JPS6250076B2 - - Google Patents

Info

Publication number
JPS6250076B2
JPS6250076B2 JP16323982A JP16323982A JPS6250076B2 JP S6250076 B2 JPS6250076 B2 JP S6250076B2 JP 16323982 A JP16323982 A JP 16323982A JP 16323982 A JP16323982 A JP 16323982A JP S6250076 B2 JPS6250076 B2 JP S6250076B2
Authority
JP
Japan
Prior art keywords
printed wiring
formula
wiring board
layer
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16323982A
Other languages
Japanese (ja)
Other versions
JPS5954296A (en
Inventor
Akira Iwazawa
Haruyori Tanaka
Katsuhide Onose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16323982A priority Critical patent/JPS5954296A/en
Publication of JPS5954296A publication Critical patent/JPS5954296A/en
Publication of JPS6250076B2 publication Critical patent/JPS6250076B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は倚局印刷配線板の補造方法に関し、特
に、耐熱信頌性ず垃線収容胜力の優れた倚局印刷
配線板を簡単か぀経枈的に補造する方法に関す
る。 埓来、印刷配線板においお、その垃線収容数の
向䞊を図るため、め぀きスルヌホヌル法による倚
局化が広く応甚されおきた。この技術による倚局
印刷配線板は、印刷回路を圢成した耇数枚の印刷
配線板をプリプレグを介しお加熱圧着しお内局回
路及び衚局回路を有する積局板を䜜補し、この積
局板の所定の䜍眮にドリルによりスルヌホヌル甚
穎を圢成し、該穎をめ぀きしお䞡局間の回路を電
気的に接続するこずにより補造される。 䞊蚘方法により補造された倚局印刷配線板は、
集積玠子の集積床の向䞊に䌎぀お垃線収容数の倧
幅な増倧が芁求され、局数が幎幎増加する傟向に
ある。しかしながら、局数が増加するに぀れ、局
間接続甚のスルヌホヌルの数が倚くなり、平板の
配線領域が枛少するため、局数を増加しおも垃線
収容数をあたり向䞊できない。そのためスルヌホ
ヌルの埄を小さくする必芁があるが、局数が増加
するに぀れお基板が厚くなるため、穎加工性が悪
くなり、か぀め぀きの぀きたわり性が悪くなる等
の欠点がある。したが぀お、垃線収容数が増倧す
るに぀れお補造歩留りが極床に䜎䞋し、倧きな問
題ずな぀おいる。 たた、集積玠子の倉曎に䌎い、それを搭茉する
印刷配線板はパタヌン倉曎を芁求されるこずがあ
るが、ドリル加工による倚局配線板の補造技術に
おいおは、このパタヌン倉曎が困難なため、最初
から䜜り盎さなければならないので非垞に䞍経枈
である。 䞀方、埓来各皮の耐熱性感゚ネルギヌ線暹脂組
成物が開発されおいるが、それらは高沞点溶媒に
しか溶解しないが、硬化前は分子量が䜎いため、
ドラむフむルム化できない。したが぀お適圓な溶
媒に溶解し、スピンナ塗垃及び浞挬等により印刷
回路䞊に塗垃し、也燥しおいる。このため、有機
溶剀の取扱い䞊の危険性や也燥に時間がかかるな
どの䜜業性を著しく䜎䞋させおいる。 たた、゜ルダヌマスク等の各皮ドラむフむルム
は、硬化埌においおもガラス転移枩床が䜎く、線
膚匵係数が倧きい。このため印刷配線板甚の絶瞁
材料ずしお甚いた堎合、搭茉玠子から発生する熱
により膚匵し、回路導䜓を砎断しおしたうずいう
欠点がある。 本発明は、䞊蚘事情にかんがみおなされたもの
であり、その目的は、垃線収容胜力に優れ耐熱信
頌性の高い倚局印刷配線板を簡易か぀経枈的に補
造しうる方法を提䟛するこずにある。 すなわち、本発明を抂説すれば、本発明は衚面
に印刷回路が圢成された印刷配線板䞊に、䞋蚘䞀
般匏 〔匏䞭R1は同䞀又は異なり、か぀
The present invention relates to a method for manufacturing a multilayer printed wiring board, and more particularly to a method for simply and economically manufacturing a multilayer printed wiring board with excellent heat resistance reliability and wiring accommodation capacity. Conventionally, in order to increase the number of wires that can be accommodated in printed wiring boards, multilayering using a plated through-hole method has been widely applied. A multilayer printed wiring board using this technology is produced by heat-pressing a plurality of printed wiring boards on which printed circuits are formed via prepreg to create a laminate having inner layer circuits and surface layer circuits, and then attaching the laminate to a predetermined position on the laminate. It is manufactured by forming through-hole holes with a drill and plating the holes to electrically connect circuits between both layers. The multilayer printed wiring board manufactured by the above method is
As the degree of integration of integrated devices improves, there is a need for a significant increase in the number of wires that can be accommodated, and the number of layers tends to increase year by year. However, as the number of layers increases, the number of through holes for interlayer connections increases, and the wiring area of the flat plate decreases, so even if the number of layers increases, the number of wires accommodated cannot be improved much. Therefore, it is necessary to reduce the diameter of the through-hole, but as the number of layers increases, the substrate becomes thicker, resulting in disadvantages such as poor hole machinability and poor blinding ability. Therefore, as the number of wires accommodated increases, the manufacturing yield is extremely reduced, which is a major problem. In addition, when an integrated element is changed, the pattern of the printed wiring board on which it is mounted may be required to be changed, but this pattern change is difficult with drilling-based manufacturing technology for multilayer wiring boards, so it is difficult to change the pattern from the beginning. It is very uneconomical because it has to be remade. On the other hand, various heat-resistant energy-sensitive resin compositions have been developed, but they only dissolve in high-boiling point solvents, but their molecular weight is low before curing.
Cannot be made into dry film. Therefore, it is dissolved in a suitable solvent, applied to a printed circuit by spinner coating, dipping, etc., and dried. For this reason, the workability is significantly reduced, such as the danger in handling the organic solvent and the time required for drying. Moreover, various dry films such as solder masks have a low glass transition temperature and a large coefficient of linear expansion even after curing. Therefore, when used as an insulating material for printed wiring boards, it has the disadvantage that it expands due to the heat generated from the mounted elements and breaks the circuit conductor. The present invention has been made in view of the above circumstances, and its purpose is to provide a method for easily and economically manufacturing a multilayer printed wiring board with excellent wiring accommodation capacity and high heat resistance and reliability. . That is, to summarize the present invention, the present invention provides the following general formula: [In the formula, R 1 is the same or different, and

【匏】【formula】

【匏】【formula】

【匏】又は[Formula] or

【匏】䜆し、は同䞀又は異なり、か぀氎 玠原子、䜎玚アルキル基又はプニル基を瀺す
を瀺し、R2は同䞀又は異なり、か぀匏 䜆し、は同䞀又は異なり、氎玠原子又はメ
チル基を瀺すで衚わされる基を瀺し、は同䞀
又は異なり、氎玠原子、塩玠原子又は臭玠原子を
瀺し、は正の敎数を瀺す〕で衚わされる重合䜓
を䞻成分ずする感゚ネルギヌ線重合䜓局を蚭ける
工皋、この重合䜓局䞊に゚ネルギヌ線を遞択的に
照射した埌、珟像し、スルヌホヌル甚穎を圢成す
る工皋、この重合䜓局を熱凊理あるいぱネルギ
ヌ線照射凊理しお高絶瞁化する工皋、及びこの高
絶瞁化された重合䜓局䞊にめ぀きにより導䜓回路
を圢成し、該導䜓回路をスルヌホヌル甚穎を通し
お前蚘印刷配線基板䞊の印刷回路ず電気的に接続
する工皋の各工皋を包含するこずを特城ずする倚
局印刷配線板の補造方法に関する。 以䞋、本発明を図面を参照しお詳现に説明す
る。 第図〜は、本発明の倚局印刷配線板の補
造工皋を瀺す断面抂略図であり、第図は感゚ネ
ルギヌ線重合䜓局に゚ネルギヌ線を盎接照射する
工皋を瀺す断面抂略図である。図䞭においお、笊
号は絶瞁基板、は印刷回路、は印刷配線
板、は感゚ネルギヌ線重合䜓局、はフオトマ
スク、ぱネルギヌ線源、はスルヌホヌル甚
穎、は掻性局、は導䜓回路、は導䜓局を
瀺す。 たず、第図に瀺すごずくカラス垃基材、ポ
リむミド暹脂等からなる絶瞁基板䞊に垞法に埓
぀お印刷回路を圢成しお印刷配線板を䜜補す
る。 ここに甚いる印刷配線板は、倚局印刷配線板で
もよい。次いで、印刷配線板の印刷回路偎党
面に前蚘䞀般匏で衚わされる重合䜓を䞻成分ず
する感゚ネルギヌ線重合䜓局を圢成する〔第
図〕。 前蚘䞀般匏で衚わされる重合䜓の補造方法に぀
いお代衚的な補造方法を瀺すず、ビスプノヌル
構造をも぀た䞀般匏 䜆し、匏䞭R1、は前蚘匏のずおりである
ず゚ピクロロヒドリンずを反応させお、埗られた
重合䜓に、䞀般匏 䜆し、匏䞭、は前蚘匏のずおりである
を觊媒の存圚䞋で反応させるこずにより埗られ
る。 なお、埌蚘する゚ネルギヌ線照射に際しお玫倖
線等の光を゚ネルギヌ線ずしお甚いる堎合には曎
に増感剀を添加するこずにより光反応を増感させ
るこずが望たしい。かかる増感剀ずしおは、アセ
トプノン、ベンゟプノン、ゞメチルアミノベ
ンゟプノン及びベンゟむンむ゜プロピル゚ヌテ
ル等のカルボニル化合物が有効であり、曎には分
光増感剀ずしお−ニトロアセナフテン及び−
ニトロピレン等の化合物も有効である。これらの
化合物の添加量は、前蚘重合䜓に察し0.1〜10重
量ずするこずが適圓である。 たた、架橋密床を高めるために、芳銙族テトラ
ゟ化合物、芳銙族ビスアゞド化合物又は倚官胜性
ビニル化合物等の架橋剀を加えるこずも効果的で
あるが絶瞁膜の線膚匵係数を倧きくしないため
に、前蚘重合䜓の〜20重量が望たしい。 䞊蚘感゚ネルギヌ線重合䜓局の圢成に圓぀お
は、䟋えば前蚘重合䜓あるいは必芁に応じお添加
された増感剀及び架橋剀を適圓な溶媒に溶解し、
この液状物を可ずう性の支持䜓フむルム、䟋えば
ポリ゚ステルフむルム䞊に、塗垃、也燥し、その
䞊にポリ゚チレンカバヌシヌトを蚭けおサンドむ
ツチ構造のドラむフむルムをあらかじめ䜜補し、
このドラむフむルムのポリ゚チレンカバヌシヌト
をはがしお、支持フむルムを前蚘重合䜓からなる
感゚ネルギヌ線重合䜓局を印刷配線板䞊に接する
ように茉せ、ホツトロヌルラミネヌタでラミネヌ
トする。ポリ゚ステルフむルムは埌蚘゚ネルギヌ
線の照射時にそのたた残しおもよいし、剥離しお
もよい。こうしお圢成された感゚ネルギヌ線重合
䜓局の厚さは印刷配線板の特性むンピヌダンス
の関係から50Ό以䞊にするこずが望たしい。基
板ぞの他の塗垃方法ずしおは、スクリヌン印刷法
なども可胜である。 次いで、第図に瀺すごずく感゚ネルギヌ線
重合䜓局にマスクを介しお゚ネルギヌ線を遞
択的に照射する。この堎合、第図に瀺すごずく
゚ネルギヌ線源から感゚ネルギヌ線重合䜓局に
゚ネルギヌ線を遞択的に盎接照射しおもよい。こ
うした゚ネルギヌ線の遞択照射により重合䜓局
の照射郚分は溶媒に䞍溶ずなり、未照射郚分は溶
媒に可溶のたたの状態ずなる。かかる゚ネルギヌ
線ずしおは、䟋えば可芖光線、玫倖線、線、レ
ヌザ光、電子ビヌム等が挙げられる。 次いで、感゚ネルギヌ線重合䜓局を珟像凊理
するこずにより該重合䜓局の未照射郚分が溶剀
䞭に溶出しおスルヌホヌル甚穎が圢成される
〔第図〕。ここに甚いる珟像剀ずしおは、䟋え
ば・・−トリクロロ゚タン等の有機溶剀を
挙げるこずができる。 次いで、スルヌホヌル甚穎が蚭けられた重合
䜓局を熱凊理あるいぱネルギヌ線の党面露光
を斜しお高絶瞁化を行う。続いお、高絶瞁化重合
䜓局を液䜓ホヌニング又はプラズマ゚ツチング
等を斜しお該重合䜓局衚面を粗面化するず共に
スルヌホヌル甚穎のぬれ性を改善した埌、有機酞
銀等を塗垃し、フオトマスク等図瀺しおない
を介しお導䜓回路圢成予定郚を露光し、珟像凊理
するこずによりめ぀き掻性局を圢成する〔第
図〕。 次いで、無電解め぀きを斜しおめ぀き掻性局
䞊に導䜓回路を、スルヌホヌル甚穎内に導䜓
局を圢成しお導䜓回路の䞀郚を前蚘印刷配
線板の印刷回路の䞀郚ず接続しお二局印刷配
線板を䜜補する〔第図〕。以䞋、同様な操䜜
を繰返すこずにより䞉局以䞊の倚局印刷配線板を
補造する。 しかしお、本発明方法によれば、絶瞁基板の衚
面に印刷回路を圢成した印刷配線板䞊に䞀般匏
で衚わされる重合䜓を䞻成分ずする感゚ネルギヌ
線重合䜓局を蚭け、これをフオトマスクを介しお
あるいは盎接゚ネルギヌ線照射及び珟像凊理する
こずにより、容易にスルヌホヌル甚の埮现な穎を
圢成するこずができる。続いお、該穎圢成埌の感
゚ネルギヌ線重合䜓局を熱凊理又ぱネルギヌ線
照射凊理しお該局の高絶瞁化を行うこずにより、
埓来のプリプレグ局に盞圓し、絶瞁基板ずの密着
性及び耐熱性に優れ、曎に線膚匵係数が小さい等
の特性を有する高絶瞁化重合䜓局を圢成するこず
ができる。次いで液䜓ホヌニング又はプラズマ゚
ツチング等により該局の衚面を粗化し、か぀該局
衚面及びスルヌホヌル甚穎内のぬれ性改善を行
い、次いで有機酞銀塩等を甚いお掻性化凊理を斜
し、無電解め぀きを行぀お導䜓回路を圢成するこ
ずにより、スルヌホヌルを通しお基板䞊の印刷回
路ず電気的に接続するこずにより二局印刷配線板
を䜜成するこずができる。そしおこの䞊に曎に前
蚘感゚ネルギヌ線重合䜓局を圢成し、䞊蚘ず同じ
操䜜を繰返すこずにより、䞉局以䞊の倚局構造の
印刷配線板を効率的に補造するこずができる。こ
のようにしお䜜補された倚局印刷配線板は、埓来
のドリル加工の堎合に比べスルヌホヌル甚穎の埄
が小さいため、垃線収容数を倧幅に増加できる。 以䞋、実斜䟋により本発明を具䜓的に説明する
が、本発明はこれらに限定されるものではない。 実斜䟋 ビスプノヌルず゚ピクロロヒドリンから合
成したプノキシ暹脂〔サむ゚ンテむフむツク
ポリマヌ プロダクツScientific Polymer
Products補重量平均分子量3.2×104〕56
をグリシゞルメタクリレヌト260に75〜95℃で
加熱溶解し、これに觊媒ずしおトリ゚チルベンゞ
ルアンモニりムクロラむド0.85を加え時間75
〜95℃でかくはんし反応させた。この反応液をメ
タノヌル20䞭に泚いでグリシゞルメタクリレヌ
ト残基の導入されたプノキシ暹脂を埗た。 このプノキシ暹脂100、ゞメチルアミノベ
ンゟプノン0.2及びベンゟむンむ゜プロピル
゚ヌテルずをテトラヒドロフランに溶解
させ、×のポリ゚ステルフむルム䞊に塗
垃し、也燥させポリ゚チレンフむルムをかぶせ、
サンドむツチ構造にするこずにより80Όのドラ
むフむルムを埗た。銅匵積局板ガラス垃基材ポ
リむミド暹脂の衚面銅箔を垞法によりフオト゚
ツチングしお埗られた印刷配線板䞊に、前蚘方法
により埗られたドラむフむルムをホツトロヌルラ
ミネヌタで加熱圧着しお均䞀に被芆した。次いで
これに1.25mm栌子に0.10mmφの黒䞞が圢成された
フオトマスクを密着させ3K.W.の超高圧氎銀灯で
20秒間露光した。これを・・−トリクロロ
゚タンで分間超音波を甚いた珟像により、印刷
配線板䞊1.25mm栌子で盎埄0.10mmの穎が圢成され
た䞊蚘重合䜓局を埗た。次いで、この基板を真空
äž­200℃で30分間熱凊理するこずにより、該局を
高絶瞁化した。次いで該局衚面及び穎内を液䜓ホ
ヌニングKgcm2で粗面化した。次に、これ
に10グルタミン酞銀塩氎溶液を塗垃、也燥埌フ
オトマスクを介しお超高圧氎銀灯で露光し、回路
ずなる郚分のみに銅め぀きの栞ずなる銀を析出し
た埌、10重量アンモニア氎溶液で未露光のグル
タミン酞銀を溶出させた。次に、無電解め぀き液
シツプレヌ瀟補CP−78に浞挬し、銀のあるパ
タヌンのずころにめ぀き銅を25Όの厚さに析出
させお二局印刷配線板を埗た。曎にその䞊に前蚘
ドラむフむルムを䜿甚しお䞊蚘ず同様の操䜜を
回繰返すこずにより五局印刷配線板を䜜成した。
たた、比范のため埓来のドリル加工技術によりス
ルヌホヌル甚穎を圢成した印刷配線板を䜜成し䞡
者の回路諞特性を調べた。その結果を䞋蚘衚に
瀺す。
[Formula] (Y and Z are the same or different and represent a hydrogen atom, a lower alkyl group, or a phenyl group)
, R 2 are the same or different, and the formula: (However, U and V are the same or different and represent a hydrogen atom or a methyl group), X is the same or different and represents a hydrogen atom, a chlorine atom, or a bromine atom, and n represents a positive integer] A step of providing an energy ray-sensitive polymer layer containing a polymer represented by A step of heat-treating or irradiating the combined layer with energy rays to make it highly insulating, forming a conductor circuit by plating on this highly insulating polymer layer, and passing the conductor circuit through the through hole to connect the printed wiring. The present invention relates to a method for manufacturing a multilayer printed wiring board, which includes the steps of electrically connecting a printed circuit on a substrate. Hereinafter, the present invention will be explained in detail with reference to the drawings. 1A to 1F are schematic cross-sectional views showing the manufacturing process of the multilayer printed wiring board of the present invention, and FIG. 2 is a schematic cross-sectional view showing the process of directly irradiating the energy ray-sensitive polymer layer with energy rays. be. In the figure, 1 is an insulating substrate, 2 is a printed circuit, 3 is a printed wiring board, 4 is an energy-sensitive polymer layer, 5 is a photomask, 6 is an energy ray source, 7 is a hole for a through hole, and 8 is an active 9 indicates a conductor circuit, and 10 indicates a conductor layer. First, as shown in FIG. 1a, a printed circuit board 3 is fabricated by forming a printed circuit 2 on an insulating substrate 1 made of a glass cloth base material, polyimide resin, etc. in accordance with a conventional method. The printed wiring board used here may be a multilayer printed wiring board. Next, an energy ray-sensitive polymer layer 4 mainly composed of a polymer represented by the above general formula is formed on the entire surface of the printed wiring board 3 on the printed circuit 2 side.
Figure b]. A typical method for producing a polymer represented by the above general formula is as follows: (However, in the formula, R 1 and X are as in the above formula)
and epichlorohydrin, and the resulting polymer has the general formula: (However, U and V in the formula are as in the above formula)
can be obtained by reacting in the presence of a catalyst. In addition, when using light such as ultraviolet rays as energy rays in the energy ray irradiation described later, it is desirable to further sensitize the photoreaction by adding a sensitizer. As such sensitizers, carbonyl compounds such as acetophenone, benzophenone, dimethylaminobenzophenone, and benzoin isopropyl ether are effective, and furthermore, as spectral sensitizers, 5-nitroacenaphthene and 1-
Compounds such as nitropyrene are also effective. The amount of these compounds added is suitably 0.1 to 10% by weight based on the polymer. It is also effective to add a crosslinking agent such as an aromatic tetrazo compound, an aromatic bisazide compound, or a polyfunctional vinyl compound in order to increase the crosslinking density, but in order not to increase the linear expansion coefficient of the insulating film, the above 1 to 20% by weight of the polymer is preferred. In forming the energy ray-sensitive polymer layer 4, for example, the polymer or the sensitizer and crosslinking agent added as necessary are dissolved in an appropriate solvent,
This liquid is applied onto a flexible support film, such as a polyester film, and dried, and a polyethylene cover sheet is provided thereon to prepare a dry film with a sandwich structure in advance.
The polyethylene cover sheet of this dry film is peeled off, a support film is placed on the printed wiring board so that the energy ray-sensitive polymer layer made of the above polymer is in contact with the printed wiring board, and the support film is laminated with a hot roll laminator. The polyester film may be left as is or may be peeled off during the energy ray irradiation described later. The thickness of the energy ray-sensitive polymer layer 4 thus formed is desirably 50 ÎŒm or more in view of the characteristic impedance of the printed wiring board. Other methods of coating the substrate include screen printing. Next, as shown in FIG. 1c, the energy ray-sensitive polymer layer 4 is selectively irradiated with energy rays through the mask 5. In this case, energy rays may be selectively and directly irradiated from an energy ray source to the energy ray sensitive polymer layer 4 as shown in FIG. By selectively irradiating the energy rays, the polymer layer 4
The irradiated part becomes insoluble in the solvent, and the unirradiated part remains soluble in the solvent. Examples of such energy rays include visible light, ultraviolet rays, X-rays, laser light, and electron beams. Next, by developing the energy ray-sensitive polymer layer 4, the unirradiated portions of the polymer layer 4 are eluted into a solvent to form through-hole holes 7 (FIG. 1d). Examples of the developer used here include organic solvents such as 1,1,1-trichloroethane. Next, the polymer layer 4 provided with the through-hole holes 7 is subjected to heat treatment or the entire surface is exposed to energy rays to achieve high insulation. Next, the highly insulating polymer layer 4 is subjected to liquid honing or plasma etching to roughen the surface of the polymer layer 4 and improve the wettability of the through holes, and then organic acid silver or the like is applied. and photomask etc. (not shown)
The plating active layer 8 is formed by exposing the area where the conductor circuit is to be formed and developing it.
Figure e]. Next, electroless plating is applied to form a plating active layer 8.
A conductor circuit 9 is formed on the top, a conductor layer 10 is formed in the through-hole hole 7, and a part of the conductor circuit 9 is connected to a part of the printed circuit 2 of the printed wiring board 3 to form a two-layer printed wiring board. Fabricate [Fig. 1 f]. Thereafter, a multilayer printed wiring board having three or more layers is manufactured by repeating the same operation. According to the method of the present invention, an energy ray-sensitive polymer layer containing a polymer represented by the general formula as a main component is provided on a printed wiring board with a printed circuit formed on the surface of an insulating substrate, and this layer is coated with a photomask. Fine holes for through-holes can be easily formed by irradiating energy rays through or directly with energy rays and developing. Subsequently, the energy ray-sensitive polymer layer after the hole formation is subjected to heat treatment or energy ray irradiation treatment to increase the insulation of the layer.
It is possible to form a highly insulating polymer layer that corresponds to a conventional prepreg layer and has characteristics such as excellent adhesion to an insulating substrate and heat resistance, and a small coefficient of linear expansion. Next, the surface of the layer is roughened by liquid honing or plasma etching, etc., and the wettability of the layer surface and the inside of the through hole is improved. Then, an activation treatment is performed using an organic acid silver salt, etc., to form an electroless layer. A two-layer printed wiring board can be created by forming a conductive circuit by perforating the conductive circuit and electrically connecting it to a printed circuit on the board through the through-hole. By further forming the energy ray-sensitive polymer layer thereon and repeating the same operations as above, a printed wiring board having a multilayer structure of three or more layers can be efficiently manufactured. In the multilayer printed wiring board produced in this manner, the diameter of the through-hole is smaller than in the case of conventional drilling, so the number of wires that can be accommodated can be greatly increased. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. Example Phenoxy resin synthesized from bisphenol A and epichlorohydrin [Scientific
Scientific Polymer Products
Products) (weight average molecular weight 3.2×10 4 )] 56g
was heated and dissolved in 260 g of glycidyl methacrylate at 75 to 95°C, and 0.85 g of triethylbenzylammonium chloride was added as a catalyst to this for 4 hours.
The mixture was stirred and reacted at ~95°C. This reaction solution was poured into methanol 20 to obtain a phenoxy resin into which a glycidyl methacrylate residue was introduced. 100 g of this phenoxy resin, 0.2 g of dimethylaminobenzophenone, and 6 g of benzoin isopropyl ether were dissolved in 1 part of tetrahydrofuran, coated on a 1 m x 1 m polyester film, dried, and covered with a polyethylene film.
A dry film of 80 ÎŒm was obtained by forming a sandwich structure. The dry film obtained by the above method is heat-pressed using a hot roll laminator onto a printed wiring board obtained by photoetching the surface copper foil of a copper-clad laminate (glass cloth base polyimide resin) by a conventional method. Evenly coated. Next, a photomask with a 0.10mmφ black circle formed on a 1.25mm grid was attached closely to this and exposed using a 3K.W. ultra-high pressure mercury lamp.
Exposure was made for 20 seconds. This was developed with 1.1.1-trichloroethane for 1 minute using ultrasonic waves to obtain the above polymer layer in which holes with a diameter of 0.10 mm were formed in a 1.25 mm grid on a printed wiring board. Next, this substrate was heat-treated at 200° C. for 30 minutes in vacuum to make the layer highly insulating. Next, the surface of the layer and the inside of the holes were roughened by liquid honing (2 Kg/cm 2 ). Next, a 10% silver glutamate aqueous solution was applied to this, and after drying, it was exposed to an ultra-high pressure mercury lamp through a photomask to deposit silver, which will become the nucleus of copper plating, only on the parts that will become the circuit, and then a 10% ammonia aqueous solution was applied. The unexposed silver glutamate was eluted. Next, it was immersed in an electroless plating solution (CP-78 manufactured by Shippray Co., Ltd.) to deposit copper plating to a thickness of 25 Όm on the silver pattern to obtain a two-layer printed wiring board. Furthermore, using the dry film above, perform the same operation as above 3 times.
A five-layer printed wiring board was created by repeating the process several times.
In addition, for comparison, printed wiring boards with through-holes formed using conventional drilling techniques were created, and various circuit characteristics of both were investigated. The results are shown in Table 1 below.

【衚】 䞊蚘衚から明らかなように、本発明においお
は、圢成されるスルヌホヌルの埄が埓来のドリル
加工の堎合に比范しお小さいため、本発明によれ
ば、パタヌン収容数を倧幅に増加させた倚局印刷
配線板を埗るこずができる。たた、本発明で甚い
た熱凊理埌のドラむフむルムの線膚匵係数は×
10-5℃ず極めお䜎く、したが぀お寞法安定性が
良いので本発明で䜜成した倚局印刷配線板を200
℃で時間加熱しその埌℃たで急冷しおも、回
路の砎断や絶瞁局の砎壊ずい぀た異垞はみられな
か぀た。なお、埓来技術、䟋えばアクリル系光架
橋性重合䜓フむルム日立化成補SR−1000、厚
さ0.075mmを甚いた結果では、架橋埌の線膚匵
係数が×10-4℃ず高く、したが぀お200℃30
分の加熱埌℃に急冷するずスルヌホヌルに砎断
が生じた。 たた、前蚘実斜䟋においお、原料ずしお䜿甚し
たプノキシ暹脂の代りに、テトラブロモビスフ
゚ノヌルず゚ピクロロヒドリンずから合成した
プノキシ暹脂を䜿甚しお、ほが同様の結果を埗
た。 以䞊詳现に説明したように、本発明による倚局
印刷配線板の補造方法は、パタヌン収容胜力に優
れるため、ドリル加工による倚局配線板の党パタ
ヌン垃線量を局数が1/3〜1/5の量で収容するこず
が可胜であり、補造工皋の削枛、歩留りの向䞊ず
盞俟぀お補造費を倧幅に匕䞋げるこずができる。 たた、本発明により埗られた倚局印刷配線板
は、耐熱性が高く、寞法安定性に優れるため、熱
を倚く発生する玠子を搭茉した際にも絶瞁局の膚
匵による回路パタヌン等の砎断を起すこずがな
く、極めお信頌性の高いものずな぀おいる。 曎に、本発明の補造方法を印刷配線板の高密床
配線が芁求される郚分䟋えば超LSIなどの高集
積床な玠子を搭茉する郚分のみに適甚するこず
も可胜であり、集積玠子の倉曎による回路倉曎に
容易に察凊できるため、極めお経枈的である。
[Table] As is clear from the above table, in the present invention, the diameter of the through hole formed is smaller than that in the case of conventional drilling, so according to the present invention, the number of patterns accommodated is significantly increased. A multilayer printed wiring board can be obtained. Furthermore, the linear expansion coefficient of the dry film used in the present invention after heat treatment is 7×
The multilayer printed wiring board produced by the present invention has an extremely low temperature of 10 -5 /℃ and therefore has good dimensional stability.
Even after heating at ℃ for 2 hours and then rapidly cooling to 0℃, no abnormalities such as circuit breakage or insulation layer breakdown were observed. In addition, in the results using conventional technology, for example, an acrylic photocrosslinkable polymer film (SR-1000 manufactured by Hitachi Chemical, thickness 0.075 mm), the coefficient of linear expansion after crosslinking was as high as 5 × 10 -4 /°C; Therefore 200℃30
When it was rapidly cooled to 0° C. after heating for 30 minutes, the through hole broke. Furthermore, in place of the phenoxy resin used as a raw material in the above example, a phenoxy resin synthesized from tetrabromobisphenol A and epichlorohydrin was used, and almost the same results were obtained. As explained in detail above, the method for manufacturing a multilayer printed wiring board according to the present invention has excellent pattern accommodation capacity, so that the total pattern wiring amount of the multilayer printed wiring board by drilling can be reduced to 1/3 to 1/5 of the number of layers. It is possible to accommodate a large amount of fuel, and together with the reduction of manufacturing steps and the improvement of yield, it is possible to significantly reduce manufacturing costs. In addition, the multilayer printed wiring board obtained by the present invention has high heat resistance and excellent dimensional stability, so even when elements that generate a lot of heat are mounted, circuit patterns etc. will not break due to expansion of the insulating layer. This makes it extremely reliable. Furthermore, it is also possible to apply the manufacturing method of the present invention only to parts of printed wiring boards that require high-density wiring (for example, parts where highly integrated elements such as ultra-LSI are mounted), and it is possible to change the integrated elements. It is extremely economical because it can easily handle circuit changes due to

【図面の簡単な説明】[Brief explanation of the drawing]

第図〜は本発明の倚局印刷配線板の補造
工皋を瀺す断面抂略図、第図は感゚ネルギヌ線
重合䜓局に゚ネルギヌ線を盎接照射する工皋を瀺
す断面抂略図である。 絶瞁基板、印刷回路、印刷配線
板、感゚ネルギヌ線重合䜓局、フオトマ
スク、゚ネルギヌ線源、スルヌホヌル甚
穎、掻性局、導䜓回路、導䜓局。
1A to 1F are schematic cross-sectional views showing the manufacturing process of the multilayer printed wiring board of the present invention, and FIG. 2 is a schematic cross-sectional view showing the process of directly irradiating the energy ray-sensitive polymer layer with energy rays. 1: Insulating substrate, 2: Printed circuit, 3: Printed wiring board, 4: Energy ray sensitive polymer layer, 5: Photomask, 6: Energy ray source, 7: Hole for through hole, 8: Active layer, 9: Conductor Circuit, 10: conductor layer.

Claims (1)

【特蚱請求の範囲】  衚面に印刷回路が圢成された印刷配線板䞊
に、䞋蚘䞀般匏 〔匏䞭R1は同䞀又は異なり、か぀【匏】 【匏】【匏】又は 【匏】䜆し、は同䞀又は異なり、か぀氎 玠原子、䜎玚アルキル基又はプニル基を瀺す
を瀺し、R2は同䞀又は異なり、か぀匏 䜆し、は同䞀又は異なり、氎玠原子又はメ
チル基を瀺すで衚わされる基を瀺し、は同䞀
又は異なり、氎玠原子、塩玠原子又は臭玠原子を
瀺し、は正の敎数を瀺す〕で衚わされる重合䜓
を䞻成分ずする感゚ネルギヌ線重合䜓局を蚭ける
工皋、この重合䜓局䞊に゚ネルギヌ線を遞択的に
照射した埌、珟像し、スルヌホヌル甚穎を圢成す
る工皋、この重合䜓局を熱凊理あるいぱネルギ
ヌ線照射凊理しお高絶瞁化する工皋、及びこの高
絶瞁化された重合䜓局䞊にめ぀きにより導䜓回路
を圢成し、該導䜓回路をスルヌホヌル甚穎を通し
お前蚘印刷配線基板䞊の印刷回路ず電気的に接続
する工皋の各工皋を包含するこずを特城ずする倚
局印刷配線板の補造方法。
[Claims] 1. On a printed wiring board on which a printed circuit is formed, the following general formula: [In the formula, R 1 is the same or different, and [Formula] [Formula] [Formula] or [Formula] (However, Y and Z are the same or different and represent a hydrogen atom, a lower alkyl group, or a phenyl group)
, R 2 are the same or different, and the formula: (However, U and V are the same or different and represent a hydrogen atom or a methyl group), X is the same or different and represents a hydrogen atom, a chlorine atom, or a bromine atom, and n represents a positive integer] A step of providing an energy ray-sensitive polymer layer containing a polymer represented by A step of heat-treating or irradiating the combined layer with energy rays to make it highly insulating, forming a conductor circuit by plating on this highly insulating polymer layer, and passing the conductor circuit through the through hole to connect the printed wiring. 1. A method for manufacturing a multilayer printed wiring board, comprising the steps of electrically connecting a printed circuit on a substrate.
JP16323982A 1982-09-21 1982-09-21 Method of producing multilayer printed circuit board Granted JPS5954296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16323982A JPS5954296A (en) 1982-09-21 1982-09-21 Method of producing multilayer printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16323982A JPS5954296A (en) 1982-09-21 1982-09-21 Method of producing multilayer printed circuit board

Publications (2)

Publication Number Publication Date
JPS5954296A JPS5954296A (en) 1984-03-29
JPS6250076B2 true JPS6250076B2 (en) 1987-10-22

Family

ID=15769982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16323982A Granted JPS5954296A (en) 1982-09-21 1982-09-21 Method of producing multilayer printed circuit board

Country Status (1)

Country Link
JP (1) JPS5954296A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126297A (en) * 1986-11-14 1988-05-30 むビデン株匏䌚瀟 Multilayer printed interconnection board and manufacture of the same

Also Published As

Publication number Publication date
JPS5954296A (en) 1984-03-29

Similar Documents

Publication Publication Date Title
US6951707B2 (en) Process for creating vias for circuit assemblies
US4735891A (en) Thermally stable, irradiation cross-linkable polymer systems based on bisphenols and epichlorohydrin
EP0565858A1 (en) Radiation-sensitive compositions
US4268614A (en) Method of making printed circuit board
US6255039B1 (en) Fabrication of high density multilayer interconnect printed circuit boards
JP2000516771A (en) Metal coated with positive-type photo-definition resin for mass-producing microvias in multilayer printed wiring boards
US6153359A (en) Process for producing multilayer printed circuit boards
JPH11126974A (en) Manufacture of multilayered wiring board
JPS6250076B2 (en)
JPH10275983A (en) Mutilayer printed-wiring board
JPH06260763A (en) Manufacture of multilayer wiring board
KR100272627B1 (en) Curable Photo Image Forming Composition
JP3593351B2 (en) Method for manufacturing multilayer wiring board
JPS58119695A (en) Method of producing multilayer printed circuit board
JPH10107436A (en) Printed wiring board and manufacturing method thereof
KR100342335B1 (en) Resin laminated wiring sheet, wiring structure using the same, and production method thereof
JPS58162099A (en) Method of producing multilayer printed circuit board
JP3660733B2 (en) Photosensitive film material for circuit board insulation, flexible printed wiring board using the same, and sequential multilayer board
JPS5817696A (en) Method of producing multilayer printed circuit board
JPH1168321A (en) Circuit board
JPH10107449A (en) Method for manufacturing multi-layer printed wiring board
JPH1187925A (en) Manufacture of multilayered circuit board
JPH10107435A (en) Printed wiring board and manufacturing method thereof and plate resist composition
JPS58154297A (en) Method of producing high density metal core printed board
JPH10273632A (en) Production of adhesive for electroless plating, adhesive for electroless plating and production of printed circuit board