JPS6249631A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6249631A
JPS6249631A JP6554286A JP6554286A JPS6249631A JP S6249631 A JPS6249631 A JP S6249631A JP 6554286 A JP6554286 A JP 6554286A JP 6554286 A JP6554286 A JP 6554286A JP S6249631 A JPS6249631 A JP S6249631A
Authority
JP
Japan
Prior art keywords
atoms
wafer
oxygen concentration
defects
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6554286A
Other languages
Japanese (ja)
Other versions
JPH0351295B2 (en
Inventor
Takanori Hayafuji
早藤 貴範
Seiji Kawato
川戸 清爾
Yoshio Aoki
芳夫 青木
Shoji Wakayama
若山 昌次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6554286A priority Critical patent/JPS6249631A/en
Publication of JPS6249631A publication Critical patent/JPS6249631A/en
Publication of JPH0351295B2 publication Critical patent/JPH0351295B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To eradicate the generation of crystal defects by gettering the back of a silicon substrate which contains oxygen before a heat treatment process. CONSTITUTION:A semiconductor device is obtained by the heat treatment of a semiconductor substrate. In this case, a silicon substrate which contains oxygen of 5X10<15>-1X10<18> atoms/cm<3> is used for the semiconductor substrate. The back of the silicon substrate is gettered before the heat treatment process. As a result, such as the characteristics of noise, a leakage current, switching, the storage characteristics of a CCD, etc., are drastically improved.

Description

【発明の詳細な説明】 本発明はダイオード、トランジスタ、IC等の半導体装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor devices such as diodes, transistors, and ICs.

従来の半導体素子の製造にはCZ結晶とFZ結晶とが使
用されている。これらの結晶は素子の種類、素子の製造
条件によって使いわけされているが、いずれも一長一短
の性質を有している。
CZ crystals and FZ crystals are used in the manufacture of conventional semiconductor devices. These crystals are used depending on the type of device and the manufacturing conditions of the device, but each has its own advantages and disadvantages.

即ちまずCZ結晶について述べると、この結晶は通常1
01′オーダー、例えば1.3 x 10+s原子/c
rt+3程度と高濃度の酸素を含有している。ところが
CZ結晶を例えば1100℃で熱処理すれば、この熱処
理温度での酸素固溶限界(4X10”原子/cI113
)をこえる過剰分の酸素が析出物として成長してしまい
、またこの析出物から積層欠陥や転位も発生する。これ
らの結晶欠陥は素子の特性を悪化させることになる。但
し、酸素やその析出物は、半導体ウェハの周辺や裏面で
発生した転位がウェハ全体に伝播するのを阻止するとい
う、いわゆるピンニング(Pinning)効果を有し
ている。
That is, first of all, let's talk about CZ crystal.This crystal usually has 1
01' order, for example 1.3 x 10+s atoms/c
It contains a high concentration of oxygen, about rt+3. However, if a CZ crystal is heat-treated at, for example, 1100°C, the oxygen solid solubility limit (4X10" atoms/cI113
), the excess oxygen grows as precipitates, and stacking faults and dislocations also occur from these precipitates. These crystal defects deteriorate the characteristics of the device. However, oxygen and its precipitates have a so-called pinning effect, which prevents dislocations generated at the periphery or back surface of the semiconductor wafer from propagating to the entire wafer.

他方、FZ結晶には通常5X1015原子/crn”以
下(例えば10″原子/cm3)の酸素しか含まれてい
ないので、CZ結晶において見られたような上述の欠陥
は発生しないが、酸素濃度が低いために上記のピンニン
グ効果がなく、ウェハの周辺や裏面からの多くの転位が
熱処理中に伝播してしまうという欠点がある。
On the other hand, since FZ crystals usually contain less than 5X1015 atoms/crn'' (e.g. 10'' atoms/cm3) of oxygen, the above-mentioned defects seen in CZ crystals do not occur, but the oxygen concentration is low. Therefore, there is no pinning effect as described above, and many dislocations from the periphery and back surface of the wafer propagate during heat treatment.

本発明は上述の如き欠点を是正すべ〈発明されたもので
あって、半導体基板に対する熱処理工程を含む半導体装
置の製造方法において、5×1015〜lXl0”原子
/cm’の酸素を含有するシリコン基板を前記半導体基
板として用い、前記熱処理工程の前に前記シリコン基板
に対する裏面ゲッタリングを行うようにしたことを特徴
とする半導体装置の製造方法に係るものである。このよ
うに構成することによって、従来のC2結晶及びFZ結
晶の夫々の長所を生かしつつ結晶欠陥の発生を皆無にし
た装置を提供することができる。
The present invention aims to correct the above-mentioned drawbacks.In a method for manufacturing a semiconductor device including a heat treatment step for a semiconductor substrate, a silicon substrate containing 5 x 1015 to 1X10''atoms/cm' of oxygen is provided. The present invention relates to a method for manufacturing a semiconductor device, characterized in that the silicon substrate is used as the semiconductor substrate, and the back surface gettering is performed on the silicon substrate before the heat treatment step. It is possible to provide a device that eliminates the occurrence of crystal defects while taking advantage of the respective advantages of C2 crystal and FZ crystal.

一般に、半導体素子の製造においては出発材料として使
用する結晶を問題にする場合、CZ結晶かFZ結晶かと
いう択一的な議論はなされてきたが、その本質である酸
素濃度については全く考慮されていなかった。本発明は
従来の考え方を根本的に変更し、結晶中の酸素濃度を従
来のFZ結晶より高い5X10”原子7cm3以上とし
てFZ結晶にはなかった上記のピンニング効果を具備せ
しめ、またその酸素濃度を各種熱処理温度での固溶限界
以下であるlXl0”原子7cm3以下として過剰酸素
による析出物の成長を防止したのである。
In general, when it comes to the crystal used as a starting material in the manufacture of semiconductor devices, there has been a debate on whether to use a CZ crystal or an FZ crystal, but the essential point, the oxygen concentration, has not been considered at all. There wasn't. The present invention fundamentally changes the conventional way of thinking, and increases the oxygen concentration in the crystal to 5 x 10" atoms 7 cm3 or more, which is higher than the conventional FZ crystal, to provide the above-mentioned pinning effect, which was not present in the FZ crystal, and to increase the oxygen concentration. The growth of precipitates due to excess oxygen was prevented by setting lXl0'' atoms to 7 cm3 or less, which is below the solid solubility limit at various heat treatment temperatures.

各熱処理温度における酸素固溶限は下記に示す通りであ
る。
The oxygen solid solubility limit at each heat treatment temperature is as shown below.

熱処理温度(’C)  酸素固溶限(原子/cm’)9
00      1xlO” 1000      2xlO” 1100      4X10” 1200      7X10” 1300     1.3X10” 1400     1.8X10” 本発明では、酸素濃度の下限は5X10”原子/cm”
以上とし、また上限はIX  10”原子/cm’以下
とすれば、FZ結晶の利点を生かしつつその欠点を除去
できる上に、酸素濃度最高温度における10”オーダー
の固溶限以下に保持し得て1300〜1400℃以下、
特に実用温度範囲である1000−1200℃において
酸素の析出を有効に防止して欠陥の発生をなくすことが
できる。
Heat treatment temperature ('C) Oxygen solid solubility limit (atoms/cm') 9
00 1xlO” 1000 2xlO” 1100 4X10” 1200 7X10” 1300 1.3X10” 1400 1.8X10” In the present invention, the lower limit of oxygen concentration is 5X10” atoms/cm”
If the upper limit is IX 10"atoms/cm' or less, it is possible to take advantage of the advantages of the FZ crystal while eliminating its drawbacks, and also to maintain the oxygen concentration below the solid solubility limit of the order of 10" at the maximum temperature. below 1300-1400℃,
Particularly in the practical temperature range of 1000-1200°C, oxygen precipitation can be effectively prevented and defects can be eliminated.

この結果、雑音特性、漏れ電流特性、スイソチン□グ特
性、CCD等のストレイジ特性等を飛曜的に改善できる
As a result, noise characteristics, leakage current characteristics, switching characteristics, storage characteristics of CCD, etc. can be dramatically improved.

次に、本発明を実施例に付き詳細に説明する。Next, the present invention will be explained in detail with reference to examples.

跋料 まず試料としては、酸素濃度が〜1018原子/cm3
 (CZウェハ:試料1)、〜1017原子/cmj(
試料2)、〜10′6原子/cm3(試料3)、〜10
15原子/cm”  (FZウェハ:試料4)の4種類
のシリコンウェハを使用した。このうち、酸素濃度が〜
10′7又は〜10′6原子/cm’のウェハ(試料2
及び3)はEZウェハと称され、CZ法で得られたイン
ゴットをFZ法によって酸素濃度を減らしつつ結晶に育
成し、この育成結晶から切り出して得られたものである
First, as a sample, the oxygen concentration is ~1018 atoms/cm3
(CZ wafer: sample 1), ~1017 atoms/cmj (
Sample 2), ~10'6 atoms/cm3 (Sample 3), ~10
15 atoms/cm" (FZ wafer: sample 4). Four types of silicon wafers were used.
10'7 or ~10'6 atoms/cm' wafer (Sample 2
and 3) is called an EZ wafer, and is obtained by growing an ingot obtained by the CZ method into a crystal by the FZ method while reducing the oxygen concentration, and cutting out the grown crystal.

そして素子特性の評価のために、上記の各ウェハを用い
てMOSキャパシタ(図示せず)を製作する。なお各ウ
ェハは20〜30Ω−cfflでディスロケーションの
ないP型のものであり、表面ば機械的化学的研磨され、
裏面は化学エツチングによって仕上げられている。そし
てMOSキャパシタを製作するには次の各工程を経る。
Then, in order to evaluate device characteristics, MOS capacitors (not shown) are manufactured using each of the above wafers. Each wafer is P type with 20 to 30 Ω-cffl and no dislocation, and the surface is mechanically and chemically polished.
The back side is finished by chemical etching. To manufacture a MOS capacitor, the following steps are performed.

0工程:酸素の影響が結晶欠陥の発生及び素子の特性に
顕著に現われるように、高温 で長時間(1100℃、乾燥02中、 100時間)熱酸化する工程。
0 process: A process of thermal oxidation at high temperature for a long time (1100°C, drying 02, 100 hours) so that the influence of oxygen is noticeable on the generation of crystal defects and the characteristics of the device.

P工程:結晶欠陥を裏面ゲッタリングで除去し得るかど
うかを明確にするため、燐を 1100℃で1時間裏面に付着させて拡散させる工程。
P step: In order to clarify whether crystal defects can be removed by back surface gettering, phosphorus is attached to the back surface at 1100° C. for 1 hour and diffused.

M工程:熱酸化膜上に電極を形成して通常のMO3素子
を製作する工程。
M process: A process of forming an electrode on a thermal oxide film to fabricate a normal MO3 element.

これら各工程を3通りに組合せて3種類のMOSキャパ
シタを製作した。即ち、(1)、O工程−P工程−M工
程(以下0→P−M工程と称する。)の順で製作する場
合。(2)、P工程→0工程→M工程(以下P→O→M
工程と称する。)の順で製作する場合。(3)、0工程
−M工程(以下0−M工程と称する。)の順で製作する
場合の3通りであった。
Three types of MOS capacitors were manufactured by combining these steps in three ways. That is, (1), when manufacturing in the order of O process - P process - M process (hereinafter referred to as 0 → PM process). (2), P process → 0 process → M process (hereinafter P → O → M
It is called a process. ) when manufacturing in the following order. (3) There were three cases where manufacturing was performed in the order of 0 process-M process (hereinafter referred to as 0-M process).

l七日ノ  の    S まずMOSキャパシタに対して段階的に電圧を印加して
電極下に空乏層を発生させ、一旦低下したキャパシタン
スが定常上端に到達する迄の回復時間t f (gen
eration time)を測定した。しかる後、工
程中に発生した欠陥を観察するために、表面の電極及び
酸化膜と裏面に存在している拡散によるダメージ層とを
除去した。ウェハ内のディスロケーションの分布はX線
トラバーストポグラフィ−によって、また表面から深さ
方向への欠陥の分布はX線セクシシントボグラフィーに
よって観察した。またX線トポグラフィ−では撮影でき
ない小さな結晶欠陥は、ウェハ表面を腐食処理して欠陥
を露出させてから光学顕微鏡で観察した。
First, a voltage is applied stepwise to the MOS capacitor to generate a depletion layer under the electrode, and the recovery time t f (gen
generation time) was measured. Thereafter, in order to observe defects generated during the process, the electrodes and oxide film on the front surface and the damaged layer due to diffusion existing on the back surface were removed. The distribution of dislocation within the wafer was observed by X-ray traverse topography, and the distribution of defects in the depth direction from the surface was observed by X-ray sexist topography. In addition, small crystal defects that could not be imaged by X-ray topography were observed using an optical microscope after the wafer surface was subjected to corrosion treatment to expose the defects.

(a)、ウェハ周辺からのディスロケーションの伝播 ディスロケーションの伝播範囲は明らかに酸素濃度に関
係しており、酸素濃度〜10ra原子/cII13の試
料1では伝播は殆ど見られながった。またウェハ全体に
おけるディスロケーション密度は、試料l (酸素濃度
〜1Q18原子/cm3)−試料2(酸素濃度〜101
7原子/cm3)−試料3 (M素濃度〜101b原子
/cI113)−試料4 (酸素濃度〜lO′s原子/
cm3)の順に多くなり、この順にディスロケーション
の伝播範囲が広くなっていることが分かった。
(a) Propagation of dislocation from the periphery of the wafer The propagation range of dislocation is clearly related to the oxygen concentration, and almost no propagation was observed in sample 1 with an oxygen concentration of ~10 ra atoms/cII13. In addition, the dislocation density in the entire wafer is sample 1 (oxygen concentration ~ 1Q18 atoms/cm3) - sample 2 (oxygen concentration ~ 101
7 atoms/cm3) - Sample 3 (M elemental concentration ~ 101b atoms/cI113) - Sample 4 (Oxygen concentration ~ lO's atoms/
cm3), and it was found that the dislocation propagation range became wider in this order.

(b)、ウェハ断面内での欠陥分布 試料1では多くの析出物と積層欠陥が一様に成長したが
、試料2及び3(EZウェハ)及び試料4(FZウェハ
)では析出物や積層欠陥が発生器しなかった。但し、こ
れらのウェハでもp−o−M工程による素子では、P工
程にょるディスロケーションがO工程で動き易くなって
、ウェハの周辺又は裏面からディスロケーションが伝播
してきてウェハ全体に分布した。
(b), Defect distribution within the wafer cross section In sample 1, many precipitates and stacking faults grew uniformly, but in samples 2 and 3 (EZ wafer) and sample 4 (FZ wafer), precipitates and stacking faults grew uniformly. There was no generator. However, even in these wafers, in the devices manufactured by the P-O-M process, the dislocation caused by the P process became easy to move in the O process, and the dislocation propagated from the periphery or back surface of the wafer and was distributed over the entire wafer.

(C)、ウェハ表面での欠陥観察 試料1では処理方法によらず一次積層欠陥(0工程で発
生したもの)とディスロケーションとが多数観察された
。試料2.3及び4では欠陥の発生はウェハの処理方法
に依存した。即ち、O−P−M工程で処理されたウェハ
には欠陥が殆ど発生しないが、P−0−M工程で処理さ
れたウェハには多数のディスロケーションが発生した。
(C) Observation of defects on the wafer surface In sample 1, many primary stacking defects (generated in step 0) and dislocations were observed regardless of the processing method. In samples 2.3 and 4, the occurrence of defects depended on the wafer processing method. That is, wafers processed in the O-P-M process have almost no defects, but wafers processed in the P-0-M process have many dislocations.

また。Also.

−M工程で処理されたウェハには二次積層欠陥(M工程
で発生した微小な積層欠陥)が観察された。
-Secondary stacking faults (minor stacking faults generated in the M process) were observed in the wafers processed in the M process.

以上の結果は下記表に示した。The above results are shown in the table below.

この表から、ディスロケーション密度は。−P−M工程
及びO−M工程では非常に少なく、二次積層欠陥はO−
P−M工程及びP−0−M工程では非常に少ないことが
分り、またこれらの工程において酸素濃度が1oIff
原子/c原子上り少ないと、−次積層欠陥密度が著しく
少なくなることが分る。
From this table, the dislocation density is: - In the P-M process and O-M process, there are very few secondary stacking faults, O-
It was found that the oxygen concentration was very low in the P-M process and P-0-M process, and the oxygen concentration in these processes was 1oIf.
It can be seen that as the number of atoms/c atoms decreases, the -order stacking fault density decreases significantly.

ディスロケーションの発生原因は2種類考えられる。ま
ずCZウェハ(酸素濃度10”原子/cm3)では、デ
ィスロケーションがO工程中にウェハ内部で成長する析
出物からパンチアウトされ、表面近傍の析出物から出た
ものは容易に表面に到達する。EZウェハ(酸素濃度1
0′7又は1016原子/cm3)やFZウェハ(酸素
濃度10′5原子/cm3)では、酸化温度1100℃
での固溶限が4X10”原子/cm3)であるために析
出物は成長せず、従ってディスロケーションも著しく少
なくなる。一方、P−0−M工程で処理されたウェハで
は、上述したようにP工程によるミスフィツトディスロ
ケーションがO工程中に表面にまで伝播する。CZウェ
ハではこの種の伝播は、上記のピンニング効果のために
殆どない。EZウェハにおけるディスロケーションの伝
播がFZウェハの場合よりも起こりにくいのは、酸素原
子又はそのクラスタのピンニング効果によるものと考え
られる。
There are two possible causes of dislocation. First, in a CZ wafer (oxygen concentration 10'' atoms/cm3), dislocation is punched out from the precipitates growing inside the wafer during the O process, and those coming out of the precipitates near the surface easily reach the surface. EZ wafer (oxygen concentration 1
0'7 or 1016 atoms/cm3) or FZ wafers (oxygen concentration 10'5 atoms/cm3), the oxidation temperature is 1100°C.
Precipitates do not grow and therefore dislocation is significantly reduced due to the solid solubility limit of 4 x 10" atoms/cm3). On the other hand, for wafers processed in the P-0-M process, as mentioned above, The misfit dislocation caused by the P process propagates to the surface during the O process. This kind of propagation is almost absent in CZ wafers due to the above-mentioned pinning effect. The propagation of misfit dislocation in EZ wafers is more pronounced than in FZ wafers. The reason why this is unlikely to occur is considered to be due to the pinning effect of oxygen atoms or clusters thereof.

−次積層欠陥はCZウェハのみに観察され、他のウェハ
では殆ど観察されなかったが、CZウェハでの一次積層
欠陥はウェハ内部の酸素に関与した歪が原因であると思
われる。二次積層欠陥は、長時間酸化後にウェハを炉か
ら引出す冷却過程で生じる過剰の金属不純物等が表面近
くに集まってできた微小欠陥が原因となって発生する。
Although the -order stacking faults were observed only in the CZ wafer and were hardly observed in other wafers, the primary stacking faults in the CZ wafer are thought to be caused by strain related to oxygen inside the wafer. Secondary stacking faults are caused by minute defects formed by excessive metal impurities and the like that are generated near the surface during the cooling process in which the wafer is pulled out of the furnace after long-term oxidation.

o−p−M及びP−0−M工程ではそのような微小欠陥
が発生しなかったのは、P拡散によるミスフィツトディ
スロケーション(格子歪)が過剰の金属不純物等を吸収
して微小欠陥の発生を阻止したためであると思われる。
The reason why such micro defects did not occur in the op-M and P-0-M processes is that misfit dislocation (lattice strain) caused by P diffusion absorbs excess metal impurities and causes micro defects. This seems to be due to the prevention of occurrence.

またO−M工程では、酸素濃度が1017又はlOI″
原子/cm’のものが1015原子/cI113のもの
より少ないのは、酸素と金属不純物等とが相互作用し、
5t−5iO□界面に成長するはずの微小欠陥の発生を
ある程度阻止したためと考えられる。CZウェハでは、
−次積層欠陥や析出物が過剰金属不純物等を吸収する働
きがあるので、その発生核である微小欠陥の成長がなく
、二次積層欠陥の発生がなくなる。
In addition, in the O-M process, the oxygen concentration is 1017 or lOI''
The reason why the value of atoms/cm' is smaller than that of 1015 atoms/cI113 is due to the interaction between oxygen and metal impurities, etc.
This is thought to be because the generation of micro defects that would have grown at the 5t-5iO□ interface was prevented to some extent. In CZ wafer,
- Since secondary stacking faults and precipitates have the function of absorbing excess metal impurities, etc., there is no growth of micro defects, which are the nucleus of their generation, and the generation of secondary stacking faults is eliminated.

(d)、回復時間と欠陥との関係 一般に、工程中に発生した結晶欠陥の密度は上述の回復
時間tfに反比例し、欠陥密度が小さい程、trが大き
い。上述の各ウェハに対して3通りの工程で処理したと
きに得られた結果を第1図に示した。これによれば、い
ずれの処理においても、ウェハの酸素濃度が10”(実
際には5×10”)原子701112以上、101s原
子/c+++”以下、即ちEZウェハでは回復時間tf
が大きくて望ましいことが分る。
(d) Relationship between recovery time and defects Generally, the density of crystal defects generated during the process is inversely proportional to the above-mentioned recovery time tf, and the smaller the defect density, the larger tr. FIG. 1 shows the results obtained when each of the wafers described above was processed in three different steps. According to this, in any process, the oxygen concentration of the wafer is 10" (actually 5 x 10") atoms 701112 or more and 101s atoms/c+++" or less, that is, the recovery time tf for EZ wafers.
It turns out that it is large and desirable.

特にEZウェハのうち、酸素濃度が10′6〜7xlQ
I?原子/cII+″であるものが、回復時間が大きい
こと及び実用性の両面からみてより望ましく、その範囲
では酸素濃度が大きくて固溶限近傍のものがディスロケ
ーションの動きを防止し易い点で更に望ましい。なおO
−M工程の場合は、7×101S〜1017原子/cI
l13の酸素濃度が良好な結果をもたらす。
In particular, EZ wafers with an oxygen concentration of 10'6 to 7xlQ
I? Atom/cII+'' is more desirable from the viewpoint of long recovery time and practicality, and in that range, oxygen concentration is large and close to the solid solubility limit is more likely to prevent dislocation movement. Desirable.
- In the case of M process, 7×101S to 1017 atoms/cI
An oxygen concentration of l13 gives good results.

図面の結果を更に詳述すると、P−0−M工程による素
子では、主としてP拡散によるミスフィツトディスロケ
ーションが素子特性を支配するが、裏面のゲッタリング
効果が大きいためにディスロケーションは不純物によっ
てデコレートされておらず、特性への影響は比較的小さ
い。またO−M工程による素子の特性が最も悪いのは、
デコレートされた積層欠陥が原因になっているものと思
われる。またO−P−M工程による素子では、ディスロ
ケーションも積層欠陥も少ないために最良の特性を示す
ものと思われる。
To explain the results in more detail in the drawings, in the device produced by the P-0-M process, misfit dislocation mainly due to P diffusion dominates the device characteristics, but because of the large gettering effect on the back surface, the dislocation is decorated by impurities. The effect on characteristics is relatively small. Furthermore, the characteristics of the device produced by the O-M process are the worst.
It is thought that decorated stacking faults are the cause. Furthermore, it is believed that the device produced by the O-P-M process exhibits the best characteristics because it has fewer dislocations and stacking faults.

以上説明したように、この例によるウェハは熱処理によ
って生じ得る結晶欠陥の発生又は成長を防止することが
できる。従って、従来公知の方法で、ウェハ内にダイオ
ードやトランジスタ等の素子を形成した場合、このプロ
セス温度では結晶欠陥が現われないことから、素子動作
時の雑音特性、漏れ電流特性等を飛曜的に改善すること
ができる。
As explained above, the wafer according to this example can prevent the generation or growth of crystal defects that may occur due to heat treatment. Therefore, when elements such as diodes and transistors are formed in a wafer using a conventionally known method, since crystal defects do not appear at this process temperature, the noise characteristics, leakage current characteristics, etc. during device operation can be significantly affected. It can be improved.

なお、上述の熱処理によってウェハ表面に成長した熱酸
化膜は除去してもよいし、或いはそのまま残して従来公
知のように拡散マスクとして用いてもよい。
Note that the thermal oxide film grown on the wafer surface by the above-described heat treatment may be removed, or may be left as is and used as a diffusion mask as is conventionally known.

以上、本発明を実施例に基いて説明したが、この実施例
は本発明の技術的思想に基いて更に変形が可能であるこ
とが理解されるであろう。例えば形成すべき半導体素子
は様々であってよいし、ICやCODにも勿論適用でき
る。
Although the present invention has been described above based on an embodiment, it will be understood that this embodiment can be further modified based on the technical idea of the present invention. For example, various semiconductor elements may be formed, and the present invention can of course be applied to ICs and CODs.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例によるウェハを用いて製作した
MOSキャパシタのキャパシタンス回復時間trと酸素
濃度との関係を示すグラフである。
The drawing is a graph showing the relationship between the capacitance recovery time tr and oxygen concentration of a MOS capacitor manufactured using a wafer according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に対する熱処理工程を含む半導体装置の製造
方法において、5×10^1^5〜1×10^1^8原
子/cm^3の酸素を含有するシリコン基板を前記半導
体基板として用い、前記熱処理工程の前に前記シリコン
基板に対する裏面ゲッタリングを行うようにしたことを
特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device including a heat treatment step for a semiconductor substrate, a silicon substrate containing 5×10^1^5 to 1×10^1^8 atoms/cm^3 of oxygen is used as the semiconductor substrate, and the heat treatment A method for manufacturing a semiconductor device, characterized in that backside gettering is performed on the silicon substrate before the step.
JP6554286A 1986-03-24 1986-03-24 Manufacture of semiconductor device Granted JPS6249631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6554286A JPS6249631A (en) 1986-03-24 1986-03-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6554286A JPS6249631A (en) 1986-03-24 1986-03-24 Manufacture of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3784486A Division JPS61198638A (en) 1986-02-22 1986-02-22 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6249631A true JPS6249631A (en) 1987-03-04
JPH0351295B2 JPH0351295B2 (en) 1991-08-06

Family

ID=13290006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6554286A Granted JPS6249631A (en) 1986-03-24 1986-03-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6249631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281290A (en) * 1989-03-31 1990-11-16 Samsung Electron Devices Co Ltd Circuit and method for separating scan line driving of plasma display panel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED PHYSICS=1975 *
SOLID-STATE SCIENCE AND TECHNOLOGY=1975 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281290A (en) * 1989-03-31 1990-11-16 Samsung Electron Devices Co Ltd Circuit and method for separating scan line driving of plasma display panel

Also Published As

Publication number Publication date
JPH0351295B2 (en) 1991-08-06

Similar Documents

Publication Publication Date Title
JP3384506B2 (en) Semiconductor substrate manufacturing method
EP0635879A2 (en) Semiconductor silicon wafer and process for producing it
JPS6255697B2 (en)
JP2000272995A (en) Silicon single crystal, silicon wafer and epitaxial wafer
JPH06232141A (en) Manufacture of semiconductor substrate and solid-state image pick up device
JP3381816B2 (en) Semiconductor substrate manufacturing method
US5951755A (en) Manufacturing method of semiconductor substrate and inspection method therefor
JPH0817163B2 (en) Epitaxial wafer manufacturing method
JP2998330B2 (en) SIMOX substrate and method of manufacturing the same
JPH10303208A (en) Semiconductor board and its manufacture
JP2000082804A (en) Semiconductor provided with defect-free region
JPS6142855B2 (en)
JPH05291097A (en) Silicon substrate and manufacture thereof
JP2001253795A (en) Silicon epitaxial water and method of producing the same
JP3579069B2 (en) Method for manufacturing semiconductor device
JPS6249631A (en) Manufacture of semiconductor device
JPH11204534A (en) Manufacture of silicon epitaxial wafer
JPH0410544A (en) Manufacture of semiconductor device
JPS6249630A (en) Manufacture of semiconductor device
JPH0346972B2 (en)
JPH0574784A (en) Manufacture of silicon substrate
JPH0247836A (en) Manufacture of semiconductor device
JPH0339998B2 (en)
JPH09199379A (en) High-quality epitaxial wafer and its manufacturing method
JPH03160725A (en) Semiconductor wafer