JPS58119695A - Method of producing multilayer printed circuit board - Google Patents

Method of producing multilayer printed circuit board

Info

Publication number
JPS58119695A
JPS58119695A JP251682A JP251682A JPS58119695A JP S58119695 A JPS58119695 A JP S58119695A JP 251682 A JP251682 A JP 251682A JP 251682 A JP251682 A JP 251682A JP S58119695 A JPS58119695 A JP S58119695A
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
polymer layer
layer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP251682A
Other languages
Japanese (ja)
Inventor
雅夫 森田
岩沢 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP251682A priority Critical patent/JPS58119695A/en
Publication of JPS58119695A publication Critical patent/JPS58119695A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Organic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は多層印刷配線板の製造方法に関し、特に耐熱信
頼性と布線収容能力の優れた多層印刷配線板を簡単かつ
経済的に製造しうる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a multilayer printed wiring board, and more particularly to a method for easily and economically manufacturing a multilayer printed wiring board with excellent heat resistance reliability and wiring accommodation capacity.

従来、印刷配線板において、その布線収容数の向上を図
るため、めっきスルーホール法による多層化が広く応用
されてきた。この技術による多層印刷配線板は、印刷回
路を形成しえ複数枚の印刷配線板を!リゾレグを介して
加熱圧着して内層回路及び表層回路を有する積層板を作
製し、この積ノー板の所定の位置にドリルによシスルー
ホール用穴を形成し、該穴をめっきして両層間の回路を
電気的に接続することにより製造式れる。
Conventionally, in order to increase the number of wires that can be accommodated in printed wiring boards, multilayering using a plated through-hole method has been widely applied. Multilayer printed wiring boards using this technology can form printed circuits using multiple printed wiring boards! A laminated board having an inner layer circuit and a surface layer circuit is produced by heat-pressing bonding via Resoreg, and holes for through-holes are formed with a drill at predetermined positions on this laminated board, and the holes are plated to connect the two layers. It can be manufactured by electrically connecting the circuits.

上記方法により製造された多層印刷配線板は、集積素子
の集積度の向上に伴って布線収容数の大幅な増大が要求
され、暦数が年々増加する傾向にある。しかしながら、
層数が増加するKつれ、層間接続用のスルーホールの数
が多くなp1平面の配線領域が減少するため、層数を増
加しても布線収容数をあまp向上できない。そのためス
ルーホールの径を小さくする必要があるが、暦数が増加
するにつれて基板が厚くなるため、穴加工性が悪くなり
、かつめっきのつきまわり性が悪くなる等の欠点がある
。したがって、布線収容数が増大するにつれて製造歩留
りが極度に低下し、大きな問題となっている。
Multilayer printed wiring boards manufactured by the above method are required to accommodate a significant increase in the number of wires to be accommodated as the degree of integration of integrated elements increases, and the number of printed wiring boards tends to increase year by year. however,
As the number of layers increases, the wiring area on the p1 plane, where the number of through holes for interlayer connections is large, decreases, so even if the number of layers is increased, the number of wires accommodated cannot be improved very much. Therefore, it is necessary to reduce the diameter of the through hole, but as the number of calendars increases, the substrate becomes thicker, resulting in disadvantages such as poor hole machinability and poor plating coverage. Therefore, as the number of wires accommodated increases, the manufacturing yield is extremely reduced, which is a major problem.

まえ、集積素子の変更に伴い、それを搭載する印刷配線
板は・母ターン変更を要求されることがあるが、ドリル
加工による多層配線板の製造技術においては、この/f
メタ−変更が困難なため、最初から作9直さなければな
らないので非常に不経済である。
Previously, when an integrated element is changed, the printed wiring board on which it is mounted may be required to change its base turn, but in the manufacturing technology of multilayer wiring boards by drilling, this
Since it is difficult to change the meta, you have to start over from the beginning, which is extremely wasteful.

一方、従来、各遣の耐熱性感エネルギー線樹脂組成物が
開発されているが、それらは高沸点溶媒にしか溶解しな
いか、硬化前は分子量が低いため、ドライフィルム化で
きない、したがって適当な溶媒に溶解し、スピンナ塗布
及び凌漬等によシ印刷回路上に塗布し、乾燥している。
On the other hand, various types of heat-resistant energy-sensitive resin compositions have been developed in the past, but because they only dissolve in high-boiling point solvents or have low molecular weights before curing, they cannot be made into dry films. It is melted, applied to the printed circuit by spinner coating, dipping, etc., and dried.

このため、有機解削の取扱い上の危険性や乾燥に時間が
かかるなどの作業性を著しく低下させている。
For this reason, the workability of organic disintegration is significantly reduced due to the dangers in handling and the long drying time.

また、ソルダーマスク等の各・種ドライフィルムは、硬
化後においてもガラス転移温度が低く、線膨張係数が大
きい。この丸め印刷配線板用の絶縁材料として用い九場
合、搭載素子から発生する熱により膨張し、回路導体を
破断してしまうという欠点がある。
Furthermore, various types of dry films such as solder masks have a low glass transition temperature and a large coefficient of linear expansion even after curing. When used as an insulating material for this rounded printed wiring board, it has the disadvantage that it expands due to the heat generated from the mounted elements and breaks the circuit conductor.

本発明は、上記事情に鑑みてなされたものであり、その
目的は、布線収容能力に優れ耐熱信頼性の高い多層印刷
配線板を簡易かつ経済的に製造しうる方法を提供するこ
とである。
The present invention has been made in view of the above circumstances, and its purpose is to provide a method for easily and economically manufacturing a multilayer printed wiring board that has excellent wiring accommodation capacity and high heat resistance and reliability. .

以下、本発明を図面を参照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

まず、第1図(a)に示す如くガラス布基材がリイミド
I!t # 4からなる絶縁基板1上に常法に従って印
刷回路2を形成して印刷配線板8を作製する。ここに用
いる印刷配線板は多層印刷配線板でもよい。
First, as shown in FIG. 1(a), a glass cloth base material is made of Liimide I! A printed circuit board 8 is manufactured by forming a printed circuit 2 on an insulating substrate 1 made of T#4 according to a conventional method. The printed wiring board used here may be a multilayer printed wiring board.

次いで、印刷配線板3の印刷回路2側全向に一般式 〔式中、R1+ R’1は同−又は異なりかつ(但しY
、zは水嵩原子、メチル基、エチル基、イソグロビル基
又はフェニル基を示し、これらは互いに同一であっても
異なっていてもよい)を示し、R2,R’2は、同−又
は異なりかつ U 1l −C−C−CH−V(但しU、Vは水素原子19に基又
は、フェニル基を示しこれらは互いに同一であっても異
なっていてもよい)を示し、Xは水素原子、塩素原子又
は臭素原子を示し、為は正の整数を示す〕で表わされる
重合体を主成分とする感エネルギー線重合体層4を形成
する(第1図(b)図示)、。
Next, a general formula [where R1 + R'1 are the same - or different and (However, Y
, z represents a bulky atom of water, a methyl group, an ethyl group, an isoglobil group, or a phenyl group, which may be the same or different from each other), and R2 and R'2 are the same or different, and U 1l -C-C-CH-V (where U and V represent a group on the hydrogen atom 19 or a phenyl group, which may be the same or different from each other), and X is a hydrogen atom, a chlorine atom or a bromine atom, where each represents a positive integer] is formed (as shown in FIG. 1(b)).

上記一般式で表わされる重合体は、感光性フェノキシ・
耐相゛として知られており、その製造方法もすでに提案
されている。(特公昭44−16125人この重合体の
代表的な製造方法は、ビスフェノール構造をもつ九一般
式 (但しy、zは水素原子、メチル基、エチル基、イソノ
ロピル基、フェニル基を示し、これらは岨いに同一であ
っても異なっていてもよい)を示ス〕とエピクロルヒド
リンを反応させてnられた重合体に一般式 %式% 〔但しU、Vは水素原子、メチル基、又はフェニル基を
示し、これらは互いに同一であっても異なっていてもよ
い〕をピリジン中で反応させることによ)得られる。
The polymer represented by the above general formula is a photosensitive phenoxy
It is known as phase-resistant, and its manufacturing method has already been proposed. (Japanese Patent Publication No. 44-16125) A typical method for producing this polymer is based on nine general formulas having a bisphenol structure (where y and z represent a hydrogen atom, a methyl group, an ethyl group, an isonoropyl group, and a phenyl group; (which may be the same or different) is reacted with epichlorohydrin to form a polymer with the general formula % (where U and V are hydrogen atoms, methyl groups, or phenyl groups). which may be the same or different] in pyridine).

なお、後記するエネルギー線照射に際して紫外線等の光
をエネルギー線として用いる場合には更に増感剤を添加
することにより光反応を増感させることが望ましい。か
かる増感剤としては、アセトフェノン、ベンゾフェノン
、ジメチルアミノベンゾフェノン及びペンゾインイソグ
ロビルエーテル等のカルがニル化合智が有効であり、更
には分光増感剤として5−ニトロアセナフテン及び1−
ニトロピレン等の化合物も有効である。これらの化合物
の添加菫は、前記重合体に対し1〜15重量鳴とするこ
とが適当である。
In addition, when using light such as ultraviolet rays as energy rays in the energy ray irradiation described later, it is desirable to further sensitize the photoreaction by adding a sensitizer. As such sensitizers, carbonyl compounds such as acetophenone, benzophenone, dimethylaminobenzophenone, and penzoin isoglobyl ether are effective, and as spectral sensitizers, 5-nitroacenaphthene and 1-
Compounds such as nitropyrene are also effective. It is appropriate that these compounds be added in an amount of 1 to 15% by weight based on the polymer.

また、架橋密度を高めるために、芳香族テトラゾ化合物
、芳香族ビスアジド化合物又は多官能性ビニル化合物等
の架橋剤を加えることも効果的であるが、絶縁膜の線膨
張係数を大きくしないために、前記重合体の1〜20重
量嗟が望ましい。
Additionally, in order to increase the crosslinking density, it is effective to add a crosslinking agent such as an aromatic tetrazo compound, an aromatic bisazide compound, or a polyfunctional vinyl compound, but in order not to increase the linear expansion coefficient of the insulating film, 1 to 20 weight grams of said polymer is desirable.

上記感エネルギー線重合体層4の形成にあたっては、例
えば前記重合体酸いは必要に応じて添加された増感剤及
び架橋剤を適当な溶媒に溶解し、この液状物を可撓性の
支持体フィルム、例えばポリエステルフィルム上に塗布
、乾燥し、コノ上に?リエチレンカバーシートを設けて
サントイ、チ構造のドライフィルムを予め作製し、仁の
ドライフィルムの4リエテレ7カノ脅−シートをはがし
て、支持フィルムを前記重合体からなる感エネルギー線
重合体層を印刷配線板上に当接するように載せ、ホット
ロールラ建ネータでラミネートする。このポリエステル
フィルムは抜起エネルギー纏の照射時にそのまま残して
もよいし、剥離してもよい。こうして形成された感エネ
ルギー線重合体層4の厚さは目J刷配線板の特性イノピ
ーダンスの関係から50μm以上にすることが望ましい
In forming the energy ray-sensitive polymer layer 4, for example, the polymer acid, a sensitizer and a crosslinking agent added as necessary are dissolved in an appropriate solvent, and this liquid is applied to a flexible support. Apply it on a body film, for example a polyester film, dry it, and then put it on the container? A dry film with a polyethylene structure is prepared in advance by providing a polyethylene cover sheet, the four-layer dry film sheet is peeled off, and an energy ray-sensitive polymer layer made of the above-mentioned polymer is printed on the support film. Place it so that it is in contact with the wiring board, and laminate it with a hot roll laminator. This polyester film may be left as is or may be peeled off during irradiation with the extraction energy. The thickness of the energy ray-sensitive polymer layer 4 thus formed is desirably 50 μm or more in view of the characteristic inopedance of the printed wiring board.

次いで、#I1図(c)に示す如く感エネルギー線重合
体層4にマスク5を介してエネルギー線を選択的に照射
する。この場合、第2図に示す如くエネルギー線源5か
ら感エネルギー線重合体層4にエネルギー線を選択的に
1接照射してもよい。こうしたエネルギー線の選択照射
により重合体層4の照射部分は溶媒に不要とな9、未照
射部分は溶媒に可溶のままの状態となる。かかるエネル
ギー線としては、例えば可視光−1紫外線、X線、レー
ザ光、電子ビーム等が挙げられる。
Next, as shown in FIG. #I1 (c), energy rays are selectively irradiated onto the energy ray-sensitive polymer layer 4 through the mask 5. In this case, as shown in FIG. 2, energy rays may be selectively irradiated directly onto the energy ray-sensitive polymer layer 4 from the energy ray source 5. Due to such selective irradiation with energy rays, the irradiated portions of the polymer layer 4 become unnecessary to the solvent 9, while the unirradiated portions remain soluble in the solvent. Examples of such energy rays include visible light-1 ultraviolet rays, X-rays, laser beams, and electron beams.

次いで、感エネルギー線重合体層4を46処理すること
により該重合体層40東照射部分が溶剤中に溶出してス
ルホール用穴rが形成される(第1図−)図示)。ここ
に用いる境像剤としては、例えば塩化メチレン等の有機
溶剤を挙げることができる。
Next, by subjecting the energy ray-sensitive polymer layer 4 to 46 treatments, the east irradiated portion of the polymer layer 40 is eluted into the solvent, forming through-hole holes r (as shown in FIG. 1). Examples of the developing agent used here include organic solvents such as methylene chloride.

次いで、スルホール用穴7が設けられ死重合体1air
 4を熱処理或いはエネルギー線の全面露光を施して扁
絶縁化を行なう。つづいて、高絶縁化電合体1m 4を
液体ホーニング又はプラズマエツチング等を施して蚊重
合体層4表面を粗面化すると共にスルホール用穴のめれ
性を改善した後、有機酸−等を塗布し、図示しないフォ
トマスク等を介して導体回路形成予定部を露光し、視像
処理することによりめっき活性層8を形成する(*J必
(e)苑7↑、入 次いで、無電解めっきを施してめっき活性層8上に導体
回路9を、スルホール用穴r内に49層JOを形成して
導体回路9の一部を前記印り返すことにより三層以上の
多層印刷配線板を製造する。
Next, holes 7 for through holes are provided and the dead polymer 1air is
4 is subjected to heat treatment or full-surface exposure to energy rays to flatten the insulation. Next, 1 m 4 of the highly insulating electrical composite was subjected to liquid honing or plasma etching to roughen the surface of the mosquito polymer layer 4 and improve the through holes, and then coated with organic acid, etc. Then, the plating active layer 8 is formed by exposing the area where the conductor circuit is to be formed through a photomask (not shown) and visual processing. A conductor circuit 9 is formed on the plating active layer 8, a 49-layer JO is formed in the through hole r, and a part of the conductor circuit 9 is printed back as described above, thereby manufacturing a multilayer printed wiring board having three or more layers. .

しかして、本発明方法によれば、絶縁基板の表向に印刷
回路を形成した印刷配線板上に一般式で表わされる重合
体を主成分とする感エネルギー線重合体層を設け、これ
をフォトマスクを介しであるいは直接エネルギー線照射
及び視像処理することにより、容易にスルーホール用の
微細な穴を形成することができる。つづいて、咳穴形成
後の感エネルギー線重合体層を熱処理又はエネルギー線
照射処理して該層の高絶縁化を行なうことにより、従来
の!す/レグ層に和尚し、絶縁基板との密着性及び耐熱
性に優れ、更に線膨張係数が小さい等の特性を有する高
絶縁化重合体層を形成することができる。次いで液体ホ
ーニング又はプラズマエツチング等によシ該層の表面を
粗化し、かつ該層表面及びスルーホール用穴内のぬれ性
改善を行ない、次いで有機酸銀塩等を用いて活性化処理
を施し、無電解めっきを行なって導体回路を形成するこ
とによシ、スルーホールを通して基板上の印刷回路と電
気的に接続することにより二層印刷配線板を作成するこ
とができる。そしてこの上に更に前記感エネルギー線重
合体層を形成し、上記と同じ操作を繰返すことによシ、
三層以上の多層構造の印刷配線板を効率的に製造するこ
とができる。このようにして作製された多層印刷配線板
は、従来のドリル加工の場合に比ベスルーホール用穴の
径が小さいため、布線収容数を大幅に増加できる。
According to the method of the present invention, an energy ray-sensitive polymer layer containing a polymer represented by the general formula as a main component is provided on a printed wiring board on which a printed circuit is formed on the surface of an insulating substrate, and the layer is photosensitive. Fine holes for through holes can be easily formed through a mask or by direct energy beam irradiation and visual processing. Subsequently, the energy ray-sensitive polymer layer after the cough hole formation is subjected to heat treatment or energy ray irradiation treatment to make the layer highly insulating. It is possible to form a highly insulating polymer layer having characteristics such as superior adhesion to an insulating substrate and heat resistance, and a small coefficient of linear expansion. Next, the surface of the layer is roughened by liquid honing or plasma etching, etc., and the wettability of the layer surface and inside of the through hole is improved, and then an activation treatment is performed using an organic acid silver salt, etc. By performing electrolytic plating to form a conductor circuit, a two-layer printed wiring board can be created by electrically connecting it to a printed circuit on the board through through holes. Then, by further forming the energy ray-sensitive polymer layer on top of this and repeating the same operation as above,
A printed wiring board having a multilayer structure of three or more layers can be efficiently manufactured. In the multilayer printed wiring board produced in this way, the diameter of the through hole is smaller than in the case of conventional drilling, so the number of wires that can be accommodated can be greatly increased.

夾施例 ビスフェノールAとエピクロルヒドリンカラ合成したフ
ェノキシ樹脂(8cismtlfi@Polxm@rP
rodu@ts g ) (重量平均分子量3.2X1
G)200)kピリジン11に溶解し、これに塩化メタ
クリロイル200Pを滴下後7時間50℃で攪拌し反応
させた。この反応液をメタノール20、J中に注いでメ
タクリロイル化し九フェノΦシ樹脂を得た。
Examples Phenoxy resin synthesized from bisphenol A and epichlorohydrin (8cismtlfi@Polxm@rP
rodu@ts g ) (weight average molecular weight 3.2X1
G) 200)k It was dissolved in pyridine 11, methacryloyl chloride 200P was added dropwise thereto, and the mixture was stirred at 50° C. for 7 hours to react. This reaction solution was poured into methanol 20.J and methacryloylated to obtain a nine-phenol resin.

このフェノキシ樹脂Zoo)とジメチルアZノペンゾフ
エノン5tを塩化メチレンIJK溶%サセ、1 m X
 1 msのIジエステルフィルム上に塗布し、乾燥さ
せ4リエチレンフイルムをかぶせサントイ、チ構造にす
ることにより80、gIlllのドライフィルムを得た
This phenoxy resin (Zoo) and 5 t of dimethylazonopenzophenone were dissolved in methylene chloride IJK, 1 m
The mixture was coated on a 1 ms I diester film, dried, and covered with a 4-polyethylene film to form a Santoy, H structure, thereby obtaining a dry film of 80 g Illl.

鋼張積層板(ガラス布基材ポリイミド樹脂)の表面鋼箔
を常法によりフォトエツチングして得られた印刷配線板
上に、前記方法により得られたドライフィルムをホット
ラミネータで加熱圧着して均一に被覆し丸。次いでこれ
に1.25■格子に0.15■φの黒丸が形成されたフ
ォトマスクを密着させ3 kWの超高圧水銀灯で10分
間露光した。これを塩化メチレンで3分間現像すること
により、印刷配線板上に1.25■格子で0.15■φ
の穴が形成された上記重合体層を得た−0次いで、この
基板を250℃で1時間熱処理することにより、該層を
高絶縁化した◎次いで鋏層表面及び穴内を液体ホーニン
グ(2Kl/3 )で粗面化、し丸。次に、これにlO
−グルタミン酸銀塩水溶液を塗布、乾燥後フォトマスク
を介して超高圧水銀灯で露光し、回路となる部分のみに
鋼めりきの核となる銀を析出した後、lO重量憾酢駿水
溶液で未露光のグルタミノ酸銀を溶出させた。次に、無
電解鋼めっき液(室町化学社製MK−450)に浸漬し
、銀のめるパターンのところにめっき鋼を25μmの厚
さに析出させて二層印刷配線板を得た。更にその上に繭
記ドライフィルムを使用して上記と同様の操作を3回繰
返すことにより五層印刷配線板を作成した。又、比較の
ため従来のドリル加工技術によりスルーホール用穴を形
成した印刷配線板を作成し両者の回路緒特性を調べた。
A dry film obtained by the above method is heat-pressed using a hot laminator onto a printed wiring board obtained by photoetching the surface steel foil of a steel-clad laminate (glass cloth base polyimide resin) using a conventional method. Covered in round shape. Next, a photomask in which black circles of 0.15 .phi. were formed on a 1.25 .mu. grid was closely attached to this, and exposure was performed for 10 minutes using a 3 kW ultra-high pressure mercury lamp. By developing this with methylene chloride for 3 minutes, it was printed on a printed wiring board with a grid of 1.25 mm and a diameter of 0.15 mm.
The above polymer layer with holes of -0 was obtained. Next, this substrate was heat-treated at 250°C for 1 hour to make the layer highly insulating. Next, the surface of the scissors layer and the inside of the holes were subjected to liquid honing (2 Kl/ 3) The surface is roughened and rounded. Next, add this to lO
- Apply a silver glutamic acid salt aqueous solution, dry it, and then expose it to an ultra-high pressure mercury lamp through a photomask to deposit silver, which will become the core of the steel plating, only on the parts that will become the circuit, and then leave it unexposed with a lO-weighted acetic acid aqueous solution. of silver glutamic acid was eluted. Next, it was immersed in an electroless steel plating solution (MK-450, manufactured by Muromachi Kagaku Co., Ltd.), and plated steel was deposited to a thickness of 25 μm on the silver pattern to obtain a two-layer printed wiring board. Furthermore, a five-layer printed wiring board was prepared by repeating the same operation as above three times using Mayuki dry film thereon. In addition, for comparison, a printed wiring board with through-hole holes formed using conventional drilling technology was prepared, and the circuit characteristics of both were investigated.

その結果を下表に示す。The results are shown in the table below.

表 上記表から明らかなように、本発明においては、形成さ
れるスルーホールの径が従来のドリル加工の場合に比較
して小さいため、本発明によれば、ノ母ターン収容数を
大幅に増加させた多層印刷配線板を得ることができる。
As is clear from the table above, in the present invention, the diameter of the through hole formed is smaller than in the case of conventional drilling. A multilayer printed wiring board can be obtained.

又、本発明で用いた熱処理後のドライフィルムの線膨張
係数は5X1o  、’tと極めて低く、したがうて寸
法安定性が良いので本発明で作成した多層印刷配線板を
200℃で2時間加熱しその後θ℃まで急冷しても、回
路の破断や絶縁層の破壊といった異常はみられなかった
。なお、従来技術、例えばアクリル系光架橋性重合体フ
ィルム(日立化成製5R−1000,厚さ0.075−
)を用いた結果では、架橋後の線膨張係数が5X10 
 /lと高く、し九がって200℃30分の加熱後0℃
に急冷するとスルーホールに破断が生じた。
Furthermore, the coefficient of linear expansion of the dry film after heat treatment used in the present invention is extremely low at 5×1o,'t, and therefore the dimensional stability is good, so the multilayer printed wiring board prepared according to the present invention was heated at 200°C for 2 hours. After that, even when rapidly cooled to θ°C, no abnormalities such as circuit breakage or insulation layer breakdown were observed. In addition, conventional techniques such as acrylic photocrosslinkable polymer film (manufactured by Hitachi Chemical 5R-1000, thickness 0.075-
), the linear expansion coefficient after crosslinking is 5X10
/l, and after heating to 200℃ for 30 minutes, the temperature is 0℃.
When rapidly cooled, the through hole broke.

以上説明したように本発明による多層印刷配線板の製造
方法は、パターン収容能力に優れるため、ドリル加工に
よる多層配線板の全ノfターン布線tを層数が1/′3
〜IAの量で収容することがCiJ能であり、製造工程
の削減、歩留)の向上と相俟って製造費を大幅に引き下
げることができる。
As explained above, the method for manufacturing a multilayer printed wiring board according to the present invention has an excellent pattern accommodation capacity, so that the total number of turns t of the multilayer wiring board by drilling can be reduced to 1/'3 of the number of layers.
It is possible to accommodate CiJ in an amount of ~IA, and together with the reduction in manufacturing steps and improvement in yield, it is possible to significantly reduce manufacturing costs.

また、本発明によプ得られた多層印刷配線板は、耐熱性
が高く、寸法安定性に優れるため、熱を多く発生する素
子を搭載し死際にも絶縁層の膨張による回路ノ量ターン
等の破断を起こすことがなく極めて信頼性の高いものと
なっている。
In addition, the multilayer printed wiring board obtained according to the present invention has high heat resistance and excellent dimensional stability. It is extremely reliable as it does not cause any breakage.

更に、本発明の製造方法を印刷配線板の高密度配線が要
求される部分(例えば超L81などの^集積度な素子を
搭載する部分)のみに適用することも可能であり、集積
素子の変爽による回路変梃に容易に対処できるため、極
めて経済的である。
Furthermore, the manufacturing method of the present invention can be applied only to parts of printed wiring boards that require high-density wiring (for example, parts where highly integrated elements such as ultra-L81 are mounted), and it is possible to It is extremely economical because it can easily deal with circuit deformation caused by current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明の多層印刷配線板の製造
工程を示す断面図、第2図は感エネルギー重合体層にエ
ネルギー線を直接照射する工程を示す断(8)図である
。 11・i絶縁基板、2・・・印刷回路、3・・・印−U
 !![i 線板、4・・・感エネルギー線重合体層、
5・・・フォトマスク、6・・・エネルギーM源、7・
・・スルーホール用穴、9・・・導体回路、10・・・
導体層。
FIGS. 1(a) to (f) are cross-sectional views showing the manufacturing process of the multilayer printed wiring board of the present invention, and FIG. 2 is a cross-sectional view (8) showing the process of directly irradiating the energy-sensitive polymer layer with energy rays. It is. 11・i Insulating board, 2...Printed circuit, 3...Mark-U
! ! [i ray plate, 4... energy ray sensitive polymer layer,
5... Photomask, 6... Energy M source, 7.
...Through-hole hole, 9...Conductor circuit, 10...
conductor layer.

Claims (1)

【特許請求の範囲】 表面に印刷回路が形成された印刷配線板上に、一般式 〔式中、a、 、 R/、は同−又は異なりかつZZ 
              Z          
   替(但しY、zは、水素原子、メチル基、エチル
基、イソグロビル基、フェニル基のいずれかを示し、こ
れらは互いに同一であっても異なってチル基又はフェニ
ル基を示し、これらは互いに同一であっても異なってい
てもよい)を示し、Xは水素原子、塩素原子又は夷素原
子を示し、烏は正の整数を示す〕で表わされる重合体を
主成分とする感エネルギー線重合体層を設ける工程、こ
の重合体層上にエネルギー線を選択的に照射し九後、境
偉しスルーホール用穴を形成する工程、この重合体層を
熱処理あるいは、エネルギー線照射処理して高絶縁化す
る工程と、高絶縁化された重合体層上にめっきにより導
体回路を形成し、該導体回路をスルーホール用穴を通し
て前記印刷配線基板上の印刷回路と電気的に接続する工
程とを具備したことを待機とする多層印刷配線板の製造
方法。
[Claims] On a printed wiring board on which a printed circuit is formed, a printed wiring board of the general formula [wherein a, , R/, are the same or different and ZZ
Z
(However, Y and z represent either a hydrogen atom, a methyl group, an ethyl group, an isoglobil group, or a phenyl group, and these may be the same or different and represent a thyl group or a phenyl group, and these may be the same as each other) ), X represents a hydrogen atom, a chlorine atom, or an ionic atom, and Crow represents a positive integer]. Step of forming a layer, selectively irradiating energy rays on this polymer layer, forming holes for through-holes, and heat-treating or irradiating this polymer layer with energy rays to achieve high insulation. forming a conductor circuit by plating on the highly insulating polymer layer, and electrically connecting the conductor circuit to the printed circuit on the printed wiring board through the through-hole hole. A method for manufacturing a multilayer printed wiring board that requires waiting.
JP251682A 1982-01-11 1982-01-11 Method of producing multilayer printed circuit board Pending JPS58119695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP251682A JPS58119695A (en) 1982-01-11 1982-01-11 Method of producing multilayer printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP251682A JPS58119695A (en) 1982-01-11 1982-01-11 Method of producing multilayer printed circuit board

Publications (1)

Publication Number Publication Date
JPS58119695A true JPS58119695A (en) 1983-07-16

Family

ID=11531529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP251682A Pending JPS58119695A (en) 1982-01-11 1982-01-11 Method of producing multilayer printed circuit board

Country Status (1)

Country Link
JP (1) JPS58119695A (en)

Similar Documents

Publication Publication Date Title
EP1523869B1 (en) Process for creating vias for circuit assemblies
US6904674B2 (en) Process for manufacturing a printed wiring board
US4268614A (en) Method of making printed circuit board
JPS6126624A (en) Thermostable polymer and manufacture of multilayer wiring
KR100777994B1 (en) Process to manufacture tight tolerance embedded elements for printed circuit boards
US3756891A (en) Multilayer circuit board techniques
JPH09214140A (en) Multilayered printed wiring board and its manufacture
JP2003234572A (en) Method of manufacturing double-sided wiring board
JP2003124637A (en) Multilayer wiring board
JPS58119695A (en) Method of producing multilayer printed circuit board
JPH11126974A (en) Manufacture of multilayered wiring board
JPH06260763A (en) Manufacture of multilayer wiring board
JPS6250076B2 (en)
JPH07283540A (en) Multilayered printed wiring board and its manufacture
JPS62123935A (en) Manufacture of printed coil
JPS5817696A (en) Method of producing multilayer printed circuit board
JP3593351B2 (en) Method for manufacturing multilayer wiring board
JPS58162099A (en) Method of producing multilayer printed circuit board
JPS6233497A (en) Manufacture of multilayer circuit board
JPH1168321A (en) Circuit board
KR100342335B1 (en) Resin laminated wiring sheet, wiring structure using the same, and production method thereof
JP3177923B2 (en) Probe structure and method of manufacturing the same
JPH10107436A (en) Printed wiring board and manufacturing method thereof
JPS5921095A (en) Method of producing multilayer printed circuit board
JPS58154297A (en) Method of producing high density metal core printed board