JPS6250073B2 - - Google Patents

Info

Publication number
JPS6250073B2
JPS6250073B2 JP56077219A JP7721981A JPS6250073B2 JP S6250073 B2 JPS6250073 B2 JP S6250073B2 JP 56077219 A JP56077219 A JP 56077219A JP 7721981 A JP7721981 A JP 7721981A JP S6250073 B2 JPS6250073 B2 JP S6250073B2
Authority
JP
Japan
Prior art keywords
film
deposited
block
solder
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56077219A
Other languages
Japanese (ja)
Other versions
JPS57192097A (en
Inventor
Kazunari Oota
Juichi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56077219A priority Critical patent/JPS57192097A/en
Publication of JPS57192097A publication Critical patent/JPS57192097A/en
Publication of JPS6250073B2 publication Critical patent/JPS6250073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Die Bonding (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は金属被膜形成方法に関するものであ
り、特に半導体レーザのダイスボンド用マウント
材料へのハンダ金属の蒸着法およびそのエツチン
グ法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a metal film, and more particularly to a method for vapor depositing a solder metal onto a mounting material for die bonding of a semiconductor laser, and a method for etching the solder metal.

半導体レーザはレーザ光が素子端面から放出さ
れるため、端面がパツケージ外部から見えるよう
にしなければならず、また発光部の電流密度が他
の半導体素子に比べ一桁高いため、マウント材料
は適当なヒートシンクでなければならない。その
ため、ダイスボンドの形態は一般の半導体素子と
全く異なつたものとなる。
Since laser light is emitted from the device end face of a semiconductor laser, the end face must be visible from outside the package, and the current density in the light emitting part is an order of magnitude higher than that of other semiconductor devices, so the mounting material must be appropriately selected. Must be a heat sink. Therefore, the form of the die bond is completely different from that of a general semiconductor element.

第1図に半導体レーザのダイスボンドの一例を
示す。半導体レーザ素子14は熱放散をよくする
ため発光部である活性領域13がヒートシンクに
なるべく近いように、アツプサイド=ダウンの状
態(上下をひつくり返した状態)でボンデイング
される。マウント材料はCuで作られたブロツク
10であり、このブロツク10はヒートシンクを
兼ねている。また、レーザ端面が正しく垂直にな
るように、ブロツク10の角は正確に直角にして
いる。このCuでできたブロツク10と半導体レ
ーザ14の接着はハンダ材料のIn薄膜11に熱を
加え融着することによりおこなう。半導体レーザ
14は、先ほど述べたようにアツプサイド=ダウ
ンの状態でブロツク10にボンデイングされるた
め、p−n接合12とハンダのIn膜11との間隔
は2〜3μm程度しかなく、また、半導体レーザ
14との接着をよくするため、In膜は表面が清浄
な膜厚制御された薄膜でなくてはならない。
FIG. 1 shows an example of a die bond for a semiconductor laser. In order to improve heat dissipation, the semiconductor laser element 14 is bonded in an upside-down state (turned upside down) so that the active region 13, which is a light emitting part, is as close to a heat sink as possible. The mounting material is a block 10 made of Cu, and this block 10 also serves as a heat sink. Further, the corners of the block 10 are made exactly at right angles so that the laser end face is properly vertical. The block 10 made of Cu and the semiconductor laser 14 are bonded by applying heat to the In thin film 11, which is a solder material, to fuse them. As mentioned earlier, the semiconductor laser 14 is bonded to the block 10 in an upside-down state, so the distance between the p-n junction 12 and the solder In film 11 is only about 2 to 3 μm, and the semiconductor laser In order to have good adhesion with 14, the In film must be a thin film with a clean surface and a controlled thickness.

従来、このマウント材料へのハンダ金属の蒸着
およびエツチングは、Cuブロツク10へIn11
を真空蒸着した後、個別にIn11をエツチングし
た後、半導体レーザのボンデイングを行つてい
た。しかし、この方法では一度に処理できるマウ
ント材料の数が限られ、大量にレーザを生産する
には多数個を同時処理する技術が必要不可欠なも
のとなつた。
Conventionally, the deposition and etching of solder metal onto this mounting material has been performed by depositing In11 onto Cu block 10.
After vacuum-depositing In11, the In11 was individually etched, and then the semiconductor laser was bonded. However, with this method, the number of mount materials that can be processed at one time is limited, and in order to mass-produce lasers, technology that can simultaneously process a large number of mount materials has become essential.

以下、第2図を用いて従来の欠点を具体的に説
明すると次のようになる。第2図は平板ガラス1
5上にレーザマウント材料であるCuブロツク1
4が被蒸着物として置かれており、In蒸着膜11
が蒸着されていることを示している。
Hereinafter, the drawbacks of the conventional method will be explained in detail with reference to FIG. 2. Figure 2 shows flat glass 1
Cu block 1, which is a laser mount material, is placed on top of 5.
4 is placed as an object to be deposited, and the In deposited film 11
It shows that is vapor-deposited.

このIn蒸着膜11の蒸着が終了した時点では、
Cuブロツク14上のIn蒸着膜11の表面は荒い
ため、そのまま、このCuブロツク14に半導体
レーザを第1図のごとくボンデイングすると付着
強度は弱くなる。そのため、表面を平滑にし、清
浄化するためにIn蒸着膜11にエツチングなどの
表面処理を行なわなければならない。通常、この
表面処理は塩酸系の液を用いるエツチングによつ
て行なわれる。
When the vapor deposition of this In vapor deposition film 11 is completed,
Since the surface of the In vapor deposited film 11 on the Cu block 14 is rough, if a semiconductor laser is directly bonded to the Cu block 14 as shown in FIG. 1, the adhesion strength will be weakened. Therefore, the In vapor deposited film 11 must be subjected to surface treatment such as etching in order to smooth and clean the surface. This surface treatment is usually performed by etching using a hydrochloric acid solution.

従来例を示す第2図においては蒸着台座である
平板ガラス15にCuブロツク14を載せた状態
のままでエツチングを行つていたが、この場合平
板ガラス15とIn蒸着膜11の付着強度が充分で
ないため、エツチング工程中に液が平板ガラス1
5とIn蒸着膜11の界面にしみ込み、In蒸着膜が
平板ガラスよりはく離してしまう欠点があつた。
Cuブロツク14は実際の工程では多数個置かれ
ているため、In蒸着膜11のはく離と同時にCu
ブロツク14が平板ガラス15よりはずれた時、
Cuブロツク14同士がIn蒸着膜11の粘性によ
りくつつき合い、良好なエツチングおよびエツチ
ング後の使用が不可能となつてしまう。このよう
な理由から、エツチングにおいて多数個同時処理
することは不可能であつた。
In FIG. 2, which shows a conventional example, etching was performed with the Cu block 14 placed on the flat glass 15, which is a vapor deposition base, but in this case, the adhesion strength between the flat glass 15 and the In vapor deposition film 11 was sufficient. Therefore, during the etching process, the liquid is exposed to the flat glass 1.
5 and the In vapor-deposited film 11, which caused the In vapor-deposited film to peel off from the flat glass.
Since a large number of Cu blocks 14 are placed in the actual process, the Cu blocks 14 are removed at the same time as the In vapor deposition film 11 is peeled off.
When the block 14 comes off the flat glass 15,
The Cu blocks 14 stick together due to the viscosity of the In deposited film 11, making it impossible to perform good etching and use after etching. For these reasons, it has been impossible to simultaneously process a large number of substrates during etching.

本発明は上記従来の欠点を除去し、多数個のマ
ウント材料へのハンダ材料蒸着、および表面処理
を同時に行なうことを可能ならしめる金属被膜形
成方法を提供するものである。
The present invention eliminates the above-mentioned conventional drawbacks and provides a method for forming a metal film that enables simultaneous vapor deposition of solder material and surface treatment on a large number of mounting materials.

以下実施例をあげて本発明の金属被膜形成方法
を具体的に説明する。第3図は本発明の一実施例
における金属被膜形成方法を説明するための断面
図を示す。
The method for forming a metal film of the present invention will be specifically explained below with reference to Examples. FIG. 3 shows a cross-sectional view for explaining a method of forming a metal film in an embodiment of the present invention.

レーザマウント材料であるCuブロツク19
は、被蒸着物として、蒸着台座である平板ガラス
15上に多数個同時に置かれる(図では1個のみ
示す)。本実施例では平板ガラス15上にTi層1
6を介してPt層17を形成して、蒸着台座として
いる。Ti層16は平板ガラス15とPt層17の
付着を強化するために設けられている。通常これ
ら各層はAr雰囲気中での高周波スパツタリング
によつて形成し、この実施例では、Ti層16は
300W出力で5分間、Pt層17は200W出力で10分
間スパツタ蒸着し、Ti層16は1000Å、Pt層1
7は2500Åの膜厚とした。
Cu block 19 is a laser mount material
A large number of these are simultaneously placed as objects to be deposited on the flat glass 15 which is a deposition pedestal (only one is shown in the figure). In this embodiment, a Ti layer 1 is placed on the flat glass 15.
A Pt layer 17 is formed through the layer 6 to serve as a vapor deposition base. The Ti layer 16 is provided to strengthen the adhesion between the flat glass 15 and the Pt layer 17. Normally, each of these layers is formed by high frequency sputtering in an Ar atmosphere, and in this embodiment, the Ti layer 16 is
Pt layer 17 was sputter-deposited at 300W power for 5 minutes, Pt layer 17 was sputter-deposited at 200W power for 10 minutes, Ti layer 16 was sputter-deposited at 1000Å, Pt layer 1
7 had a film thickness of 2500 Å.

このように蒸着台座上に置かれたCuブロツク
19にハンダ材料Inを蒸着する。蒸着は図上y軸
上方から行ない、結果としてInハンダ膜18が
Cuブロツク19、および平板ガラス15、Ti層
16、Pt層17よりなる蒸着台座上に形成され
る。この時の真空度は2〜6×10-6torrで、0.6g
のIn球を12〜14Aの電流を印加したタングステン
ヒーターで加熱することにより真空蒸着され、10
分の蒸着で1.8μmの膜厚のInハンダ層18が得
られる。
The solder material In is vapor-deposited on the Cu block 19 placed on the vapor deposition pedestal in this manner. Vapor deposition is performed from above the y-axis in the figure, and as a result, the In solder film 18 is
It is formed on a vapor deposition base consisting of a Cu block 19, a flat glass 15, a Ti layer 16, and a Pt layer 17. The degree of vacuum at this time is 2 to 6 x 10 -6 torr and 0.6g
vacuum evaporated by heating an In bulb with a tungsten heater applying a current of 12 to 14 A, and
An In solder layer 18 having a thickness of 1.8 μm is obtained by vapor deposition for 1 minute.

先ほど述べたように蒸着が終了した時点では、
Cuブロツク19上のInハンダ膜18の表面状態
は荒いため、そのまま半導体レーザをボンデイン
グしても付着強度は弱く、Inハンダ膜の表面の平
滑化、清浄化のため、エツチングによる表面処理
を行なう。
As mentioned earlier, when the deposition is finished,
Since the surface condition of the In solder film 18 on the Cu block 19 is rough, the adhesion strength is weak even if a semiconductor laser is bonded as is, so a surface treatment by etching is performed to smooth and clean the surface of the In solder film.

本実施例では、従来例を示す第2図と異なり、
蒸着台座の表面には白金17を露出させている。
白金17とInハンダ膜18との相互の付着強度は
十分強いため、Cuブロツク19を載置した状態
でInハンダ膜18のエツチングを行なつてもInハ
ンダ膜18は蒸着台座から剥離する事態が生じな
い。また、このInハンダ膜18の蒸着によりInは
Cuブロツク19と蒸着台座とのコーナー部20
も充分にカバーするため、エツチング時およびエ
ツチング後の流水洗滌においてもCuブロツク1
9は蒸着台座よりはずれることはない。
In this embodiment, unlike FIG. 2 showing the conventional example,
Platinum 17 is exposed on the surface of the vapor deposition pedestal.
Since the adhesion strength between the platinum 17 and the In solder film 18 is sufficiently strong, even if the In solder film 18 is etched with the Cu block 19 mounted, the In solder film 18 will not peel off from the evaporation base. Does not occur. In addition, due to the vapor deposition of this In solder film 18, In
Corner part 20 between Cu block 19 and vapor deposition pedestal
In order to sufficiently cover the Cu block 1 during etching and when washing with running water after etching,
9 will not be removed from the evaporation pedestal.

この実施例ではH2O:HCl=1:2、液温25℃
のエツチング液を用い、蒸着台座にCuブロツク
の載つたままエツチングを1分間続け、30分間の
流水洗滌をすることにより、8×8cmの蒸着台座
上で600個のレーザマウント材料の同時表面処理
ができるようになつた。
In this example, H2O :HCl=1:2, liquid temperature 25℃
Using an etching solution of Now I can do it.

以上のようにして、蒸着台座の表面に白金を設
けることにより、レーザマウント材料へのIn蒸着
およびエツチングによる表面処理の多数個同時処
理が可能となつた。
By providing platinum on the surface of the evaporation pedestal in the manner described above, it became possible to simultaneously perform surface treatment on a large number of laser mount materials by indium evaporation and etching.

本発明に関し一実施例をあげて詳しく述べたが
被蒸着物としては半導体レーザのマウント材料に
限るものではない。また蒸着金属もInに限らず、
Sn、Sn−Pb合金など他の材料でも可能である。
Although the present invention has been described in detail with reference to one embodiment, the material to be deposited is not limited to a mounting material for a semiconductor laser. In addition, vapor-deposited metals are not limited to In.
Other materials such as Sn and Sn-Pb alloys are also possible.

以上のように、本発明の金属被膜形成方法は、
多数個の半導体レーザ等のチツプのマウントに有
利なものであり、その工程的価値は大きい。
As described above, the metal film forming method of the present invention includes:
It is advantageous for mounting a large number of chips such as semiconductor lasers, and its process value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体レーザのダイスボンドの状態を
示す図、第2図は従来の金属被膜形成方法を説明
するための断面図、第3図は本発明の一実施例に
おける金属被膜形成方法を説明するための断面図
である。 15……平板ガラス、16……Ti層、17…
…Pt層、18……蒸着されたInハンダ膜、19…
…Cuブロツク。
FIG. 1 is a diagram showing the state of die bonding of a semiconductor laser, FIG. 2 is a cross-sectional view for explaining a conventional method for forming a metal film, and FIG. 3 is for explaining a method for forming a metal film in an embodiment of the present invention. FIG. 15...Flat glass, 16...Ti layer, 17...
...Pt layer, 18... Vapor-deposited In solder film, 19...
…Cu block.

Claims (1)

【特許請求の範囲】[Claims] 1 台座に被蒸着物体を載置して金属膜を真空蒸
着またはスパツタリングにより附着し、前記被蒸
着物体を台座より取りはずすことなく、前記金属
膜の表面にエツチング処理を施す金属被膜形成方
法において、前記台座の少くとも表面部に白金を
形成することを特徴とする金属被膜形成方法。
1. A method for forming a metal film, in which an object to be deposited is placed on a pedestal, a metal film is deposited by vacuum evaporation or sputtering, and the surface of the metal film is subjected to an etching process without removing the object to be deposited from the pedestal. A method for forming a metal film, comprising forming platinum on at least the surface of a pedestal.
JP56077219A 1981-05-20 1981-05-20 Formation of metal film Granted JPS57192097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56077219A JPS57192097A (en) 1981-05-20 1981-05-20 Formation of metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56077219A JPS57192097A (en) 1981-05-20 1981-05-20 Formation of metal film

Publications (2)

Publication Number Publication Date
JPS57192097A JPS57192097A (en) 1982-11-26
JPS6250073B2 true JPS6250073B2 (en) 1987-10-22

Family

ID=13627732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56077219A Granted JPS57192097A (en) 1981-05-20 1981-05-20 Formation of metal film

Country Status (1)

Country Link
JP (1) JPS57192097A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136829A (en) * 1985-12-10 1987-06-19 Sharp Corp Die bonding method for optical semiconductor element

Also Published As

Publication number Publication date
JPS57192097A (en) 1982-11-26

Similar Documents

Publication Publication Date Title
US3621564A (en) Process for manufacturing face-down-bonded semiconductor device
US3480412A (en) Method of fabrication of solder reflow interconnections for face down bonding of semiconductor devices
US3647533A (en) Substrate bonding bumps for large scale arrays
US4702941A (en) Gold metallization process
US3566207A (en) Silicon-to-gold bonded structure and method of making the same
US3290565A (en) Glass enclosed, passivated semiconductor with contact means of alternate layers of chromium, silver and chromium
US3785892A (en) Method of forming metallization backing for silicon wafer
JPH0226376B2 (en)
JPS6250073B2 (en)
US3633269A (en) Method of making contact to semiconductor devices
JPH02440Y2 (en)
US5234539A (en) Mechanical lift-off process of a metal layer on a polymer
JP2836733B2 (en) Method of manufacturing radiation emitting diode
US3978517A (en) Titanium-silver-palladium metallization system and process therefor
US3638304A (en) Semiconductive chip attachment method
US4759829A (en) Device header and method of making same
JPH0793329B2 (en) How to fix semiconductor pellets
KR820002038B1 (en) Ohmic electrode formation method
US3541679A (en) Method of attaching a cover glass to a silicon solar cell
JP3215644B2 (en) Manufacturing method of diamond heat sink
JPS61225839A (en) Forming method for bump electrode
JPS61137697A (en) Forming solder and its production
US3729818A (en) Semiconductive chip attachment means
CA1242531A (en) Device header and method of making same
JPS5847705Y2 (en) Dai Collection