大きい
データを除外し、残った各時点における吸光度データか
ら最小二乗法により新たな回帰式を求める一連の過程を
複数回繰り返し、最終的に残った吸光度データに基づい
て反応速度分析測定を行なう様にした化学分析方法。
After the start of the reaction, absorbance is measured at multiple time points, and a regression equation representing the absorbance characteristic line is determined using the least squares method from the absorbance data at each measured time point. Using this regression equation, the standard of the data is determined. The deviation is determined, and among the absorbance data at each measured time point, the absolute value of the difference between the value calculated by the regression formula and this absorbance data is larger than the tolerance range set based on this standard deviation. A chemical analysis in which the process of calculating a new regression equation using the least squares method from the remaining absorbance data at each time point is repeated multiple times, and finally reaction rate analysis is performed based on the remaining absorbance data. Method.
JP19126885A 1985-08-30 1985-08-30 Chemical analysis Pending JPS6250645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19126885A JPS6250645A (en) 1985-08-30 1985-08-30 Chemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19126885A JPS6250645A (en) 1985-08-30 1985-08-30 Chemical analysis

Publications (1)

Publication Number Publication Date
JPS6250645A true JPS6250645A (en) 1987-03-05

Family

ID=16271716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19126885A Pending JPS6250645A (en) 1985-08-30 1985-08-30 Chemical analysis

Country Status (1)

Country Link
JP (1) JPS6250645A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488234A (en) * 1987-09-30 1989-04-03 Shimadzu Corp Rate analytical method
US5376313A (en) * 1992-03-27 1994-12-27 Abbott Laboratories Injection molding a plastic assay cuvette having low birefringence
JP2006300613A (en) * 2005-04-18 2006-11-02 Yokohama Rubber Co Ltd:The Tire testing device and tire testing method
JP2013092526A (en) * 2007-06-05 2013-05-16 Ecolab Inc Kinetic determination of peracid and/or peroxide concentration
JP2013213674A (en) * 2012-03-30 2013-10-17 Mitsubishi Chemical Medience Corp Method for detecting abnormality in measurement data and device for detecting abnormality in measurement data
JP2015045662A (en) * 2014-12-08 2015-03-12 株式会社日立ハイテクノロジーズ Automatic analysis device and automatic analysis program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821544A (en) * 1981-07-31 1983-02-08 Japan Spectroscopic Co Measuring method for chemical reaction rate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821544A (en) * 1981-07-31 1983-02-08 Japan Spectroscopic Co Measuring method for chemical reaction rate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488234A (en) * 1987-09-30 1989-04-03 Shimadzu Corp Rate analytical method
US5376313A (en) * 1992-03-27 1994-12-27 Abbott Laboratories Injection molding a plastic assay cuvette having low birefringence
JP2006300613A (en) * 2005-04-18 2006-11-02 Yokohama Rubber Co Ltd:The Tire testing device and tire testing method
JP4706316B2 (en) * 2005-04-18 2011-06-22 横浜ゴム株式会社 Tire testing apparatus and tire testing method
JP2013092526A (en) * 2007-06-05 2013-05-16 Ecolab Inc Kinetic determination of peracid and/or peroxide concentration
JP2013213674A (en) * 2012-03-30 2013-10-17 Mitsubishi Chemical Medience Corp Method for detecting abnormality in measurement data and device for detecting abnormality in measurement data
JP2015045662A (en) * 2014-12-08 2015-03-12 株式会社日立ハイテクノロジーズ Automatic analysis device and automatic analysis program

Similar Documents

Publication Publication Date Title
Westgard et al. Combined Shewhart-cusum control chart for improved quality control in clinical chemistry.
CN101495855B (en) Method and apparatus for measuring liquid sample
DE69008857T2 (en) METHOD AND DEVICE FOR THE QUANTITATIVE DISPLAY OF A CHEMICAL COMPONENT SOLVED IN A LIQUID MEDIUM.
ATE86073T1 (en) DEVICE AND METHOD FOR KNEADING Dough.
JP2010526308A (en) System and method for analyte measurement using nonlinear sample response
JPS6250645A (en) Chemical analysis
Burrows et al. Routine method for determination of the activity of baker's yeast
EP3556843A1 (en) High-precision rapid sampling device
US3756782A (en) Samples method and apparatus for determining carbon dioxide content of blood
Sakamoto Effect of enzyme concentration on the dynamic behavior of a membrane-bound enzyme system
Neville A simple, rapid polarographic method for blood oxygen content determination
JPH03205505A (en) Transverse section area measuring instrument
Wang et al. Use of blood-glucose test strips for introducing enzyme electrodes and modern biosensors
Hansen et al. Proficiency testing materials for pH and blood gases: the California Thoracic Society experience
IT9021284A1 (en) GRAVIMETRIC DETERMINATION OF THE IODINE NUMBER OF THE BLACK SMOKE
JPH04244963A (en) Automatic biochemical analyzer
JP3194601B2 (en) Automatic analysis method and automatic analyzer
Makin et al. A rapid and simple method for the specific estimation of glucose in blood
JPS61292540A (en) Chemical analysis
EP4235184A1 (en) Method for applying control refernce value to specimen analyzer, specimen analyzer, and computer program
CA2166914C (en) Single sensor density measuring apparatus and method
Mignone et al. Measurement of oxygen transfer coefficient under growth conditions by dynamic model moment analysis
JP2508787Y2 (en) Display device of automatic analyzer
JP5001220B2 (en) Substrate concentration measuring apparatus, method and program
JPS58182565A (en) Indicating device of inspection