JPS6249618A - Vessel for diffusion of impurity - Google Patents

Vessel for diffusion of impurity

Info

Publication number
JPS6249618A
JPS6249618A JP18854285A JP18854285A JPS6249618A JP S6249618 A JPS6249618 A JP S6249618A JP 18854285 A JP18854285 A JP 18854285A JP 18854285 A JP18854285 A JP 18854285A JP S6249618 A JPS6249618 A JP S6249618A
Authority
JP
Japan
Prior art keywords
vessel
diffusion
container
impurity
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18854285A
Other languages
Japanese (ja)
Other versions
JPH0511410B2 (en
Inventor
Yoshinari Matsumoto
松本 良成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18854285A priority Critical patent/JPS6249618A/en
Publication of JPS6249618A publication Critical patent/JPS6249618A/en
Publication of JPH0511410B2 publication Critical patent/JPH0511410B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent the occurrence of disturbance of a surface after diffusion, by providing a vessel with a space which communicates with a wafer accomodating space through slender holes and in which a fitting portion is held when a cover vessel is put on. CONSTITUTION:A vessel 1 and a cover vessel 12 are disposed separately in a reaction tube 20, and then the inside of the tube 20 is replaced by H2. Thereafter the vessel 11 is heated. On the occasion, the temperature of the cover vessel 12 is controlled, and the vessel is kept separated from the vessel 11 so as to prevent the thermal decomposition of a GaAs substrate 16 and the vaporization of impurity Zn101. After a Ga solution 14 is saturated with As, a sealing pipe 22 is removed and the cover vessel 12 is put on the vessel 11. At that time, an atmosphere surrounding the GaAs substrate disposed in a space closed up by the vessel 11 and the cover vessel 12 is filled up rapidly with a vapor phase containing Zn vapor which is thermally equilibrated with the Ga solution 14. Since the GaAs substrate 16 is set in the thermally- equilibrated atmosphere in a sealing vessel which is determined only by temperature, the state of the surface thereof is not varied, and thus the diffusion of Zn free from the occurrence of a stoichiometric defect can be effected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は不純物拡散用容器に係り、特に化合物半導体
に不純物を拡散する場合に用いる不純物拡散用容器の構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an impurity diffusion container, and more particularly to the structure of an impurity diffusion container used when diffusing impurities into a compound semiconductor.

〔従来技術とその問題点〕[Prior art and its problems]

半導体デバイスを製作する場合に不純物の熱拡散は欠く
ことのできないプロセスである。多くの場合、不純物の
熱拡散は半導体デバイスを製作するプロセスのなかでも
最も高温の熱処理工程でもある。はとんどの材料は温度
が高い程、その機械的性質は弱くなるために熱処理工程
ではていねいな材料に対する配慮が必要となる。特に化
合物半導体では熱処理工程で化学量論的欠陥が生じ易い
Thermal diffusion of impurities is an essential process when manufacturing semiconductor devices. In many cases, thermal diffusion of impurities is also the highest temperature heat treatment step in the process of fabricating semiconductor devices. The higher the temperature of most materials, the weaker their mechanical properties, so careful consideration must be given to the materials during the heat treatment process. In particular, in compound semiconductors, stoichiometric defects are likely to occur during the heat treatment process.

こうしたプロセスで発生する化学量論的欠陥は多くの場
合、半導体の基本的性質であるキャリアの移動度や寿命
等を著しく落とすために化学量論的欠陥の発生を伴って
作られた素子の性能は低いものとなる。また、化学量論
的欠陥は作られた素子の信頼性を損なうものとも考えら
れており、化合物半導体に不純物拡散をする場合には化
学量論的欠陥の発生を防止することを配慮しなければな
らない。
In many cases, stoichiometric defects generated in these processes significantly impair carrier mobility, lifetime, etc., which are the basic properties of semiconductors, and therefore the performance of devices manufactured with stoichiometric defects will be low. In addition, stoichiometric defects are considered to impair the reliability of manufactured devices, and when diffusing impurities into compound semiconductors, consideration must be given to preventing the occurrence of stoichiometric defects. No.

GaAsへのp形不純物Znの拡散を例に不純物拡散で
の問題点を示す。GaAsへのZnの拡敗はGaAs発
光ダイオードやダブルへテロ接合レーザの製造プロセス
で欠くことのできない技術である。GaAsへZnを熱
拡散する場合には母材GaAsの周囲雰囲気をGa、A
sおよびZnからなりかつGaASとは熱平衡にある気
相として熱拡散を行なわないと、GaAs母材表面から
母材構成元素のGaやΔSが飛散し、表面には多量の化
学量論的欠陥が発生する。上記したように熱平衡から大
きくずれた系の中でGaAsへZn拡散を行なうと目視
あるいは顕微鏡観察すればすぐにわかる程の表面の乱れ
さえも起こる。
Problems in impurity diffusion will be explained using the diffusion of p-type impurity Zn into GaAs as an example. The introduction of Zn into GaAs is an indispensable technology in the manufacturing process of GaAs light emitting diodes and double heterojunction lasers. When thermally diffusing Zn into GaAs, the atmosphere surrounding the base material GaAs is changed to Ga, A
If thermal diffusion is not performed as a gas phase consisting of S and Zn and in thermal equilibrium with GaAS, Ga and ΔS, which are constituent elements of the base material, will scatter from the surface of the GaAs base material, resulting in a large number of stoichiometric defects on the surface. Occur. As mentioned above, when Zn is diffused into GaAs in a system largely deviated from thermal equilibrium, surface disturbances even occur that can be easily seen by visual or microscopic observation.

エッチ シー キャセイ ジニニア(HoC。H C Cathay Geninia (HoC).

Ca5ey J r )とエム ビー パニ7シ5(M
、B。
Ca5ey Jr) and M B Pani7shi5 (M
,B.

Pan1sh )はトランザクション オブ メタラジ
カル ソサエティー エイ アイ エム イー(Tra
nsactions of Metallurgica
l 5ociety ofA I ME)第242巻、
第406−412ページ(1968年3月)においてG
a5%、As50%およびZn45%からなる組成の拡
散源(以後、5150/45拡散源と呼ぶ)による閉管
での拡散法では表面に欠陥を作らず、実効的拡散係数と
拡散層濃度分布といった拡散パラメターに関する再現性
が著しく高いことを示した↓このキャセイらの論文中で
も述べられているように再現性の高い拡散を行なうため
にはGa、AsおよびZnからなる三元相図上で考えた
時、拡散源と被拡散材料との間が熱平衡になければなら
ない(拡散が起こっている間は真の熱平衡ではない。正
確には拡散源と不純物濃度の分布がなくなるまで拡散さ
れた被拡散材料との間が熱平衡であることを意味する。
Pan1sh) is a member of the Transactions of Metaradical Society A.I.M.E.
nsactions of Metalurgica
l 5ociety of A I ME) Volume 242,
G on pages 406-412 (March 1968)
The diffusion method in a closed tube using a diffusion source with a composition of 5% A, 50% As, and 45% Zn (hereinafter referred to as 5150/45 diffusion source) does not create defects on the surface and improves diffusion properties such as the effective diffusion coefficient and the concentration distribution of the diffusion layer. It was shown that the reproducibility regarding the parameters was extremely high↓As stated in this paper by Cathay et al., in order to perform diffusion with high reproducibility, it is necessary to consider it on the ternary phase diagram consisting of Ga, As, and Zn. , there must be thermal equilibrium between the diffusion source and the diffused material (there is no true thermal equilibrium while diffusion is occurring.To be more precise, the diffusion source and the diffused material must be in thermal equilibrium until the impurity concentration distribution disappears). This means that there is thermal equilibrium between

しかし、不純物濃度の分布がなくなるまでZn拡散さ、
れたGaAsはやはり熱化学的には限りなくGaAsに
近いため、以後、拡散が起こっている状態にあっても熱
平衡と呼ぶことにする)という制約がある。5150/
45拡散源の優れた点は拡散源と被拡散材料との間には
熱平衡条件が成り立つために拡散温度のみを決めると実
効的拡散係数と拡散層濃度分布といった拡散パラメター
が一義的に決まることである。しかし、このことは、同
時に拡散パラメターを選択しにくいという欠点があるこ
とを意味する。また、5150/45拡散源による拡散
は石英アンプル中で行なう、いわゆる閉管法であるため
、生産的でない。
However, Zn was diffused until the impurity concentration distribution disappeared.
Thermochemically, GaAs is extremely close to GaAs, so there is a restriction that even if diffusion is occurring, it will be referred to as thermal equilibrium from now on. 5150/
45 The advantage of the diffusion source is that a thermal equilibrium condition is established between the diffusion source and the material to be diffused, so if only the diffusion temperature is determined, the diffusion parameters such as the effective diffusion coefficient and the concentration distribution of the diffusion layer are uniquely determined. be. However, this also means that it is difficult to select the diffusion parameters. Furthermore, diffusion using a 5150/45 diffusion source is carried out in a quartz ampoule, a so-called closed tube method, and is therefore not productive.

不純物拡散技術としては拡散パラメターを自由に選択で
き、かつ、開管法が行なえることが望まれる。開管法で
の拡散の例としては通常、A s H。
As an impurity diffusion technique, it is desirable to be able to freely select diffusion parameters and to be able to perform an open tube method. An example of open tube diffusion is usually A s H.

等を石英管中に流しながら、表面の熱分解を防いでなさ
れるが、拡散パラメターの制御性に乏しい。
This method is carried out by flowing a quartz tube into a quartz tube to prevent thermal decomposition of the surface, but the controllability of diffusion parameters is poor.

このため、化合物半導体に対する拡散層濃度を自由に選
択でき、拡散後表面に乱れの発生しない開管法での不純
物拡散は強く望まれるところである。
For this reason, it is strongly desired to diffuse impurities by the open tube method, which allows the concentration of the diffusion layer for the compound semiconductor to be freely selected and which does not cause disturbances on the surface after diffusion.

〔発明の目的〕[Purpose of the invention]

本発明は上記の要望に応えて成されたもので、その目的
は拡散層濃度を自由に選択でき、拡散後表面に乱れの発
生しない開管法を実現することのできる化合物半導体へ
の不純物拡散用容器の構造を提供することにある。
The present invention has been made in response to the above-mentioned needs, and its purpose is to diffuse impurities into compound semiconductors, which allows the concentration of the diffusion layer to be freely selected and which enables the realization of an open-tube method that does not cause surface disturbances after diffusion. The purpose of this invention is to provide a structure for a container for use.

〔発明の構成〕[Structure of the invention]

本発明の不純物拡散用容器は、化合物半導体ウェーハを
収納できる第1の開放した部屋ふよび拡散しようとする
不純物、あるいは該不純物を含む化合物あるいは混合物
を収納できる第2の開放した部屋を備えると共に、外周
全体に亘って嵌合部が形成された蓋容器と、前記蓋容器
が被せられたときに少なくとも前記第1の開放した部屋
を収納できるように形成された第1の空間を備えると共
に、該等1の空間と細孔で連通されかつ前記蓋容器が被
せられたときに前記嵌合部を収納できるように形成され
た第2の空間を備えた容器と、を含んで構成したもので
ある。
The impurity diffusion container of the present invention includes a first open chamber that can accommodate a compound semiconductor wafer and a second open chamber that can accommodate an impurity to be diffused or a compound or mixture containing the impurity. A lid container having a fitting portion formed over the entire outer periphery; and a first space formed to accommodate at least the first open chamber when the lid container is placed on the lid container. and a second space that communicates with the first space through a pore and is formed to accommodate the fitting part when the lid container is placed on the container. .

〔発明の作用と原理〕[Function and principle of the invention]

ここでは化合物半導体の中で最も注目されているGaA
sを被拡散材料とし、Znを拡散する不純物とした例に
より本発明の不純物拡散用容器の構造における作用と原
理について第1図および第2図を参照して説明する。一
般に、化合物半導体への不純物拡散工程では該化合物半
導体と拡散雰囲気とが熱力学的に非平衡であるがために
試料表面近くには化学量論的欠陥が発生したり、拡散パ
ラメターの制御が困難となる。熱力学的に平衡条件下で
の開管法での拡散を意図したものはA s H3を系に
導入して蒸気圧を制御したAs雰囲気を作り、このなか
で不純物拡散を行なおうとするものであるが、あくまで
もAs雰囲気は人為的に制御されたもので熱力学的平衡
条件に限りなく近いとはいえず、その制御も容易ではな
い。基本的には温度さえ定めれば自動的に熱力学的平衡
条件ができ、不純物拡散が行なえることが理想的である
。この発明の不純物拡散用容器の構造の一例を第1図に
示す。このような容器中で不純物拡散をすることで、限
りなく熱力学的平衡に近い条件での不純物拡散を温度を
定めれば自動的につくることができる。
Here, we will discuss GaA, which is attracting the most attention among compound semiconductors.
The operation and principle of the structure of the impurity diffusion container of the present invention will be explained with reference to FIGS. 1 and 2, using an example in which s is used as the material to be diffused and Zn is used as the impurity to be diffused. Generally, in the process of impurity diffusion into a compound semiconductor, the compound semiconductor and the diffusion atmosphere are thermodynamically non-equilibrium, so stoichiometric defects occur near the sample surface and it is difficult to control the diffusion parameters. becomes. A method intended for diffusion using an open tube method under thermodynamically equilibrium conditions involves introducing As H3 into the system to create an As atmosphere with controlled vapor pressure, and attempting to diffuse impurities within this atmosphere. However, since the As atmosphere is artificially controlled, it cannot be said to be extremely close to thermodynamic equilibrium conditions, and its control is not easy. Basically, it is ideal that thermodynamic equilibrium conditions can be automatically established as long as the temperature is determined, and that impurity diffusion can be performed. An example of the structure of the impurity diffusion container of the present invention is shown in FIG. By diffusing impurities in such a container, it is possible to automatically create impurity diffusion under conditions as close to thermodynamic equilibrium as possible by setting the temperature.

第1図はこの発明の不純物拡散で用いられる円柱状容器
を断面構造で示すもので、容器11および蓋容器12は
炭素製であり、容器11に掘られた泥状の溝13によっ
て第2の空間が形成され、この溝13にはGa131と
GaAs132が用意され、不純物拡散温度ではAsで
飽和したGa溶液14(第2図)となるものである。さ
らに溝13にはB20315が入れられており、不純物
拡散温度ではこのB20315も溶融し、比重差の関係
でGa溶液14を覆うものである。蓋容器12には被熱
処理GaAs基板16を設置する第1の開放した部屋と
してのサセプタ一部17と拡散しようとする不純物(こ
こではZn)あるいは該不純物を含む化合物(ZTIA
92等)または混合物を入れる第2の開放した部屋とし
ての収納部10が作られている。この場合にはZn1O
1が収納されている。いま、500℃以上のある温度に
上げられた状態にあり、容器11を蓋容器12が被さっ
た状態の断面図は第2図のようになる。溝13中のGa
131には温度のみで決まる溶解度に見合ったGaAs
132が溶融し、Ga溶液14となり、B20.15が
その上を覆っている。蓋容器12が容器11に被さった
状態では蓋容器12の外周全体に亘って形成されたテー
パー状の嵌合部18が上記溶融状態のBzOi15に少
なくともつきささった状態をつくるように設定されてい
る。第2図の状態′をつくることで容器11内部は外部
と遮断された構造となり、容器は溶融したGa溶液14
とB20315で密封された状態になる。容器内空間は
ΔSの飽和溶液であるGa溶液と容器11の溝13の内
壁に作られたたくさんの細孔19で接しているので熱平
衡にある気相でみたされ、当然のことながらこの気相は
GaAs基板16とも熱平衡になる。このことは液相エ
ピタキシャル結晶成長法から容易に類推されるようにG
a溶液14はGaAs基板16と熱平衡条件を達成する
のでGa溶液14と熱平衡にある前記気相はGaAS基
板16と熱平衡になり、GaAs基板16の表面に損傷
を与えることはない。また、Ga溶液14は封入容器外
の雰囲気とは820315で遮断されているため、Ga
溶液からのAsおよび不純物Znの容器外部気相への解
離飛散もきわめて少ない。
FIG. 1 shows a cross-sectional structure of a cylindrical container used for impurity diffusion according to the present invention.A container 11 and a lid container 12 are made of carbon, and a mud-like groove 13 dug in the container 11 allows a second A space is formed, and Ga 131 and GaAs 132 are prepared in this groove 13, which becomes a Ga solution 14 (FIG. 2) saturated with As at the impurity diffusion temperature. Furthermore, B20315 is placed in the groove 13, and this B20315 also melts at the impurity diffusion temperature and covers the Ga solution 14 due to the difference in specific gravity. The lid container 12 has a susceptor part 17 serving as a first open chamber in which a GaAs substrate 16 to be heat-treated is placed, and an impurity (in this case, Zn) to be diffused or a compound containing the impurity (ZTIA).
92 etc.) or a second open chamber 10 for containing the mixture. In this case, Zn1O
1 is stored. The temperature of the container 11 is now raised to a certain temperature of 500° C. or higher, and a cross-sectional view of the container 11 covered with the lid container 12 is shown in FIG. Ga in groove 13
131 contains GaAs whose solubility is determined only by temperature.
132 melts and becomes a Ga solution 14, with B20.15 covering it. When the lid container 12 is placed over the container 11, the tapered fitting portion 18 formed over the entire outer periphery of the lid container 12 is configured to at least touch the molten BzOi 15. . By creating the state ' shown in FIG.
It becomes sealed with B20315. The space inside the container is in contact with the Ga solution, which is a saturated solution of ΔS, through the many pores 19 made in the inner wall of the groove 13 of the container 11, so it is filled with a gas phase in thermal equilibrium. is also in thermal equilibrium with the GaAs substrate 16. This can be easily inferred from the liquid phase epitaxial crystal growth method.
Since the a solution 14 achieves a thermal equilibrium condition with the GaAs substrate 16, the gas phase which is in thermal equilibrium with the Ga solution 14 is in thermal equilibrium with the GaAS substrate 16, and does not damage the surface of the GaAs substrate 16. In addition, since the Ga solution 14 is isolated from the atmosphere outside the enclosure via 820315, the Ga solution 14 is
Dissociation and scattering of As and impurity Zn from the solution into the gas phase outside the container is also extremely small.

すなわち、この状態ではGaAs基板16はZn蒸気を
含んだ熱平衡にある気相中に置かれる。
That is, in this state, the GaAs substrate 16 is placed in a gas phase containing Zn vapor and in thermal equilibrium.

なお、B2O3はGaAs結晶引き上げ時に溶液からの
Asの気相への解離飛散を防ぐための溶液表面封止用の
溶融素材として極めて有名な材料であり、B20315
を通して母材構成元素の解離飛散を極めて有効に阻止す
るものである。すなわち、GaAs基板16を取り巻く
封入容器内部の気相は該GaAs基板16とは熱平衡に
あり、かつ、気相の組成は温度のみで自動的に定まるた
めに表面の化学量論的比も常に温度のみで決まり、安定
した熱処理ができる。
In addition, B2O3 is a very famous material as a melting material for sealing the solution surface to prevent the dissociation and scattering of As from the solution into the gas phase during GaAs crystal pulling, and B20315
This extremely effectively prevents the dissociation and scattering of the constituent elements of the base material. That is, the gas phase inside the enclosure surrounding the GaAs substrate 16 is in thermal equilibrium with the GaAs substrate 16, and the composition of the gas phase is automatically determined only by the temperature, so the stoichiometric ratio on the surface is also always dependent on the temperature. It is possible to perform stable heat treatment.

〔実施例〕〔Example〕

以下図面を参照して本発明の一実施例を詳細に説明する
。第3図に示すように、反応管20の底面には、炭素製
の有底円筒状容器11が載置されている。この容器11
は、内面がテーパー状に形成された円筒状外壁11Δと
、この外壁11Aと同心状に形成されかつ高さが外壁1
1Aより低くされた円筒状内壁11Bを備えている。円
筒状内壁11Bには、周方向に沿って複数の細孔19が
等間隔に穿設され、この細孔19によって内壁11Bの
内側空間と、内壁11Bと外壁11Aとの間の空間とが
連通されている。
An embodiment of the present invention will be described in detail below with reference to the drawings. As shown in FIG. 3, a bottomed cylindrical container 11 made of carbon is placed on the bottom surface of the reaction tube 20. This container 11
has a cylindrical outer wall 11Δ with a tapered inner surface, and is formed concentrically with the outer wall 11A and has a height equal to that of the outer wall 1.
It has a cylindrical inner wall 11B that is lower than 1A. A plurality of pores 19 are bored at equal intervals along the circumferential direction of the cylindrical inner wall 11B, and the pores 19 communicate with the inner space of the inner wall 11B and the space between the inner wall 11B and the outer wall 11A. has been done.

蓋容器12は、軸方向に移動自在の石英片封じ管22の
一端に連結された状態で反応管20内に収納されている
。蓋容器12の底面側外周には、外面が容器11の外壁
11Aと同様のテーパー状にされた嵌合部18が形成さ
れている。嵌合部18に囲まれた円柱状部には、化合物
半導体ウェー八を収納する開放したサセプタ一部17お
よび拡散しようとする不純、この不純物を含む化合物あ
るいはこの不純物を含む混合物を収納する開放した収納
部10が形成されている。そして、反応管20の底面側
外周には熱処理を行なうための高周波コイル21が配置
されている。
The lid container 12 is housed in the reaction tube 20 while being connected to one end of a sealed quartz tube 22 that is movable in the axial direction. A fitting part 18 whose outer surface is tapered like the outer wall 11A of the container 11 is formed on the outer periphery of the bottom side of the lid container 12. The cylindrical part surrounded by the fitting part 18 includes an open susceptor part 17 that accommodates the compound semiconductor wafer, and an open susceptor part 17 that accommodates the impurity to be diffused, a compound containing this impurity, or a mixture containing this impurity. A storage section 10 is formed. A high frequency coil 21 for heat treatment is arranged on the outer periphery of the bottom surface of the reaction tube 20.

以下GaAsへのZnの不純物拡散を例に本実施例の不
純物拡散用容器の作用について説明する。
The operation of the impurity diffusion container of this embodiment will be described below using Zn impurity diffusion into GaAs as an example.

実際に熱処理を行なうには、先ず第3図のように反応管
20中に容器11と蓋容器12を別々に配置した後、反
応管20中にH2ガスを100m1/minの割合で流
して十分に反応管20中をH2で置換する。
To actually perform heat treatment, first place the container 11 and lid container 12 separately in the reaction tube 20 as shown in Figure 3, and then flow H2 gas into the reaction tube 20 at a rate of 100 ml/min to ensure sufficient flow. Then, the inside of the reaction tube 20 is replaced with H2.

この後、高周波コイル21に電流を通じ、容器11を8
00℃に加熱する。この時、蓋容器12はGaAs基板
16の温度を100℃以下に保ち、蓋容器12に設置さ
れたGaAs基板16の熱的分解と不純物Zn101の
蒸発を防ぐべく十分に容器11からはなしておく。
After that, a current is passed through the high frequency coil 21, and the container 11 is
Heat to 00°C. At this time, the lid container 12 keeps the temperature of the GaAs substrate 16 below 100.degree. C. and sufficiently removes the GaAs substrate 16 from the container 11 to prevent thermal decomposition of the GaAs substrate 16 installed in the lid container 12 and evaporation of the impurity Zn101.

容器11を800℃に加熱して30分間保つことでGa
溶液14が十分にAsで飽和される。この後、高周波コ
イル21の電流を減少して容器11の温度を800℃に
下げる。その後、石英片封じ管22を反応管外部より動
かして速やかに蓋容器12を容器11に被せる。この状
態は第4図で示しである。このとき、容器11と蓋容器
12で閉じられた空間に配置されたGaAs基板を取り
巻く雰囲気は速やかに、Ga溶液14と熱平衡なZn蒸
気を含んだ気相でみたされる。発明の作用と原理で説明
したようにGaAs基板16は温度のみで決まる封入容
器内熱平衡雰囲気に置かれるため、表面状態は変化せず
、化学量論的欠陥の発生もない安定したZnの拡散を行
なうことができる。Zn濃度としてはZn101の量を
変えることでなされ、10′7〜16Iscm−3の表
面濃度を持った拡散層が再現性よく得られる。この濃度
領域は5150/45拡散源で得られる表面濃度〜10
20cIl−3とは明らかに異なった領域であり、化合
物半導体への再現性と制御性に優れた拡散パラメターを
自由に選択できる拡散がこの発明の不純物拡散用容器の
構造を採用することで確立される。
By heating the container 11 to 800°C and keeping it for 30 minutes, Ga
Solution 14 is fully saturated with As. Thereafter, the current of the high frequency coil 21 is reduced to lower the temperature of the container 11 to 800°C. Thereafter, the quartz piece sealing tube 22 is moved from the outside of the reaction tube to quickly cover the container 11 with the lid container 12. This state is shown in FIG. At this time, the atmosphere surrounding the GaAs substrate placed in the space closed by the container 11 and the lid container 12 is quickly filled with a gas phase containing Zn vapor in thermal equilibrium with the Ga solution 14. As explained in the operation and principle of the invention, the GaAs substrate 16 is placed in a thermal equilibrium atmosphere inside the enclosure determined only by the temperature, so the surface condition does not change and stable Zn diffusion is possible without the occurrence of stoichiometric defects. can be done. The Zn concentration is determined by changing the amount of Zn101, and a diffusion layer having a surface concentration of 10'7 to 16 Iscm-3 can be obtained with good reproducibility. This concentration region corresponds to the surface concentration obtained with the 5150/45 diffusion source ~10
This is clearly a different area from 20cIl-3, and diffusion into compound semiconductors in which diffusion parameters can be freely selected with excellent reproducibility and controllability has been established by adopting the structure of the impurity diffusion container of the present invention. Ru.

Ga溶液14に代わるものとしてはSn溶媒中にAsを
飽和したものでもよいことはGaA’Sの液相エピタキ
シャル法がSn溶媒によってもなされることを考えるな
ら当然であり、被熱処理母材化合物半導体とはよい熱平
衡系を形成しうるGa溶液14に飽和したAsのごとく
少なくとも一種類の母材化合物構成元素を含む溶融液(
第1の溶融液と呼ぶ)であれば材料を限らない。また、
B20315に代わるものとしてはCaF2等があるこ
とはGaAs結晶引き上げ時に溶液からのAsの気相へ
の解離飛散を防ぐための溶液表面封止用の溶融素材を考
えれば当然であり、これも材料を限るものでなく、熱処
理条件下で820315のごとく溶融し、かつ前記溶融
液の上を覆い、しかも母材化合物構成元素の透過阻止能
がある溶融液(第2の溶融液と呼ぶ)であればよい。さ
らに、容器11や蓋容器12の構造は実施例で示したも
のに限らず、形状等は問わない。要件は容器11と蓋容
器12の間に前記第1の溶融液、さらに熱処理条件下で
前記第1の溶融液の上を覆おう前記第2の溶融液にて封
止できる構造を持てば良い。さらに容器11および蓋容
器12の材質は炭素の例を示したがBN等も採用でき、
本質的に材料を限定するものではない。また、以上の記
述から明白であるが被熱拡散母材化合物半導体の種類を
限定するものではなく、GaP、InP等の二元材料は
言うにおよばずInGaAsP等の混晶群に対しても適
用できる不純物拡散用容器の構造であることはいうまで
もない。さらに不純物としてCd’PSなど、その種類
を限るものでもない。
As an alternative to the Ga solution 14, it is natural to use a Sn solvent saturated with As, considering that the liquid phase epitaxial method of GaA'S can also be performed using a Sn solvent, A molten liquid (
The material is not limited as long as it is (referred to as the first molten liquid). Also,
It is natural that CaF2 is an alternative to B20315, considering that it is a molten material for sealing the surface of a solution to prevent the dissociation and scattering of As from the solution into the gas phase during GaAs crystal pulling. Any melt (referred to as second melt) that melts like 820315 under heat treatment conditions, covers the melt, and has the ability to prevent the permeation of constituent elements of the base compound good. Further, the structures of the container 11 and the lid container 12 are not limited to those shown in the embodiments, and may have any shape. The requirement is to have a structure that can be sealed with the first melt between the container 11 and the lid container 12, and with the second melt that covers the first melt under heat treatment conditions. . Further, although carbon is shown as an example of the material of the container 11 and the lid container 12, BN etc. can also be used.
The material is not essentially limited. Furthermore, as is clear from the above description, this does not limit the types of heat-diffusing base material compound semiconductors, and is applicable not only to binary materials such as GaP and InP, but also to mixed crystal groups such as InGaAsP. Needless to say, this is the structure of the container for impurity diffusion. Furthermore, the type of impurity is not limited, such as Cd'PS.

〔発明の効果〕〔Effect of the invention〕

この発明の不純物拡散用容器を適用することにより、化
合物半導体ウェーハは表面状態も変化せず、化学量論的
欠陥の発生もなく、拡散パラメターの制御性に優れた安
定した不純物拡散を行なうことができ、このため、デバ
イスの製作再現性は著しく向上し、かつ、プロセスでの
トラブルも激減し、工数削減が実現できるのみならず、
得られたデバイスの信頼性もきわめて高くなる、という
効果が得られる。
By applying the impurity diffusion container of the present invention, the surface condition of the compound semiconductor wafer does not change, no stoichiometric defects occur, and stable impurity diffusion with excellent controllability of diffusion parameters can be performed. As a result, device manufacturing reproducibility is significantly improved, troubles in the process are drastically reduced, and man-hours can be reduced.
The effect is that the reliability of the obtained device is also extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1および第2図はこの発明の作用原理を説明するため
の横断面図、 第3および第4図は本発明の一実施例を示す横断面図で
ある。 10  ・・・・・・・・・ 拡散不純物収納部101
・・・・・・・・・ 拡散不純物Zn11  ・・・・
・・・・・ 容器 12  ・・・・・・・・・ 蓋容器 13・・・・・・・・・溝 14  ・・・・・・・・・ Ga溶液15  ・・・
・・・・・・ B20316  ・・・・・・・・・ 
GaAs基板17  ・・・・・・・・・ サセプタ一
部18  ・・・・・・・・・ 嵌合部 19  ・・・・・・・・・ 細孔 代理人 弁理士  岩 佐 義 幸 第1図 第2図 第3図 第4図
1 and 2 are cross-sectional views for explaining the principle of operation of the present invention, and FIGS. 3 and 4 are cross-sectional views showing one embodiment of the present invention. 10 ...... Diffusion impurity storage section 101
・・・・・・・・・ Diffusion impurity Zn11 ・・・・
...... Container 12 ...... Lid container 13 ...... Groove 14 ...... Ga solution 15 ...
・・・・・・ B20316 ・・・・・・・・・
GaAs substrate 17 ...... Susceptor part 18 ...... Fitting part 19 ...... Pore agent Patent attorney Yoshiyuki Iwasa 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)化合物半導体ウェーハを収納できる第1の開放し
た部屋および拡散しようとする不純物、あるいは該不純
物を含む化合物あるいは混合物を収納できる第2の開放
した部屋を備えると共に、外周全体に亘って嵌合部が形
成された蓋容器と、前記蓋容器が被せられたときに少な
くとも前記第1の開放した部屋を収納できるように形成
された第1の空間を備えると共に、該等1の空間と細孔
で連通されかつ前記蓋容器が被せられたときに前記嵌合
部を収納できるように形成された第2の空間を備えた容
器と、を含む不純物拡散用容器。
(1) A first open chamber capable of storing a compound semiconductor wafer and a second open chamber capable of storing an impurity to be diffused, or a compound or mixture containing the impurity, and fitted over the entire outer periphery. and a first space formed to accommodate at least the first open chamber when the lid container is covered, and the first space and the pore. an impurity diffusion container, the container having a second space that communicates with the second space and is formed so as to accommodate the fitting portion when the lid container is placed on the container.
JP18854285A 1985-08-29 1985-08-29 Vessel for diffusion of impurity Granted JPS6249618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18854285A JPS6249618A (en) 1985-08-29 1985-08-29 Vessel for diffusion of impurity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18854285A JPS6249618A (en) 1985-08-29 1985-08-29 Vessel for diffusion of impurity

Publications (2)

Publication Number Publication Date
JPS6249618A true JPS6249618A (en) 1987-03-04
JPH0511410B2 JPH0511410B2 (en) 1993-02-15

Family

ID=16225527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18854285A Granted JPS6249618A (en) 1985-08-29 1985-08-29 Vessel for diffusion of impurity

Country Status (1)

Country Link
JP (1) JPS6249618A (en)

Also Published As

Publication number Publication date
JPH0511410B2 (en) 1993-02-15

Similar Documents

Publication Publication Date Title
US4115163A (en) Method of growing epitaxial semiconductor films utilizing radiant heating
US4181544A (en) Molecular beam method for processing a plurality of substrates
US4748135A (en) Method of manufacturing a semiconductor device by vapor phase deposition using multiple inlet flow control
US4083748A (en) Method of forming and growing a single crystal of a semiconductor compound
JP4022997B2 (en) Zn diffusion method and diffusion apparatus for group 3-5 compound semiconductor crystal
US4365588A (en) Fixture for VPE reactor
JPS6249618A (en) Vessel for diffusion of impurity
JPS62122122A (en) Diffusing method for impurity
US4135952A (en) Process for annealing semiconductor materials
US3997377A (en) Method of making a liquid phase epitaxial-layers of gallium phosphide on multiple wafers
US4869776A (en) Method for the growth of a compound semiconductor crystal
JPS6249619A (en) Impurity diffusing method
JPS5917846B2 (en) 3↓-5 Method of diffusing impurities into compound semiconductors
JPS6369219A (en) Molecular beam source cell
US3972689A (en) Method for vapor growing crystals
JPS6122453B2 (en)
US4053334A (en) Method for independent control of volatile dopants in liquid phase epitaxy
JP2004327534A (en) Organic metal material vapor phase epitaxy device
JP2000026190A (en) Equipment for growing compound single crystal and method for growing compound single crystal, using the same
KR100349596B1 (en) Apparatus for fabricating thin film
JPH0758687B2 (en) Ultra-high vacuum reactive gas heating introduction device
KR100257720B1 (en) Growth apparatus of lpe system and two phase solution method
JPS63201088A (en) Controlled-vapor pressure type crystal pulling up device
JPS59119825A (en) Vapor growth of compound semiconductor
KR790001973B1 (en) Method for liquid phase epitaxy