JPS6249927B2 - - Google Patents

Info

Publication number
JPS6249927B2
JPS6249927B2 JP55087510A JP8751080A JPS6249927B2 JP S6249927 B2 JPS6249927 B2 JP S6249927B2 JP 55087510 A JP55087510 A JP 55087510A JP 8751080 A JP8751080 A JP 8751080A JP S6249927 B2 JPS6249927 B2 JP S6249927B2
Authority
JP
Japan
Prior art keywords
inspected
memory
bottle
signal
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55087510A
Other languages
Japanese (ja)
Other versions
JPS5713341A (en
Inventor
Takashi Myazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Brewery Co Ltd
Original Assignee
Kirin Brewery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Brewery Co Ltd filed Critical Kirin Brewery Co Ltd
Priority to JP8751080A priority Critical patent/JPS5713341A/en
Priority to US06/272,792 priority patent/US4448526A/en
Priority to NLAANVRAGE8102944,A priority patent/NL185368C/en
Priority to AU71990/81A priority patent/AU535792B2/en
Priority to GB8119463A priority patent/GB2078948B/en
Priority to DE3124949A priority patent/DE3124949C2/en
Priority to FR8112630A priority patent/FR2485734B1/en
Priority to DK285081A priority patent/DK156283C/en
Priority to CA000380646A priority patent/CA1175139A/en
Publication of JPS5713341A publication Critical patent/JPS5713341A/en
Publication of JPS6249927B2 publication Critical patent/JPS6249927B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はビール瓶、ジユース瓶などの被検査
体に付くすり傷、打傷割れ、異物の有無や程度を
光学的に検出する瓶の欠陥検出装置に関する。 ビール、酒、清涼飲料、食料品などに用いられ
る瓶は、市場から回収して再使用に供される。瓶
が再使用される場合には洗瓶装置で予め洗浄し、
空瓶に付着したゴミなどの異物を除去すると共
に、傷のある瓶を排除するようになつている。し
かしながら、瓶内面に固くこびりついたゴミなど
の異物は洗瓶装置で完全に洗い落とせない場合が
ある。このため、洗瓶工程の前又は後でこのよう
な異物の付着した瓶や、すり傷等の付いた欠陥瓶
を瓶詰ラインから取り除かなければならない。 従来、この種の欠陥検出装置には胴部を検査す
るものと、底部を検査するものとが、銅部を検査
するものでは被検査瓶を高速回転させつつ外部か
ら光を照射し、その透過光を被検査瓶の内部に挿
入した光電素子で検出するようになつている。こ
の検出装置は検出器として光電素子を用い、被検
査瓶のある領域について欠陥がある場合と無い場
合とに透過光量の比をとりつつ、被検査瓶の胴部
全体について欠陥の有無を連続的に検査してい
る。しかしながら、このような検出装置は被検査
瓶を高速回転させるため、装置自体が大型化し、
コスト高になるとともに欠陥の検出精度が悪く、
さらに光電素子を瓶内部に挿入するため、その内
部空気を汚す恐れがあつて食品衛生上問題があつ
た。 また、瓶底部を検査するものでは一般に瓶底方
向よりランプで照明し、瓶口の上方にテレビカメ
ラを設置して被検査体の光学像を光電変換し、こ
の電気信号をテレビカメラの走査方式に従つて送
り出している。しかして、瓶底隅部は光学的に外
乱の多い場所であるため、瓶底隅部の欠陥検出の
精度を向上することが困難であつた。すなわち、
第1図Aに示すように瓶底1の隅部2は瓶胴部3
との接合面であり、ある曲率をもつと共にガラス
の肉厚も厚く、回収瓶の場合は底面に細いすり傷
を受けているなど、この隅部2は光学的に外乱の
多い場所である。さらに、洗瓶処理後の瓶内には
微量の洗浄水が残存しており、この洗浄水のメニ
スカスの部分で瓶底方向からの拡散光が全反射を
生じ、瓶口上方の受光装置に到達しないため、瓶
底1の光学像を見ると隅部2にダークリングのパ
ターンができることがある。 このような種々の光学的外乱の影響を受けるた
め、第1図Bに示すような瓶底1に対する光学走
査の場合、テレビカメラからの走査電気信号は同
図Cの如く隅部2に対応する部分の信号レベルが
低くなる。そして、特にA―A′の部分では全体
の信号レベルが低く波形が複雑なため、正常な信
号と欠陥により減光された信号との区別が困難と
なる。このため、従来は電気的なゲートや機械的
なマスクを設けて隅部2に対応する部分を走査範
囲から除外したり、瓶を定位置に通過させるため
の機械的精度や機械の摩耗による精度低下、瓶自
体の偏心等を考慮して、瓶隅部よりかなり内側だ
けを検査しているのが実情である。 よつて、この発明の目的は上述の如き欠点のな
い欠陥検出装置を提供することにあり、瓶底部の
光学的外乱の影響を少なくするように映像の信号
処理を行ない、瓶底の欠陥検出精度を向上させる
と共に、高速処理が可能で安価な装置としてい
る。 以下この発明を説明する。 ところで、ガラス瓶などの欠陥検出装置では撮
像装置として一般にテレビカメラが使用されてい
るが、テレビ走査方式で伝送されて来る映像信号
は瓶底隅部の光学的外乱の影響を受けているた
め、隅部の欠陥信号を識別することが困難である
ことは上述の通りである。しかして、この発明で
はかかる映像信号を被検査体のもつ形状に合せて
配列替えして読出し、正常な信号と欠陥信号とを
区別し易くしている。 すなわち、瓶底に対する光学映像は第2図のよ
うになるが、そのS―T間の信号レベルは第3図
のような波形となる。しかして、この信号を一旦
メモリに記憶して後、第4図Aに示すように瓶底
中央部CPから螺旋走査の処理で記憶信号を読出
すと、第4図Bに示すような瓶底中央部より瓶底
隅部にかけて緩やかな連続信号を得ることができ
る。したがつて、かかる緩やかな連続信号の中
に、微小な欠陥に基づく信号変化があればこれを
容易に判別することができるのである。 第5図はこの発明の一実施例を示すものであ
り、被検査体(たとえばビール瓶)10の瓶底下
方には拡散板11を介して光源としてのランプ1
2が配設されており、瓶口上方ににはテレビカメ
ラ13が配設されている。しかして、テレビカメ
ラ13からの映像信号VSは増幅器14で増幅さ
れて後、AD変換器20でデイジタル信号(たと
えば6ビツト)DSに変換されてメモリ30に指
定されるアドレスに従つて順次記憶される。ま
た、メモリ30に記憶されたデータはメモリ制御
回路40からの読出信号ROに従つて読出され、
この読出されたデータの変化は判別回路50で欠
陥の有無ないしは程度として判断され、この判別
回路50から欠陥信号DFが出力された時には排
出装置60で当該欠陥のある被検査体10をコン
ベアラインから排出するようになつている。 ここで、メモリ制御回路40の詳細を示すと第
6図のようであり、パルス発信器402から出力
される同期信号CLによつてアドレス指定回路4
01が駆動され、これから出力される書込信号
WRの指定アドレスに従つてAD変換器20から
の6ビツトのデイジタル信号DSが順次メモリ3
0に記憶される。メモリ30はたとえば第7図に
示すようにX方向1〜100、Y方向1〜100の各ア
ドレスに対応して100×100のマトリクスに対応し
て構成されており、TVカメラ13の1フレーム
の画像を各画素6ビツトのデイジタル値で記憶す
るようになつている。この場合、アドレスの指定
は先ずY=1を指定してX=1→X=100につい
て行ない、次にY=2を指定してX=1→X=
100について行なう。以下、同様のアドレス指定
を行なつて全てのアドレス指定が終了すると、ア
ドレス指定回路401から書込終了信号FSが出
力され、これが出力される。このクロツクCLは
アドレス指定メモリ(ROM)403に入力さ
れ、次の表1に従つたアドレス指定を行なう読出
信号ROをメモリ(RAM)30に送出する。な
お、表1には中心部の一部についてのコード変換
例のみを示している。
The present invention relates to a bottle defect detection device that optically detects the presence and extent of scratches, bruises, cracks, and foreign objects on objects to be inspected such as beer bottles and youth bottles. Bottles used for beer, alcohol, soft drinks, food, etc. are collected from the market and reused. If the bottles are to be reused, they should be cleaned in advance using a bottle washer.
In addition to removing foreign matter such as dirt from empty bottles, it also removes damaged bottles. However, foreign matter such as dust that is firmly stuck to the inner surface of the bottle may not be completely washed away by the bottle washing device. Therefore, before or after the bottle washing process, bottles with such foreign substances or defective bottles with scratches or the like must be removed from the bottling line. Conventionally, this type of defect detection equipment has two types: one that inspects the body and the other that inspects the bottom.The one that inspects the copper part rotates the bottle to be inspected at high speed and irradiates it with light from the outside. The light is detected by a photoelectric element inserted inside the bottle to be inspected. This detection device uses a photoelectric element as a detector, and continuously detects the presence or absence of defects in the entire body of the bottle to be inspected by taking the ratio of the amount of transmitted light between a certain area of the bottle to be inspected with and without defects. are being inspected. However, since such a detection device rotates the bottle to be inspected at high speed, the device itself becomes large and
In addition to high costs, defect detection accuracy is poor.
Furthermore, since the photoelectric element is inserted into the inside of the bottle, there is a risk of contaminating the air inside the bottle, which poses a food hygiene problem. In addition, when inspecting the bottom of a bottle, the lamp is generally illuminated from the direction of the bottom of the bottle, a television camera is installed above the bottle mouth, the optical image of the object to be inspected is photoelectrically converted, and this electric signal is sent to the scanning system of the television camera. They are sent out according to the following. However, since the bottom corner of the bottle is a place where there are many optical disturbances, it has been difficult to improve the accuracy of defect detection at the bottom corner of the bottle. That is,
As shown in FIG. 1A, the corner 2 of the bottle bottom 1 is connected to the bottle body 3.
The corner 2 has a certain curvature, the glass is thick, and in the case of a collection bottle, there are thin scratches on the bottom surface, so this corner 2 is a place where there are many optical disturbances. Furthermore, a small amount of washing water remains inside the bottle after the bottle washing process, and the diffused light from the bottom of the bottle undergoes total reflection at the meniscus of this washing water, reaching the light receiving device above the bottle mouth. Therefore, when looking at the optical image of the bottle bottom 1, a dark ring pattern may be formed at the corner 2. Because of the effects of such various optical disturbances, in the case of optical scanning of the bottle bottom 1 as shown in Figure 1B, the scanning electrical signal from the television camera corresponds to the corner 2 as shown in Figure 1C. The signal level in some areas becomes low. Particularly in the section AA', the overall signal level is low and the waveform is complex, making it difficult to distinguish between a normal signal and a signal whose light has been dimmed due to a defect. For this reason, in the past, electrical gates and mechanical masks were installed to exclude the part corresponding to corner 2 from the scanning range, and mechanical accuracy and machine wear-out required to pass the bottle to the fixed position were required. The reality is that only the area well inside the corner of the bottle is inspected, taking into account the drop in the bottle, the eccentricity of the bottle itself, etc. Therefore, an object of the present invention is to provide a defect detection device that does not have the above-mentioned drawbacks, and which performs image signal processing to reduce the influence of optical disturbances at the bottom of the bottle, thereby improving the accuracy of detecting defects at the bottom of the bottle. In addition to improving performance, the device is capable of high-speed processing and is inexpensive. This invention will be explained below. By the way, a television camera is generally used as an imaging device in defect detection equipment for glass bottles, etc., but the video signal transmitted by the television scanning method is affected by optical disturbances at the bottom corners of the bottles. As mentioned above, it is difficult to identify the defect signal in the part. Therefore, in the present invention, such video signals are rearranged and read out according to the shape of the object to be inspected, thereby making it easier to distinguish between normal signals and defective signals. That is, the optical image of the bottom of the bottle is as shown in FIG. 2, but the signal level between ST has a waveform as shown in FIG. 3. After this signal is once stored in the memory, when the stored signal is read out from the central part CP of the bottle bottom by a spiral scanning process as shown in FIG. 4A, the bottle bottom as shown in FIG. 4B is obtained. A gradual continuous signal can be obtained from the center to the bottom corner of the bottle. Therefore, if there is a signal change due to a minute defect in such a gradual continuous signal, it can be easily determined. FIG. 5 shows an embodiment of the present invention, in which a lamp 1 as a light source is placed below the bottom of an object to be inspected (for example, a beer bottle) 10 via a diffuser plate 11.
2 is provided, and a television camera 13 is provided above the bottle mouth. The video signal VS from the television camera 13 is amplified by the amplifier 14, and then converted to a digital signal (for example, 6 bits) DS by the AD converter 20, which is sequentially stored in the memory 30 according to the specified address. Ru. Further, the data stored in the memory 30 is read out according to the read signal RO from the memory control circuit 40,
This change in the read data is determined by the discrimination circuit 50 as the presence or absence of a defect or the degree of the defect, and when the defect signal DF is output from the discrimination circuit 50, the discharge device 60 removes the defective object 10 from the conveyor line. It is designed to be expelled. Here, the details of the memory control circuit 40 are shown in FIG. 6, and the address designation circuit 4
01 is driven and the write signal that will be output from now on
The 6-bit digital signal DS from the AD converter 20 is sequentially transferred to the memory 3 according to the specified address of WR.
Stored as 0. For example, as shown in FIG. 7, the memory 30 is configured to correspond to a 100×100 matrix corresponding to addresses 1 to 100 in the X direction and 1 to 100 in the Y direction. Images are stored as 6-bit digital values for each pixel. In this case, first specify Y=1 and specify the address from X=1 to X=100, then specify Y=2 and specify the address from X=1 to X=
Do this for 100. Thereafter, similar addressing is performed, and when all addressing is completed, the address designating circuit 401 outputs a write end signal FS, which is then output. This clock CL is input to an addressing memory (ROM) 403, which sends out a read signal RO to the memory (RAM) 30 for specifying an address according to Table 1 below. Note that Table 1 shows only an example of code conversion for a part of the central portion.

【表】 このような構成において、ランプには拡散板1
2を通して、コンベア等の搬送手段によつて搬送
されて来る被検査体10を瓶底方向より照明し、
被検査体10が所定位置に達した時にテレビカメ
ラ13でその瓶底の光学像をとらえ、その1フレ
ーム画像を光電変換して映像信号VSを送出す
る。そして、このアナログの映像信号VSをその
明度に対応してAD変換器20で、たとえば6ビ
ツトのデイジタル信号DSに変換し、アドレス指
定回路401からの書込信号WRが指定するアド
レスに従つて第7図に示すようにメモリ30に順
次記憶する。かくしてメモリ30に一旦記憶され
たデータは、パルス発振器402によつて作動さ
れるアドレス指定メモリ403からの読出信号
ROの内容たるアドレスに従つて順次読出される
が、この発明のアドレス指定は表1のテーブルに
従つて第4図Aに示すように当該被検査体の中心
部CPから螺旋走査位置に対応して順次行なう。
これにより、被検査体10に欠陥がない場合には
メモリ30からは第4図Bに示すような緩やかな
変化のデータが出力される。しかして、被検査体
10に欠陥がある場合には、メモリ30からの読
出データに急峻な変化が生じるので、これを判別
回路50によつて判別し、排出装置60を介して
コンベアラインから排出するのである。 なお、ここでは被検査体10の中心部CPから
螺旋走査する場合を述べているが、中心部CPか
ら同心円状に走査するようにしても良い。 ところで、被検査体を搬送する機械の精度や摩
耗、又は被検査体の偏心などによつて、被検査体
10の映像をテレビカメラ13の中心でとらえる
ことができない場合もある。このような場合、メ
モリ制御回路40で指定されるアドレスは画面の
中心を基準に螺旋状の走査を行なうので、メモリ
30から読出されて来る信号は緩やかなものとな
らず、被検査体隅部の信号を欠陥信号と誤まつて
判別することになる。このため、予め被検査体隅
部を検出し、第8図に示すような被検査体10と
テレビカメラ13との関係で、横方向のずれは
(S+T)/2、縦方向のずれは(U+V)/2
の演算を行ない、この中心を求めて基準との差を
修正する必要がある。これを実現する回路例を示
すと第9図のようになる。すなわち、基準電圧V
rと増幅器14の出力とを比較して端部信号ESを
求めるコンパレータ41を設け、この端部信号
ESから演算回路42で縦方向の中心信号CSを求
め、演算回路43で横方向の中心信号RSを求め
る。しかして、これら中心信号CS及びRSをアド
レス修正回路44に入力し、メモリ制御回路40
からの読出信号ROの内容たるアドレスを修正
し、被検査体10の中心を基準に螺旋走査を行な
うのである。 以上のようにこの発明の欠陥検出装置によれ
ば、被検査体隅部の光学的な外乱を取り除くため
に、螺旋走査によるアドレス指定によつてメモリ
データを読出しているので、確度の高い欠陥の判
別を行ない得る。しかも、高速度の検出が可能
で、装置も安価であるといつた利点がある。 なお、上述の実施例では被検査体の下方より照
射して上方で受光するようにしているが、逆に上
方から照射して下方で受光するようにしても良
い。また、透過光の受光(撮像)に用いるテレビ
カメラとしては、イメージオルシコンを備えたも
の、ビデイコンを備えたもの等を用いることがで
きる。さらに、上述の実施例ではアナログの映像
信号をAD変換器でデイジタル信号に変換してか
ら(デイジタル)メモリに記憶するようにしてい
るが、映像信号をそのままアナログメモリに記憶
するようにすることも可能である。
[Table] In this configuration, the lamp has a diffuser plate 1.
2, the object to be inspected 10 being transported by a transport means such as a conveyor is illuminated from the bottom direction of the bottle,
When the object to be inspected 10 reaches a predetermined position, an optical image of the bottom of the bottle is captured by a television camera 13, and one frame of the image is photoelectrically converted and a video signal VS is sent out. Then, this analog video signal VS is converted into, for example, a 6-bit digital signal DS by the AD converter 20 in accordance with its brightness, and is then converted into a 6-bit digital signal DS according to the address specified by the write signal WR from the address designation circuit 401. The data are sequentially stored in the memory 30 as shown in FIG. Once stored in the memory 30, the data is then read out from the addressing memory 403 by a pulse oscillator 402.
The contents of the RO are read out sequentially according to the address, but the addressing in this invention corresponds to the spiral scanning position from the center CP of the object to be inspected as shown in FIG. 4A according to the table in Table 1. Do this in sequence.
As a result, if there is no defect in the inspection object 10, the memory 30 outputs data with gradual changes as shown in FIG. 4B. If there is a defect in the inspected object 10, a sudden change will occur in the data read from the memory 30, so this is determined by the discrimination circuit 50 and discharged from the conveyor line via the discharge device 60. That's what I do. Note that although a case is described here in which the helical scanning is performed from the center CP of the object to be inspected 10, it is also possible to scan concentrically from the center CP. Incidentally, there may be cases where the image of the object to be inspected 10 cannot be captured at the center of the television camera 13 due to the accuracy or wear of the machine that transports the object to be inspected, or the eccentricity of the object to be inspected. In such a case, since the address specified by the memory control circuit 40 performs a spiral scan with the center of the screen as a reference, the signal read out from the memory 30 will not be gradual and will not reach the corner of the object to be inspected. This will result in the signal being mistakenly identified as a defective signal. Therefore, the corners of the object to be inspected are detected in advance, and the relationship between the object to be inspected 10 and the television camera 13 as shown in FIG. U+V)/2
It is necessary to calculate this center and correct the difference from the reference. An example of a circuit for realizing this is shown in FIG. That is, the reference voltage V
A comparator 41 is provided to obtain an end signal ES by comparing r with the output of the amplifier 14.
From ES, an arithmetic circuit 42 obtains a vertical center signal CS, and an arithmetic circuit 43 obtains a horizontal center signal RS. These center signals CS and RS are then input to the address correction circuit 44, and the memory control circuit 40
The address, which is the content of the readout signal RO from the test object 10, is corrected, and spiral scanning is performed with the center of the object 10 as a reference. As described above, according to the defect detection device of the present invention, in order to remove optical disturbances at the corners of the object to be inspected, memory data is read by addressing by spiral scanning. Can make a judgment. Moreover, it has the advantage that high-speed detection is possible and the device is inexpensive. In the above-described embodiment, the light is irradiated from below and received above the object to be inspected, but it may be irradiated from above and received below. Further, as the television camera used for receiving (imaging) transmitted light, one equipped with an image orthicon, one equipped with a videcon, etc. can be used. Furthermore, in the above embodiment, the analog video signal is converted into a digital signal by an AD converter and then stored in the (digital) memory, but it is also possible to store the video signal as it is in the analog memory. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは瓶底部の断面図、同図Bは瓶底の光
学像と走査線の関係を示す図、同図Cはその走査
方向と信号レベルの関係をA―A′,B―B′につ
いて示す図、第2図は瓶底に対する光学映像の例
を示す図、第3図は第2図のS―T間の信号レベ
ルの例を示す図、第4図A,Bはこの発明の原理
を説明するための図、第5図はこの発明の一実施
例を示すブロツク構成図、第6図はメモリ制御回
路の詳細な構成例を示すブロツク図、第7図はメ
モリの記憶の様子を例示する図、第8図この発明
のアドレス修正を説明するための図、第9図はそ
の具体的構成例のブロツク図である。 1…瓶底、2…隅部、3…瓶胴部、10…被検
査体、11…拡散板、12…ランプ、13…テレ
ビカメラ、20…AD変換器、30…メモリ、4
0…メモリ制御回路、50…判別回路、60…排
出装置。
Figure 1A is a cross-sectional view of the bottle bottom, Figure 1B is a diagram showing the relationship between the optical image of the bottle bottom and the scanning line, and Figure 1C is a diagram showing the relationship between the scanning direction and the signal level A-A', B-B. 2 is a diagram showing an example of an optical image of the bottom of the bottle, FIG. 3 is a diagram showing an example of the signal level between ST in FIG. FIG. 5 is a block diagram showing an embodiment of the present invention, FIG. 6 is a block diagram showing a detailed configuration example of a memory control circuit, and FIG. 7 is a block diagram showing a detailed configuration example of a memory control circuit. FIG. 8 is a diagram illustrating the address correction of the present invention, and FIG. 9 is a block diagram of a specific example of the configuration. DESCRIPTION OF SYMBOLS 1... Bottle bottom, 2... Corner, 3... Bottle body, 10... Test object, 11... Diffusion plate, 12... Lamp, 13... Television camera, 20... AD converter, 30... Memory, 4
0...Memory control circuit, 50...Discrimination circuit, 60...Ejection device.

Claims (1)

【特許請求の範囲】 1 被検査体の下方又は上方より光を照射して前
記被検査体の上方又は下方に配設された撮像管か
らの映像信号によつて前記被検査体の欠陥を検出
する装置において、前記映像信号をデイジタル信
号に変換するAD変換器と、このAD変換器からの
デイジタル信号を記憶するメモリと、このメモリ
に記憶されたデータを当該被検査体の中心部を中
心とする螺旋状又は同心円状の走査位置に対応す
るアドレスを順次指定することによつて読出すメ
モリ制御回路と、このメモリ制御回路によつて前
記メモリから読出されたデータ変化に基づき前記
被検査体の欠陥の有無を判別する判別回路とを具
えたことを特徴とする欠陥検出装置。 2 被検査体の下方又は上方より光を照射して前
記被検査体の上方又は下方に配設された撮像管か
らの映像信号によつて前記被検査体の欠陥を検出
する装置において、前記映像信号をデイジタル信
号に変換するAD変換器と、このAD変換器からの
デイジタル信号を記憶するメモリと、このメモリ
に記憶されたデータを当該被検査体の中心部を中
心とする螺旋状又は同心円状の走査位置に対応す
るアドレスを順次指定することによつて読出すメ
モリ制御回路と、前記被検査体の端部を検出する
と共に、縦及び横方向の中心位置を演算して前記
メモリ制御回路の指定アドレスを修正するアドレ
ス修正回路と、前記メモリ制御回路及びアドレス
修正回路を介して前記メモリから読出されたデー
タ変化に基づき前記被検査体の欠陥の有無を判別
する判別回路とを具えたことを特徴とする欠陥検
出装置。
[Scope of Claims] 1. Defects in the object to be inspected are detected by irradiating light from below or above the object to be inspected and using video signals from an image pickup tube disposed above or below the object to be inspected. The apparatus includes: an AD converter that converts the video signal into a digital signal; a memory that stores the digital signal from the AD converter; a memory control circuit that reads data by sequentially specifying addresses corresponding to spiral or concentric scanning positions; and a memory control circuit that reads data by sequentially specifying addresses corresponding to spiral or concentric scanning positions; A defect detection device characterized by comprising a discrimination circuit for determining the presence or absence of a defect. 2. In an apparatus for detecting defects in the object to be inspected by emitting light from below or above the object to be inspected and using a video signal from an image pickup tube disposed above or below the object to be inspected, An AD converter that converts a signal into a digital signal, a memory that stores the digital signal from this AD converter, and an AD converter that stores the data stored in this memory in a spiral or concentric shape centered on the center of the object to be inspected. a memory control circuit that reads out data by sequentially specifying addresses corresponding to scanning positions of the object; The method further comprises: an address correction circuit for correcting a designated address; and a discrimination circuit for determining the presence or absence of a defect in the object to be inspected based on data changes read from the memory via the memory control circuit and the address correction circuit. Characteristic defect detection device.
JP8751080A 1980-06-27 1980-06-27 Defect detector Granted JPS5713341A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP8751080A JPS5713341A (en) 1980-06-27 1980-06-27 Defect detector
US06/272,792 US4448526A (en) 1980-06-27 1981-06-11 Defect detecting method and device
NLAANVRAGE8102944,A NL185368C (en) 1980-06-27 1981-06-18 DEVICE FOR DETECTING DEFECTS IN AN OBJECT.
AU71990/81A AU535792B2 (en) 1980-06-27 1981-06-19 l
GB8119463A GB2078948B (en) 1980-06-27 1981-06-24 Defect detecting method and device
DE3124949A DE3124949C2 (en) 1980-06-27 1981-06-25 Defect detection device for detecting scratches, cracks, cracks or inclusions in an object
FR8112630A FR2485734B1 (en) 1980-06-27 1981-06-26 DEFECT DETECTION METHOD AND APPARATUS
DK285081A DK156283C (en) 1980-06-27 1981-06-26 TROUBLESHOOTING DEVICE FOR DETERMINING SCREAMS, CRACKS, BROKEN OR CONTAINMENTS
CA000380646A CA1175139A (en) 1980-06-27 1981-06-26 Defect detecting method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8751080A JPS5713341A (en) 1980-06-27 1980-06-27 Defect detector

Publications (2)

Publication Number Publication Date
JPS5713341A JPS5713341A (en) 1982-01-23
JPS6249927B2 true JPS6249927B2 (en) 1987-10-22

Family

ID=13916974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8751080A Granted JPS5713341A (en) 1980-06-27 1980-06-27 Defect detector

Country Status (1)

Country Link
JP (1) JPS5713341A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4488648A (en) * 1982-05-06 1984-12-18 Powers Manufacturing, Inc. Flaw detector
GB8330668D0 (en) * 1983-11-17 1983-12-29 British Telecomm Jointing arrangement
JPH02276988A (en) * 1989-04-18 1990-11-13 Kandenko Co Ltd Method and device for detecting foreign matter in tube
JPH06118026A (en) * 1992-10-01 1994-04-28 Toyo Seikan Kaisha Ltd Method for inspecting vessel inner surface

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2649500A (en) * 1949-12-16 1953-08-18 Owens Illinois Glass Co Inspecting apparatus
JPS5026935A (en) * 1973-06-16 1975-03-20
US3987244A (en) * 1975-12-31 1976-10-19 United Technologies Corporation Programmable image processor
JPS5316681A (en) * 1976-07-29 1978-02-15 Kirin Brewery Detector using laser rays
JPS5461980A (en) * 1977-10-27 1979-05-18 Nec Corp Automatic inspector of surface flaws
JPS5472094A (en) * 1977-11-21 1979-06-09 Sapporo Breweries Ltd Bottle bottom inspecting machine
JPS54110891A (en) * 1978-02-17 1979-08-30 Mitsubishi Electric Corp Pattern flaw inspecting apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579728Y2 (en) * 1977-03-17 1982-02-24

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2649500A (en) * 1949-12-16 1953-08-18 Owens Illinois Glass Co Inspecting apparatus
JPS5026935A (en) * 1973-06-16 1975-03-20
US3987244A (en) * 1975-12-31 1976-10-19 United Technologies Corporation Programmable image processor
JPS5316681A (en) * 1976-07-29 1978-02-15 Kirin Brewery Detector using laser rays
JPS5461980A (en) * 1977-10-27 1979-05-18 Nec Corp Automatic inspector of surface flaws
JPS5472094A (en) * 1977-11-21 1979-06-09 Sapporo Breweries Ltd Bottle bottom inspecting machine
JPS54110891A (en) * 1978-02-17 1979-08-30 Mitsubishi Electric Corp Pattern flaw inspecting apparatus

Also Published As

Publication number Publication date
JPS5713341A (en) 1982-01-23

Similar Documents

Publication Publication Date Title
US4448526A (en) Defect detecting method and device
US4492476A (en) Defect detecting method and apparatus
EP0483966B1 (en) Method of and apparatus for inspecting a transparent or translucent article such as a bottle
US4682023A (en) Bottle sidewall defect detector employing masking means
JPS61253449A (en) Glass product inspection using optical streak detection method
JPS5821146A (en) Method and device for inspection of defect
JPH0345784B2 (en)
JPH0634573A (en) Bottle inspector
JPS6249927B2 (en)
JPH0634574A (en) Bottle inspector
JP3001079B2 (en) Printed character inspection method and printed character inspection device
JPS6212463B2 (en)
JP4580122B2 (en) Detecting foreign matter in liquid
JPH06118026A (en) Method for inspecting vessel inner surface
JPH04118546A (en) Bottle inspection device
JPH0634575A (en) Bottle inspection method
JPH04216445A (en) Device for inspecting bottle
JPH03194454A (en) Container internal surface inspection device
JPH04270951A (en) Method for inspecting bottle
JPH05164703A (en) Inspecting method for surface of workpiece
JPS5927859B2 (en) Glass bottle body defect inspection device
JP2500649B2 (en) IC foreign matter inspection device
JP2001091470A (en) Defect inspection device
JPH043820B2 (en)
JP4121598B2 (en) Foreign matter inspection device