JPS6249687A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6249687A
JPS6249687A JP19166285A JP19166285A JPS6249687A JP S6249687 A JPS6249687 A JP S6249687A JP 19166285 A JP19166285 A JP 19166285A JP 19166285 A JP19166285 A JP 19166285A JP S6249687 A JPS6249687 A JP S6249687A
Authority
JP
Japan
Prior art keywords
layer
buried
inp
semiconductor laser
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19166285A
Other languages
Japanese (ja)
Inventor
Shigenobu Yamagoshi
茂伸 山腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19166285A priority Critical patent/JPS6249687A/en
Publication of JPS6249687A publication Critical patent/JPS6249687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce a parasitic capacity and a leakage current by a method wherein a buried layer of semiconductor layer is formed of a material made of polyimide resin mixed with another material with refractive index different from that of polyimide resin. CONSTITUTION:An n-InP clad layer 12, an InGaAsP active layer 13, a p-InP clad layer 14 and a p-InGaAsP contact layer 15 are laiminated on an n-InP substrate 11. Next, a material made of polyimide mixed with InP powder is buried to form a buried layer 16. The preferable material to be mixed with polyimide is InP or GaAs with mixing ration of around 1:1-1:5. Finally a p- electrode 17 and an n-electrode 18 are formed respectively on upper and lower surface of formed laser.

Description

【発明の詳細な説明】 [概要] 本発明は、インジウム燐を含む化合物の積層からなる埋
め込み型半導体レーザであって、従来の埋め込み層の構
造はp−n接合であるために、動作時に空乏層を生じて
寄生容量が大きくなり、そのため半導体レーザの高速動
作が制限されていたが、これを解決するために、埋め込
み層の材料を高抵抗であるポリイミドを主成分とし、そ
の中にインジウム燐と近似にするために屈折率の大なる
物質を混合することにより、絶縁性が大で且つ光閉じ込
めにも有効な埋め込み層を形成するものである。
[Detailed Description of the Invention] [Summary] The present invention is a buried semiconductor laser made of a laminated layer of a compound containing indium phosphide. This creates a layer that increases parasitic capacitance, which limits the high-speed operation of semiconductor lasers.To solve this problem, the material of the buried layer is made of high-resistance polyimide as the main component, and indium phosphorus is added to the material of the buried layer. By mixing a material with a high refractive index to approximate the above, a buried layer with high insulation properties and effective for light confinement is formed.

[産業上の利用分野] 本発明は、埋め込み型半導体レーザに係わり、埋め込み
層の材料に関するものである。
[Industrial Field of Application] The present invention relates to a buried semiconductor laser, and more particularly to a material for a buried layer.

近時、半導体レーザは光通信システムの発光素子として
広範囲に採用され、情報化社会に通した新たらしい通信
技術の素子として改良と開発が加えられている。
In recent years, semiconductor lasers have been widely used as light emitting elements in optical communication systems, and are being improved and developed as elements of new communication technology for the information society.

半導体レーザには、種々の構造があるが、最も代表的な
構造に埋め込み型へテロ構造の半導体レーザがあり、通
常埋め込み層の構造はp−n接合のインジウム燐(In
P)から構成されているため、成る程度の導電性がある
と共に、その領域に電圧が加わるとp−n接合部に空乏
層を生ずるために電気容量が増加し、この結果寄生容量
の増加となって、半導体レーザの高速動作を制限するこ
とになるため、その改善が要望されている。
Semiconductor lasers have various structures, but the most typical structure is a buried heterostructure semiconductor laser, and the buried layer structure is usually a p-n junction indium phosphide (Indium phosphorus).
Since it is composed of P), it has a certain degree of conductivity, and when a voltage is applied to that region, a depletion layer is created at the p-n junction, resulting in an increase in electrical capacitance, resulting in an increase in parasitic capacitance. This limits the high-speed operation of the semiconductor laser, and there is a demand for improvement.

[従来の技術] 第4図は、従来の埋め込み型へテロ構造の半導体レーザ
の模式要部断面図である。
[Prior Art] FIG. 4 is a schematic cross-sectional view of a main part of a conventional buried type heterostructure semiconductor laser.

n−1nP基板1があり、その表面に順次n −InP
のクラッド層2、レーザ光を発光するインジウム、ガリ
ウム砒素燐(InGaAsP)の活性層3、p−InP
のクラッド層4、p −InGaAsPのコンタクト層
5と、埋め込み層として、n−rnP層6、p−1nP
層7との接合層があり、半導体レーザの上下面には電極
としてp電極8とn電極9が設けられている。
There is an n-1nP substrate 1, and n-InP is sequentially deposited on its surface.
cladding layer 2, active layer 3 of indium, gallium arsenide phosphide (InGaAsP) that emits laser light, p-InP
A cladding layer 4 of p-InGaAsP, a contact layer 5 of p-InGaAsP, and an n-rnP layer 6 as a buried layer, a p-1nP layer 6.
There is a bonding layer with layer 7, and a p-electrode 8 and an n-electrode 9 are provided as electrodes on the upper and lower surfaces of the semiconductor laser.

上記構造の半導体レーザを動作させるために、p電極8
とn電極9間に電圧を印加すると、電界のために、埋め
込み層のn−1nP層6とp−InP層7との接合部に
空乏層ができ、そのために埋め込み層の電気容量が増加
する。
In order to operate the semiconductor laser having the above structure, the p-electrode 8
When a voltage is applied between the n-electrode 9 and the n-electrode 9, a depletion layer is formed at the junction between the n-1nP layer 6 and the p-InP layer 7 of the buried layer due to the electric field, which increases the capacitance of the buried layer. .

またpInGaAsPのコンタクト層5とp−1nPの
クランド層4を通過して、本来活性層3に流れる電流が
、埋め込み層の方向に流れ込み、矢印のように漏洩電流
が流れて発光効率を低下させる原因になる。
Furthermore, the current that originally flows in the active layer 3 passes through the pInGaAsP contact layer 5 and the p-1nP ground layer 4, but instead flows in the direction of the buried layer, causing a leakage current to flow as shown by the arrow, which reduces luminous efficiency. become.

上記理由のため、従来の埋め込み型の半導体レーザは発
光効率の低下を来すと共に、高速変調が制限され、数百
Mb/sec程度の高速変調が限度であって、要望され
ているl G b /sec程度以上の高速変調は従来
の半導体レーザでは実現が出来ないという欠点がある。
For the above reasons, conventional embedded semiconductor lasers have a decrease in luminous efficiency and are limited in high-speed modulation, and are limited to high-speed modulation of approximately several hundred Mb/sec, which is less than the desired 1Gb. A shortcoming is that high-speed modulation of about /sec or higher cannot be achieved with conventional semiconductor lasers.

[発明が解決しようとする問題点] 従来の、埋め込み型の半導体レーザでは、埋め込み層の
寄生容量のために、半導体レーザの高速変調が制限され
てしまうことが問題点である。
[Problems to be Solved by the Invention] A problem with conventional buried-type semiconductor lasers is that high-speed modulation of the semiconductor laser is limited due to the parasitic capacitance of the buried layer.

[問題点を解決するための手段] 本発明は、上記問題点を解決するための半導体レーザを
提供するもので、その解決の手段は、インジウム燐を含
む化合物の積層からなる埋め込み型へテロ構造の半導体
レーザにおいて、p−n接合の埋め込み層を使用するこ
となく、代わりに埋め込み層に高絶縁体のポリイミド樹
脂を使用するものであるが、ポリイミド樹脂の光屈折率
をInPに近似するために、ポリイミド樹脂に光屈折率
の大なる物質を混合した材料を埋め込み層に使用 ゛し
た半導体レーザを提供するものである。
[Means for Solving the Problems] The present invention provides a semiconductor laser for solving the above-mentioned problems. In the semiconductor laser of The present invention provides a semiconductor laser in which a buried layer is made of a polyimide resin mixed with a substance having a high optical refractive index.

[作用] 本発明は、埋め込み型の半導体レーザの埋め込み層を、
高絶縁体を使用し、また動作中でも寄生容量が増加する
ことのない埋め込み型半導体レーザを考慮したもので、
その材料としてポリイミド樹脂が最適であり、且つIn
Pの光屈折率に近似させるために混合材料を選択する等
の工夫が加えられており、これによって寄生容量の増加
と漏洩電流の増大は防止することができ、高速変調が可
能な埋め込み型の半導体レーザができることになる。
[Function] The present invention provides a buried layer of a buried semiconductor laser,
This design takes into account embedded semiconductor lasers that use high insulators and do not increase parasitic capacitance even during operation.
Polyimide resin is the most suitable material, and In
Efforts have been made, such as selecting a mixed material to approximate the optical refractive index of P. This prevents an increase in parasitic capacitance and leakage current, making it possible to create an embedded type that can perform high-speed modulation. This led to the creation of semiconductor lasers.

[実施例] 第1図(a)〜第1図(C)は本発明の埋め込み型半導
体レーザの製造方法を説明するための模式要部断面図で
ある。
[Example] FIGS. 1(a) to 1(C) are schematic cross-sectional views of main parts for explaining the method of manufacturing an embedded semiconductor laser of the present invention.

第1図(a)は、n−1nP基板11の表面に順次n−
InPのクラッド層12、インジウム、ガリウム砒素燐
(rnGaAsP)の活性層13、p−InPのクラフ
ト層14、p−1nGaAsPのコンタクト層15を積
層してメサエッチングを行ったものである。
In FIG. 1(a), n-
A cladding layer 12 of InP, an active layer 13 of indium, gallium arsenide phosphide (rnGaAsP), a craft layer 14 of p-InP, and a contact layer 15 of p-1nGaAsP are laminated and mesa etched.

第1図(b)は、埋め込み層16として、ポリイミドと
InP粉末を混合した材料を埋め込んだもので、ポリイ
ミドは完全な絶縁体であるが、屈折率がInPとかなり
異なるために、出来るだけInPの屈折率に近似にする
ため、ポリイミドに混合する材料はInPまたはG a
 A sが最も望ましく、その混合比率はほぼ1:1〜
1:5程度にすることで達成できる。
In FIG. 1(b), a material made of a mixture of polyimide and InP powder is embedded as the buried layer 16. Polyimide is a perfect insulator, but since its refractive index is quite different from InP, it is preferable to use InP as much as possible. In order to approximate the refractive index of the polyimide, the material to be mixed with polyimide is InP or Ga
A s is the most desirable, and the mixing ratio is approximately 1:1 ~
This can be achieved by setting the ratio to about 1:5.

埋め込み方法はこれらの混合材料をシンナで熔解した後
、スピンナで埋め込み、しかる後150℃以上の温度で
乾燥したものである。
The embedding method is to melt these mixed materials with thinner, embed them with a spinner, and then dry them at a temperature of 150° C. or higher.

第1図(C)は、形成した半導体レーザの上下面にp電
極17とn電極18を形成して半導体レーザを完成した
ものである。
FIG. 1C shows a completed semiconductor laser by forming a p-electrode 17 and an n-electrode 18 on the upper and lower surfaces of the formed semiconductor laser.

本発明の埋め込み型へテロ構造の半導体レーザは埋め込
み層の抵抗は108〜1011Ωcn+であって、従来
の抵抗値の数10にΩcm〜100 kΩcmに比較し
て著しく大きく、また容量も本発明の埋め込み層の容量
は10pF〜20pFであって、従来構成の埋め込み層
の容量である80〜100pFに比較して減少している
In the buried heterostructure semiconductor laser of the present invention, the buried layer has a resistance of 108 to 1011 Ωcn+, which is significantly larger than the conventional resistance value of several tens of Ωcm to 100 kΩcm. The capacitance of the layer is 10 pF to 20 pF, which is lower than the capacitance of the buried layer of the conventional structure, which is 80 to 100 pF.

第2図は、本発明の埋め込み材料を使用した他の実施例
を示す断面図である。
FIG. 2 is a sectional view showing another embodiment using the embedding material of the present invention.

n−1nP基板21があり、その表面に順次n −In
Pのクラッド層22、InGaAsPの活性層23、p
−InPのクラッド層24、p −1nGaAsPのコ
ンタクト層25を積層してメサエッチングを行ない、p
電極26とn電極27が形成されているが、この構造で
は電流狭窄層28が設けられていて、電流狭窄層として
は、二酸化シリコン等の誘電体膜またはInP等のの半
導体19!(ポリ結晶でも単結晶でもよい)が用いられ
ている。
There is an n-1nP substrate 21, and n-In is sequentially deposited on its surface.
P cladding layer 22, InGaAsP active layer 23, p
A cladding layer 24 of -InP and a contact layer 25 of p -1nGaAsP are laminated and mesa etched.
An electrode 26 and an n-electrode 27 are formed, and in this structure, a current confinement layer 28 is provided, and the current confinement layer is made of a dielectric film such as silicon dioxide or a semiconductor 19! such as InP! (Polycrystal or single crystal may be used).

この場合でも、前記と同様に埋め込み層29にポリイミ
ドとInPまたはGaAs粉末を混合した材料を埋め込
むことができる。
Even in this case, the material mixed with polyimide and InP or GaAs powder can be buried in the buried layer 29 in the same manner as described above.

第3図は、p電極とn電極を同一方向に設けた構造の半
導体レーザの断面図である。
FIG. 3 is a cross-sectional view of a semiconductor laser having a structure in which a p-electrode and an n-electrode are provided in the same direction.

InP基板31があり、その表面に順次n−InPのク
ラッド層32、InGaAsPの活性!33、p−rn
Pのクラッド層34、p−IrIGaAsPのコンタク
ト層35を積層してメサエッチングを行ない、p電極3
6とn電極37を形成したものであるが、埋め込みFi
i3Bとして、本発明のポリイミドとInPまたはGa
As粉末を混合した材料を埋め込んで半導体レーザを形
成することができる。
There is an InP substrate 31, and on its surface there is a cladding layer 32 of n-InP and an active layer of InGaAsP. 33, p-rn
A P cladding layer 34 and a p-IrIGaAsP contact layer 35 are laminated and mesa etched to form a p-electrode 3.
6 and n-electrode 37 are formed, but the buried Fi
As i3B, the polyimide of the present invention and InP or Ga
A semiconductor laser can be formed by embedding a material mixed with As powder.

[発明の効果] 以上、詳細に説明したように、本発明による埋め込み型
の半導体レーザは、寄生容量と漏洩電流を著しく低減す
ることができ、高速変調に供しうるという効果大なるも
のである。
[Effects of the Invention] As described above in detail, the buried semiconductor laser according to the present invention has great effects in that it can significantly reduce parasitic capacitance and leakage current, and can be used for high-speed modulation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜第1図(C)は本発明の埋め込み型半導
体レーザの製造方法を説明するための模式要部断面図、 第2図は本発明の埋め込み材料を使用した他の実施例を
示す断面図である。 第3図は本発明のp電極とn電極を同一方向に設けた構
造の半導体レーザの断面図、 第4図は、従来の埋め込み型へテロ構造の半導体レーザ
の模式要部断面図、 図において、 11はn−1nP基板、 12はクラッド層、13は活
性層、     14はクラッド層、15はコンタクト
層、  16は埋め込み層、17はp電極、     
18はn電極、をそれぞれ示している。 CG) (b) (C) 坏発明1を疹L−ヅ°り袈遣起4T零佑端泪第1図 隼発明めL導拝し−ザ°1埠11rg 第2図 斗炎明め化碩滅が躯本7跡向m 第3図 第4図
1(a) to 1(C) are schematic cross-sectional views of main parts for explaining the manufacturing method of the embedded semiconductor laser of the present invention, and FIG. 2 is another embodiment using the embedding material of the present invention. It is a sectional view showing an example. FIG. 3 is a cross-sectional view of a semiconductor laser having a structure in which a p-electrode and an n-electrode are provided in the same direction according to the present invention. FIG. 4 is a schematic cross-sectional view of a main part of a conventional buried-type heterostructure semiconductor laser. , 11 is an n-1nP substrate, 12 is a cladding layer, 13 is an active layer, 14 is a cladding layer, 15 is a contact layer, 16 is a buried layer, 17 is a p-electrode,
Reference numeral 18 indicates an n-electrode. CG) (b) (C) Invention 1 is erupted L-ㅅㅈ袈上 4T Reiyu end tear 1st figure falcon invention L is guided - the 1st pier 11rg 2nd figure Douen lightening Destruction is the original 7 trace m Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 インジウム燐を含む化合物の積層からなる埋め込み型半
導体レーザにおいて、 上記半導体レーザの埋め込み層(16)にポリイミド樹
脂に該ポリイミド樹脂と異なる光屈折率を有する物質を
混合した材料で上記埋め込み層(16)を形成したこと
を特徴とする半導体レーザ。
[Claims] In a buried semiconductor laser made of a laminated layer of a compound containing indium phosphorus, the buried layer (16) of the semiconductor laser is made of a material made of a polyimide resin mixed with a substance having a different optical refractive index from the polyimide resin. A semiconductor laser characterized in that the buried layer (16) described above is formed.
JP19166285A 1985-08-29 1985-08-29 Semiconductor laser Pending JPS6249687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19166285A JPS6249687A (en) 1985-08-29 1985-08-29 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19166285A JPS6249687A (en) 1985-08-29 1985-08-29 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6249687A true JPS6249687A (en) 1987-03-04

Family

ID=16278369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19166285A Pending JPS6249687A (en) 1985-08-29 1985-08-29 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6249687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302791A (en) * 1988-02-02 1989-12-06 Nec Corp Buried structure semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302791A (en) * 1988-02-02 1989-12-06 Nec Corp Buried structure semiconductor laser

Similar Documents

Publication Publication Date Title
CN100361355C (en) Low voltage multi-junction vertical cavity surface emitting laser
US4759023A (en) Monolithically integrated semiconductor optical device and method of fabricating same
CN100461563C (en) Opto-electronic device comprising a laser integrated with a modulator and method of fabrication thereof
JPH0553317B2 (en)
US20100117104A1 (en) Integrated semiconductor optical device and optical apparatus using the same
US4811352A (en) Semiconductor integrated light emitting device
US5048049A (en) Turnable distributed feedback-laser
US4870468A (en) Semiconductor light-emitting device and method of manufacturing the same
JPH05341242A (en) Optical modulating element
JPS6249687A (en) Semiconductor laser
JPH0951142A (en) Semiconductor light emitting element
JPS6184890A (en) Semiconductor laser
JPH059951B2 (en)
US20200083671A1 (en) Optical semiconductor device
US6937632B2 (en) Integrated semiconductor laser and waveguide device
JPH0851256A (en) Semiconductor laser
JP2805094B2 (en) Optical semiconductor device
JPH0632345B2 (en) Distributed reflection type semiconductor laser
JPS61242091A (en) Semiconductor light-emitting element
JP3285079B2 (en) Semiconductor laser
JPS6272185A (en) Negative resistance optical device
JPS6243356B2 (en)
JP2003110195A (en) Semiconductor light element and method for manufacturing the same
JPH0637388A (en) Semiconductor laser device
JPH03192787A (en) Integrated optical modulator