JPS6249654A - Manufacture of solid-state image pickup device - Google Patents

Manufacture of solid-state image pickup device

Info

Publication number
JPS6249654A
JPS6249654A JP60190771A JP19077185A JPS6249654A JP S6249654 A JPS6249654 A JP S6249654A JP 60190771 A JP60190771 A JP 60190771A JP 19077185 A JP19077185 A JP 19077185A JP S6249654 A JPS6249654 A JP S6249654A
Authority
JP
Japan
Prior art keywords
film
electrode
region
forming
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60190771A
Other languages
Japanese (ja)
Inventor
Onori Ishikawa
石河 大典
Tadanaka Yoneda
米田 忠央
Yoshitaka Aoki
青木 芳孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60190771A priority Critical patent/JPS6249654A/en
Publication of JPS6249654A publication Critical patent/JPS6249654A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the manufacturing process of the titled device and to constitute the optimum electrode structural material by a method wherein a flat-surfaced polycrystalline Si film is formed in vertical position on the surface of the diode region on a substrate. CONSTITUTION:A field oxide film 2 is selectively formed on an Si substrate 1, phosphorus is ion-implanted, and a source region 3 and a drain region 4 are formed. Then, after a gate oxide film 5 is formed, a polycrystalline Si film 6 to be used for a gate electrode, with which the region where the signal charge of the region 3 is transferred together with the region 4 and the film 5, is formed. Subsequently, an Si oxide film 7 and a PSG film 9 are formed on the whole surface of the substrate, and the surface is made smooth. Then, an aperture where the region 3 is exposed is formed by performing an etching on the films 7 and 9, and a polycrystalline Si film 8 is formed. Subsequently, a photoconductive film 11, the protective layer 12 of the film 11, a light- transmitting electrode 13 and the metal film 14 to be used for light shielding are formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、固体撮像装置、特に電荷の蓄積及び転送機能
惑いは、マ) IJソックス状MOSスイッチング機能
を有する半導体基板上に、光導電膜を形成する積層型固
体撮像装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to solid-state imaging devices, particularly those with charge storage and transfer functions. The present invention relates to a method of manufacturing a stacked solid-state imaging device.

従来の技術 半導体を利用した固体撮像装置は、ますます高密度、高
性能及び多機能となり、光電変換機能と信号の蓄積機能
を持つ絵素群と走査機能を持つスイッチング回路とカラ
ーフィルタ等を一体化した積層型固体撮像装置の開発に
対する要望が高まっている。しかし素子を高密度化する
と、素子の縦方向、言い換えれば膜厚方向の寸法は、絶
縁膜の耐圧や導体膜の比抵抗等の関係で極端に薄くする
ことが出来ず、横方向は、解像度を良くする目的とフォ
) IJノグラフィ技術や加工技術の進歩のため微細化
が進み素子表面の凹凸がより急峻になる傾向にある。第
4図は急峻な段差を軽減する構造の従来の固体撮像装置
の一例の断面図で、1はp型シリコン回路基板、2はフ
ィールド酸化膜、3は回路基板1上に設けられたn型ン
ース領域、4はn型ドレイン領域、6はゲート酸化膜、
6はゲート電極用多結晶シリコン膜、7はシリコン酸化
膜、8は多結晶シリコン、9はシリゲート絶縁膜、10
は金属電極、11は光導電膜、12は光導電膜保護層、
13は透光性電極膜である。上述の構造で光導電膜11
に光が入射し、電子・正孔対が生成されると、電子は絵
素ごとに分離された金属電極(例えばモリブデン金属膜
)1oに吸収される。この光情報をシリコン基板1の電
荷蓄積部となるn型のソース領域3に送るために、直接
ソース領域3の上部の絶縁膜7にコンタクト用開孔を設
けて電極1oをソース領域3に接触させると、コンタク
ト用開孔の段差が急峻となるため、ソース領域3上に多
結晶シリコン8を埋込み、段差を軽減させている。次に
多結晶シリコン8上にモリブデン電極1oを接触させ、
光導電膜の一方の電極としている。
Conventional technology Solid-state imaging devices using semiconductors are becoming increasingly dense, high-performance, and multi-functional, and integrate pixel groups with photoelectric conversion and signal storage functions, switching circuits with scanning functions, color filters, etc. There is an increasing demand for the development of stacked solid-state imaging devices. However, when increasing the density of an element, the vertical dimension of the element, in other words, the dimension in the film thickness direction, cannot be made extremely thin due to the breakdown voltage of the insulating film and the specific resistance of the conductor film, etc. (1) Due to advancements in IJ nography technology and processing technology, miniaturization has progressed, and the unevenness on the surface of elements has tended to become steeper. FIG. 4 is a cross-sectional view of an example of a conventional solid-state imaging device with a structure that reduces steep steps. 1 is a p-type silicon circuit board, 2 is a field oxide film, and 3 is an n-type silicon circuit board provided on the circuit board 1. 4 is an n-type drain region, 6 is a gate oxide film,
6 is a polycrystalline silicon film for gate electrode, 7 is a silicon oxide film, 8 is polycrystalline silicon, 9 is a siligate insulating film, 10
1 is a metal electrode, 11 is a photoconductive film, 12 is a photoconductive film protective layer,
13 is a transparent electrode film. With the above structure, the photoconductive film 11
When light is incident on the pixel and electron-hole pairs are generated, the electrons are absorbed by a metal electrode (for example, a molybdenum metal film) 1o separated for each picture element. In order to send this optical information to the n-type source region 3 which serves as a charge storage portion of the silicon substrate 1, a contact hole is provided in the insulating film 7 directly above the source region 3, and the electrode 1o is brought into contact with the source region 3. As a result, the step of the contact hole becomes steep, so polycrystalline silicon 8 is buried above the source region 3 to reduce the step. Next, a molybdenum electrode 1o is brought into contact with the polycrystalline silicon 8,
It serves as one electrode of the photoconductive film.

発明が解決しようとする問題点 しかしながら光導電膜中で発生した電子の吸収電極とし
てのモリブデンは最適とは言えず、他の材料でモリブデ
ンより優れた材料が見つかっている。また、従来の構造
では多結晶シリコン8の埋込みを行なった後多結晶シリ
コン8の表面、モリブデン電極と接する部分の清浄化す
るだめの洗浄エツチングを行ない多結晶シリコン8の表
面が変質しないうちにモリブデン電極を形成することが
必要である。そのため時間的な余裕がなく、一定時間内
に行なうことが必要であった。しかし一定時間内にモリ
ブデン電極の形成が出来ない場合は、再度清浄化を行な
う必要があった。このように多結晶シリコン8上への金
属電極1o形成は制御性を要し、工程も複雑であった。
Problems to be Solved by the Invention However, molybdenum is not optimal as an electrode for absorbing electrons generated in a photoconductive film, and other materials have been found that are superior to molybdenum. In addition, in the conventional structure, after the polycrystalline silicon 8 is embedded, cleaning and etching is performed to clean the surface of the polycrystalline silicon 8 and the portion in contact with the molybdenum electrode. It is necessary to form electrodes. Therefore, there was no time to spare, and it was necessary to complete the process within a certain amount of time. However, if the molybdenum electrode could not be formed within a certain period of time, it was necessary to perform cleaning again. As described above, forming the metal electrode 1o on the polycrystalline silicon 8 required controllability and the process was complicated.

本発明は、上述のような従来の固体撮像装置の問題に鑑
み、光導電膜を積層した積層型固体撮像装置において、
光導電膜の下方電極と電極接続用埋込み多結晶シリコン
の構造を改良することにより光電変換特性の向上をはか
り、さらに工程の簡略化を行なう固体撮像装置の製造方
法を提供することを目的とするものである。
In view of the problems of conventional solid-state imaging devices as described above, the present invention provides a stacked solid-state imaging device in which photoconductive films are stacked.
The purpose of the present invention is to improve the structure of the lower electrode of the photoconductive film and the embedded polycrystalline silicon for electrode connection, thereby improving the photoelectric conversion characteristics, and to provide a method for manufacturing a solid-state imaging device that simplifies the process. It is something.

問題点を解決するための手段 本発明は、半導体回路基板に設けられたダイオード領域
の一部表面より垂直に導電膜である多結晶シリコン膜を
形成し、この多結晶シリコン膜の表面を平坦化させ、前
記多結晶シリコン膜を単位絵素ごとに分離し電極とし埋
込みの多結晶シリコンと電極を一体化させ、光電変換特
性の向上を計ったものである。
Means for Solving the Problems The present invention forms a polycrystalline silicon film, which is a conductive film, perpendicularly to a partial surface of a diode region provided on a semiconductor circuit board, and flattens the surface of this polycrystalline silicon film. The polycrystalline silicon film is separated into unit picture elements and used as electrodes, and the buried polycrystalline silicon and the electrodes are integrated to improve photoelectric conversion characteristics.

作用 このような本発明によれば、固体撮像装置の製造工程を
簡略化することができるとともに、最適電極構造材料を
構成することができる。
Effects According to the present invention, the manufacturing process of a solid-state imaging device can be simplified, and an optimal electrode structure material can be constructed.

実施例 第1図は本発明の製造方法により作成された固体撮像装
置の一実施例の断面構造を示す。図において、1はp型
シリコンより成る半導体回路基板、2はフィールド酸化
膜、3はn型ソース領域を構成するダイオード領域、4
はn型ドレイン領域、6はゲート酸化膜、6はゲート電
極用多結晶シリコン膜で、ドレイン領域4とゲート酸化
膜6及びゲート電極6で、ソース領域3に蓄積された信
号電荷を転送する転送領域を形成し、信号はドレイン領
域4から図面に垂直方向に転送される。7はシリコン酸
化膜、8は電極取り出し用多結晶シリコン膜、9はリン
を含むシリケートガラス(PS(、)膜、10は絵素ご
とに分離され8多結晶シリコン膜と一体化された多結晶
シリコン電極、11は光導電膜、12は光導電膜保護層
、13は透光性電極、14は光遮蔽用のモリブデン等の
金属膜である。
Embodiment FIG. 1 shows a cross-sectional structure of an embodiment of a solid-state imaging device manufactured by the manufacturing method of the present invention. In the figure, 1 is a semiconductor circuit board made of p-type silicon, 2 is a field oxide film, 3 is a diode region constituting an n-type source region, and 4 is a semiconductor circuit board made of p-type silicon.
is an n-type drain region, 6 is a gate oxide film, 6 is a polycrystalline silicon film for gate electrode, and transfers the signal charge accumulated in the source region 3 between the drain region 4, gate oxide film 6, and gate electrode 6. A signal is transferred from the drain region 4 in a direction perpendicular to the drawing. 7 is a silicon oxide film, 8 is a polycrystalline silicon film for electrode extraction, 9 is a silicate glass (PS(,)) film containing phosphorus, and 10 is a polycrystalline film separated for each pixel and integrated with the 8 polycrystalline silicon film. A silicon electrode, 11 a photoconductive film, 12 a photoconductive film protective layer, 13 a transparent electrode, and 14 a metal film such as molybdenum for light shielding.

上述の構成において、透明電極13を通った光は光導電
膜12に吸収され、電子・正孔を生成する。正孔は透明
電極に流れ込み吸収され、電子は一体化された多結晶シ
リコン膜1oから埋込まれた多結晶シリコン膜8を通し
てソース領域に蓄積され、ゲート電極に加えられるクロ
ックパルスによってドレイン領域に転送されることは、
従来例と同様である。本発明では、電極取り出し用多結
晶シリコン膜8と光導電膜の下方電極1oを一体化させ
ダイオード領域であるn型ソース領域3の表面にpsG
膜の開孔部中に埋込み平坦化すると同時に電極も形成す
るものである。このように電極1oと電極数シ出し用多
結晶シリコン膜を一体化させることにより、異なった材
料間での接合の不都合である接合抵抗や障壁など考慮す
る必要がない。また多結晶シリコン膜を光導電膜の下方
電極とする効果(特Jis9−192865)である暗
電流特性、光応答耐圧などが発揮できる。さらに製造工
程においても、多結晶シリコン膜の形成と、平坦化およ
びホト工程による結晶シリコン膜のエツチングであり、
従来の方法に比較し簡単にできる。
In the above configuration, light passing through the transparent electrode 13 is absorbed by the photoconductive film 12 and generates electrons and holes. Holes flow into the transparent electrode and are absorbed, and electrons are accumulated in the source region from the integrated polycrystalline silicon film 1o through the buried polycrystalline silicon film 8, and transferred to the drain region by a clock pulse applied to the gate electrode. What will be done is
This is the same as the conventional example. In the present invention, the polycrystalline silicon film 8 for taking out the electrode and the lower electrode 1o of the photoconductive film are integrated, and psG is formed on the surface of the n-type source region 3, which is a diode region.
It is buried in the opening of the film and flattened, and at the same time, an electrode is also formed. By integrating the electrode 1o and the polycrystalline silicon film for forming the electrodes in this manner, there is no need to consider bonding resistance and barriers, which are disadvantageous when bonding different materials. In addition, dark current characteristics, photoresponse breakdown voltage, etc., which are effects of using a polycrystalline silicon film as the lower electrode of the photoconductive film (Special JIS 9-192865), can be exhibited. Furthermore, the manufacturing process involves forming a polycrystalline silicon film, planarizing it, and etching the crystalline silicon film through a photo process.
It is easier than traditional methods.

第2図は、本発明の固体撮像装置の製造工程の一実施例
を示す図である。同図乙に示すようK、p型の例えば1
oΩcmのシリコン基板1に、フィールド酸化膜2を例
えばL OG OS (LocalOxid2Ltio
n of 5ilicon )法により選択的に約0.
6ミクロンの厚さに形成する。次にイオン注入用保護酸
化膜2′をo、otsミクロン形成し、図示せざるレジ
ストマスクを用いて所望の位置にリンをイオン注入しソ
ース領域3に高ドーズ量、ドレイン領域4に低ドーズ量
のnとn型の不純物領域を1回若しくは複数のレジスト
マスクパターンを用いて形成する。ここでnソース領域
3は電荷蓄積領域となり、n型ドレイン領域4は図面に
垂直方向に電荷を転送するだめ、ゲート電極によってソ
ース或いはドレインの役目をする0次に同図すに示すよ
うに、保護酸化膜2′を除去して、ゲート酸化膜5を約
0.1ハクロン形成する。このゲート酸化膜6としては
、シリコン酸化膜とシリコン窒化膜等の複数の絶縁膜を
用いてもよい。次にゲート電極として多結晶シリコン膜
6を約0.5ミクロンの厚みに形成し、イオン注入或い
は熱拡散法によりn型化する。次忙レジストマスク(図
示せず)を用いて選択的にドライエツチング法によりn
型多結晶膜6をエツチングし、続いてウェットエツチン
グ法によシゲート酸化膜6をエツチングしてソース領域
3を露出させる。この工程で露出しだソース領域に新た
にn型の不純物を導入してもよい0 次に同図Cに示すように、基板全面にシリコン酸化膜7
を気相成長法或は高温酸化法により約0.3ミクロンの
厚さに形成する。続いてpsc、(リンを含むシリケー
トガラス)膜9を0.8ミクロン形成し、高温雰囲気で
psGを流動させ、基板表面の急峻な段差をできるだけ
平滑にする。この場合、ウェット酸素中或は高圧酸素中
で行なうと平滑化が容易である。次に同図dに示すよう
に、レジストマスク(図示せず)を用いて選択的にソー
ス領域3の表面が露出するまでPSG膜9及びシリコン
酸化膜7をエツチングして開孔部15へ形成する。この
開孔部の形成方法として、平行平板型の反応性イオンエ
ツチング(RIE)の方法により行なう。このような方
法を行いると同図dで示すようなエツチング断面を急峻
にすることが出来る。
FIG. 2 is a diagram showing an embodiment of the manufacturing process of the solid-state imaging device of the present invention. For example, 1 of K and p type as shown in Figure B.
A field oxide film 2 is formed on a silicon substrate 1 of oΩcm using, for example, LOG OS (Local Oxid2Ltio
selectively about 0.
Formed to a thickness of 6 microns. Next, a protective oxide film 2' for ion implantation is formed with an o, ots micron thickness, and phosphorus is ion-implanted into desired positions using a resist mask (not shown), with a high dose in the source region 3 and a low dose in the drain region 4. N and n-type impurity regions are formed using one or more resist mask patterns. Here, the n-type source region 3 becomes a charge storage region, and the n-type drain region 4 transfers charges in the direction perpendicular to the drawing, so that the gate electrode serves as a source or drain, as shown in the figure. The protective oxide film 2' is removed and a gate oxide film 5 is formed with a thickness of about 0.1 ha. As this gate oxide film 6, a plurality of insulating films such as a silicon oxide film and a silicon nitride film may be used. Next, a polycrystalline silicon film 6 is formed as a gate electrode to a thickness of about 0.5 microns, and made into an n-type film by ion implantation or thermal diffusion. selectively by dry etching using a busy resist mask (not shown).
The type polycrystalline film 6 is etched, and then the silicate oxide film 6 is etched by wet etching to expose the source region 3. In this step, a new n-type impurity may be introduced into the exposed source region.Next, as shown in FIG.
is formed to a thickness of about 0.3 microns by vapor phase growth or high temperature oxidation. Subsequently, a psc (silicate glass containing phosphorus) film 9 of 0.8 microns is formed, and psG is flowed in a high temperature atmosphere to smooth out the steep steps on the substrate surface as much as possible. In this case, smoothing can be easily achieved by performing the process in wet oxygen or high pressure oxygen. Next, as shown in Figure d, the PSG film 9 and silicon oxide film 7 are selectively etched using a resist mask (not shown) until the surface of the source region 3 is exposed, forming an opening 15. do. The openings are formed by parallel plate reactive ion etching (RIE). By using such a method, it is possible to make the etched cross section steep as shown in d of the same figure.

この工程及びこの前のPSG膜を流動させる工程により
、次の工程である多結晶シリコン膜の凹部への埋込みを
簡単に形成するものである。このように急峻な開孔部を
形成したあと、多結晶シリコン膜8を前記ソース領域3
上の開孔部の段差と同等もしくはそれより若干厚く約1
.2ミクロン形成する。この形成としては、減圧及び常
圧中での気相成長法、或はプラズマ気相成長法を用いて
行なう。次に樹脂系有機材料、例えばレジスト8′をス
ピン塗布法により基板表面に形成し、表面を平滑化する
。次にドライエツチング方式により、例えば平行平板型
ドライエツチング装置を用いて、レジスト8′を酸素ガ
スで表面よりエツチングするとレジスト直下の下地基板
形状の差で凸部上でのレジストは薄く、凹部上のレジス
トは厚くなり、図のように基板表面の最も深い凹部であ
るソース領域3上の凹部に自己整合的にレジスト8′を
残すことができる。この場合、図のようにレジスト8′
の表面と、露出した多結晶シリコン膜8の平坦な領域表
面が一致することが望ましい。この時、レジスト8′と
露出した多結晶シリコン膜8のエツチング速度が同等に
なるような条件で、例えば平行平板現反応性イオンエッ
チ方式で、200 W 、ay2c62ガス約20 (
jC7M 、60 mTo r rの条件で行なうとほ
ぼ等しいエツチング速度となる。このような条件でレジ
スト8′と多結晶シリコン膜8をエッチンクシ、PSG
膜9上で約0.1ミクロンの多結晶°シリコン膜8が残
った状態でエツチング停止した図が同図θである。この
PSG膜9上約0.1ミクロンの多結晶シリコン膜8残
しのエツチング制御は、時間によって行なうが、反応性
イオンエッチ時のエツチング速度は、温度制御されてお
ればほぼ一定である。
This step and the previous step of flowing the PSG film facilitate the filling of the polycrystalline silicon film into the recess, which is the next step. After forming the steep opening in this way, the polycrystalline silicon film 8 is deposited on the source region 3.
Approximately 1 inch thicker or equal to or slightly thicker than the step of the upper opening.
.. Forms 2 microns. This formation is performed using a vapor phase growth method under reduced pressure and normal pressure, or a plasma vapor phase growth method. Next, a resin-based organic material, such as a resist 8', is formed on the substrate surface by spin coating to smooth the surface. Next, when the resist 8' is etched from the surface with oxygen gas using a dry etching method, for example using a parallel plate dry etching device, the resist on the convex parts is thinner and the resist on the concave parts is thinner due to the difference in the shape of the base substrate directly under the resist. The resist becomes thicker, and the resist 8' can be left in a self-aligned manner in the recess above the source region 3, which is the deepest recess on the substrate surface, as shown in the figure. In this case, as shown in the figure, resist 8'
It is desirable that the surface of the polycrystalline silicon film 8 coincides with the surface of the exposed flat region of the polycrystalline silicon film 8. At this time, under conditions such that the etching rate of the resist 8' and the exposed polycrystalline silicon film 8 are the same, for example, a parallel plate reactive ion etching method is used at 200 W and ay2c62 gas at about 20%
If etching is performed under the conditions of jC7M and 60 mTorr, the etching rates will be approximately the same. Under these conditions, the resist 8' and polycrystalline silicon film 8 are etched, and the PSG
θ in the figure shows the etching stopped with about 0.1 micron of polycrystalline silicon film 8 remaining on film 9. The etching of the remaining polycrystalline silicon film 8 of about 0.1 micron on the PSG film 9 is controlled by time, but the etching rate during reactive ion etching is approximately constant if the temperature is controlled.

なお、第2図dの工程で、レジスト8′を自己整合的に
基板表面の凹部にのみ残すものとしたが、このレジスト
8′はエツチングせずに基板全面に塗布したまま、同図
eで説明したようにレジスト8′と多結晶シリコン膜8
のエツチング速度が同等のエツチング条件で基板表面よ
りエツチングすると、同図eの構造になる。
In the process shown in Figure 2(d), the resist 8' was left only in the recesses of the substrate surface in a self-aligned manner, but this resist 8' was left coated on the entire surface of the substrate without being etched, as shown in Figure 2(e). As explained, the resist 8' and the polycrystalline silicon film 8
If etching is performed from the substrate surface under etching conditions with the same etching rate, the structure shown in the figure e will be obtained.

次に同図rに示すように基板全面に約0.1ミクロンの
多結晶シリコン膜8の上にレジストパターン16を形成
し、レジスト16をマスクに多結晶シリコン膜8をエツ
チングし、多結晶シリコン電極1oとしだものである。
Next, as shown in FIG. This is the electrode 1o.

多結晶シリコン電極1゜は、各単位絵素に対応させてモ
ザイク状にエツチングするものである。
The polycrystalline silicon electrode 1° is etched in a mosaic pattern corresponding to each unit picture element.

エツチング後、レジスト16を除去し、全面に光導電膜
を形成し、次に光導電膜保護層を形成しさらにスパッタ
リング法などによりIn2O3或は5n02 などの透
光性電極を0.1〜0.5ミクロン形成し、次に多結晶
シリコン電極と逆のパターンで遮蔽膜を設置するもので
ある。遮蔽膜の材料は、Or、Ti 、Mo 、W等の
金属膜が好ましい。金属遮蔽膜は、各単位絵素ごとに分
離された電極の隙間から洩れた光がシリコン基板に投射
して電子・正孔対を発生するのを防止して解像度の向上
を計るためのものであって、必らずしもなくてもよく、
又遮蔽膜の横から光が斜めに進゛入するのを防ぐため、
第3図に示すように、PSGSeO2、或はPSGSe
O2リコン酸化膜7の間に設けてもよい。
After etching, the resist 16 is removed, a photoconductive film is formed on the entire surface, a photoconductive film protective layer is formed, and a transparent electrode such as In2O3 or 5n02 is coated with a thickness of 0.1-0. 5 microns is formed, and then a shielding film is placed in a pattern opposite to that of the polycrystalline silicon electrode. The material of the shielding film is preferably a metal film such as Or, Ti, Mo, W or the like. The metal shielding film is used to improve resolution by preventing light leaking through the gaps between the electrodes separated for each unit pixel from being projected onto the silicon substrate and generating electron-hole pairs. Yes, but it doesn't necessarily have to be,
Also, to prevent light from diagonally entering from the side of the shielding film,
As shown in Figure 3, PSGSeO2 or PSGSe
It may also be provided between the O2 silicon oxide films 7.

なお、上述の実施例では、デバイス駆動用電極配線につ
いては説明していないが、これは周知の方法で光導電膜
を形成する前に例えばアルミニウムの電極配線を行なう
ものである。
Incidentally, in the above-mentioned embodiments, the electrode wiring for driving the device is not explained, but the electrode wiring is made of, for example, aluminum before forming the photoconductive film by a well-known method.

発明の効果 以上のように本発明によれば、シリコン基板上に設けた
ダイオード領域よシ、基板に対してほぼ垂直に絶縁膜に
設けた開孔中に不純物を含む多結晶シリコン膜を形成す
るとともに、前記多結晶シリコン膜と一体化された多結
晶シリコン電極を形成することにより、製造工程を簡略
化するとともに、最適電極構造材料を構成することが出
来るなどの効果が得られる。
Effects of the Invention As described above, according to the present invention, a polycrystalline silicon film containing impurities is formed in a diode region provided on a silicon substrate and in an opening provided in an insulating film substantially perpendicular to the substrate. In addition, by forming a polycrystalline silicon electrode integrated with the polycrystalline silicon film, the manufacturing process can be simplified and an optimal electrode structure material can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の製造方法で作成した固体撮像装置の
一実施例の断面図、第2図2L −%−fは本発明の一
実施例における固体撮像装置の製造工程を示す断面図、
第3図は本発明の製造方法で作成した固体撮像装置の他
の実施例の断面図、第4図は従来の固体撮像装置の断面
図である。 1・・・・・・シリコン基板、2・・・・・・フィール
ド酸化膜、3・・・・・・ソース領域、4・・・・・・
ドレイン領域、6・・・・・・ゲート酸化膜、6・・・
・・・ゲート電極、7・・・・・・シリコン酸化膜、8
・・・・・・多結晶シリコン膜、8′・・・・・・レジ
スト、9・・・・・・PSG膜、10・・・・・・多結
晶シリコン電極、11・・・・・・光導電膜、12・・
・・・・光導電膜保護層、13・・・・・・透光性電極
、14・・・・・・光遮蔽用金属膜、16・・・・・・
開孔部、16・・・・・・多結晶シリコン膜エツチング
パターン用レジスト。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第2図 第3図 第4図
FIG. 1 is a sectional view of an embodiment of a solid-state imaging device manufactured by the manufacturing method of the present invention, and FIG. ,
FIG. 3 is a sectional view of another embodiment of a solid-state imaging device manufactured by the manufacturing method of the present invention, and FIG. 4 is a sectional view of a conventional solid-state imaging device. 1...Silicon substrate, 2...Field oxide film, 3...Source region, 4...
Drain region, 6... Gate oxide film, 6...
...Gate electrode, 7...Silicon oxide film, 8
...Polycrystalline silicon film, 8'...Resist, 9...PSG film, 10...Polycrystalline silicon electrode, 11... Photoconductive film, 12...
... Photoconductive film protective layer, 13 ... Transparent electrode, 14 ... Metal film for light shielding, 16 ...
Opening portion, 16...Resist for polycrystalline silicon film etching pattern. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 一導電型を有する半導体回路基板の表面に絶縁膜を介し
て不純物を導入してダイオード領域を選択的に形成する
工程と、前記絶縁膜を除去して半導体回路基板上にゲー
ト用絶縁膜とゲート電極を選択的に形成する工程と、前
記半導体回路基板及びゲート電極を覆うように絶縁膜を
形成し、その表面を平滑化する工程と、前記平滑化され
た絶縁膜の表面から前記ダイオード領域の表面に達する
垂直な開孔部を形成する工程と、前記開孔部に導電膜を
自己整合的に形成してその表面を平滑化する工程と、前
記導電膜を単位絵素ごとに分離し電極とする工程と、前
記導電膜電極上に光導電膜と透光電極を重ねて形成する
工程とから成る固体撮像装置の製造方法。
A step of selectively forming a diode region by introducing impurities into the surface of a semiconductor circuit board having one conductivity type through an insulating film, and removing the insulating film and forming a gate insulating film and a gate on the semiconductor circuit board. a step of selectively forming an electrode; a step of forming an insulating film to cover the semiconductor circuit board and the gate electrode and smoothing the surface; and a step of forming the diode region from the surface of the smoothed insulating film. A process of forming vertical openings reaching the surface, a process of forming a conductive film in the openings in a self-aligned manner to smooth the surface, and a process of separating the conductive film into unit pixels and forming electrodes. and forming a photoconductive film and a light-transmitting electrode over the conductive film electrode.
JP60190771A 1985-08-29 1985-08-29 Manufacture of solid-state image pickup device Pending JPS6249654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60190771A JPS6249654A (en) 1985-08-29 1985-08-29 Manufacture of solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60190771A JPS6249654A (en) 1985-08-29 1985-08-29 Manufacture of solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS6249654A true JPS6249654A (en) 1987-03-04

Family

ID=16263450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60190771A Pending JPS6249654A (en) 1985-08-29 1985-08-29 Manufacture of solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS6249654A (en)

Similar Documents

Publication Publication Date Title
US6472698B1 (en) Solid state image sensor and method for fabricating the same
US5567632A (en) Method for fabricating solid state image sensor device having buried type photodiode
EP0139366B1 (en) Method of manufacturing a soldi-state image pickup device
US20060166389A1 (en) Method for producing solid-state imaging device, solid-state imaging device, and camera
KR20200091252A (en) Backside illuminated image sensor and method of manufacturing the same
JPH07107928B2 (en) Solid-state imaging device
JPH10163462A (en) Solid-state image sensing device of mass type filter structure and its manufacture
CN1925164A (en) Semiconductor device and method for forming the same
JP3008163B2 (en) Solid-state imaging device and method of manufacturing the same
EP0037244B1 (en) Method for fabricating a solid-state imaging device using photoconductive film
JPH09172156A (en) Solid-state image pick-up device and its fabrication
JP2000022119A (en) Solid state image device and fabrication thereof
JPS6249654A (en) Manufacture of solid-state image pickup device
JPH04207076A (en) Manufacture of solid-state image pickup device
JP2517045B2 (en) Method of manufacturing solid-state image sensor
KR840001604B1 (en) Method for fabrication a solid - state imaging device
JPH0770698B2 (en) Method of manufacturing solid-state imaging device
JPS59202777A (en) Solid-state image pickup device and its manufacture
KR100209757B1 (en) Fabricating method of solid-state image sensing device
KR100304977B1 (en) Method for fabricating solid state image sensor
JP2906961B2 (en) Solid-state imaging device
KR0166780B1 (en) Fabricating method of charge transfer device
KR100272564B1 (en) Method for fabricating charge coupled device
JPH05315584A (en) Solid-state charge-transfer image sensor
JPS60105382A (en) Solid-state pickup element