JPS6122453B2 - - Google Patents

Info

Publication number
JPS6122453B2
JPS6122453B2 JP991477A JP991477A JPS6122453B2 JP S6122453 B2 JPS6122453 B2 JP S6122453B2 JP 991477 A JP991477 A JP 991477A JP 991477 A JP991477 A JP 991477A JP S6122453 B2 JPS6122453 B2 JP S6122453B2
Authority
JP
Japan
Prior art keywords
diffusion
gaas
heat treatment
container
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP991477A
Other languages
Japanese (ja)
Other versions
JPS5394868A (en
Inventor
Yoshinari Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP991477A priority Critical patent/JPS5394868A/en
Publication of JPS5394868A publication Critical patent/JPS5394868A/en
Publication of JPS6122453B2 publication Critical patent/JPS6122453B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は不純物拡散、不純物の押込みその他、
材料の熱処理プロセスにおける材料の熱的な劣化
を防ぐに有効な熱処理の方法を提供するのであ
る。
[Detailed Description of the Invention] The present invention is applicable to impurity diffusion, impurity intrusion, etc.
The present invention provides a heat treatment method that is effective in preventing thermal deterioration of materials during the material heat treatment process.

半導体工業において代表されるように熱処理プ
ロセスはきわめて重要かつ、多くの製造過程を構
成するプロセスである。すなわち、半導体工業に
おける熱処理過程の代表例をあげるならば、母材
結晶への不純物元素の熱拡散、イオン・インプラ
ンテーシヨン後の熱処理、不純物の熱押込み、半
導体表面に形成された電極金属の熱処理等、数え
あげればきりがないと言える。
As typified by the semiconductor industry, heat treatment processes are extremely important and constitute many manufacturing processes. In other words, typical examples of heat treatment processes in the semiconductor industry include thermal diffusion of impurity elements into the base material crystal, heat treatment after ion implantation, thermal intrusion of impurities, and electrode metal formation on the semiconductor surface. It can be said that there is no limit to the number of methods such as heat treatment.

しかし熱処理プロセスには半導体母材結晶を熱
的に劣化させる危検を常に伴なつている。例えば
GaAs,GaP,InP等の化合物半導体材料構成は母
材構成元素の分圧が熱平衡値より低い雰囲気中で
高温に加熱されると母材構成元素が雰囲気を熱平
衡値に近ずけるために母材表面よりぬけ、母材結
晶中にいわゆる化学量論的欠陥、すなわち原子の
空孔等が多量に発生する。しかるにこれらの化学
量論的欠陥は多くの場合、半導体結晶の基本的性
質である移動度やキヤリアの寿命等を著しく落
し、かつこうして化学量論的欠陥の発生を伴つて
作られた素子の性能は低いものとなる。
However, the heat treatment process is always accompanied by the danger of thermally deteriorating the semiconductor base material crystal. for example
When compound semiconductor materials such as GaAs, GaP, and InP are heated to high temperatures in an atmosphere where the partial pressure of the base material constituent elements is lower than the thermal equilibrium value, the base material constituent elements bring the atmosphere closer to the thermal equilibrium value. A large amount of so-called stoichiometric defects, ie, atomic vacancies, etc., are generated in the base material crystal through the surface. However, in many cases, these stoichiometric defects significantly reduce the basic properties of semiconductor crystals, such as mobility and carrier life, and the performance of devices manufactured with these stoichiometric defects deteriorates. will be low.

たとえば、GaP結晶においてはこの化学量論的
欠陥がGaP結晶からのルミネツセンスの特性を支
配する重大な要因となつていることは今や自明の
事実と考えられているし、各種化合物半導体の諸
性能を支配する重大な要因としても考えられてい
る。また特に化合物半導体より作られた素子の信
頼性を支配するものとしてもこの化学量論的欠陥
は重大な要因として多くの人々が注目しはじめて
いる。化学量論的欠陥が材料の性質を決める重大
な因子であることは上記した―化合物半導体
においては近年、とみに注目されはじめたことで
はあるが古くからアルカリ・ハライドと呼ばれる
NaCI,KCl,NaIなどの化合物において研究が進
んでいる。
For example, it is now considered a self-evident fact that in GaP crystals, this stoichiometric defect is an important factor governing the characteristics of luminescence from GaP crystals, and it also affects the performance of various compound semiconductors. It is also considered as an important controlling factor. In addition, many people are beginning to pay attention to this stoichiometric defect as a critical factor that governs the reliability of devices made from compound semiconductors. As mentioned above, stoichiometric defects are an important factor that determines the properties of materials; in compound semiconductors, they have long been called alkali halides, although they have only recently begun to attract attention.
Research is progressing on compounds such as NaCI, KCl, and NaI.

GaAsは材料の基本的性質から多くの実用素子
(例えば赤外発光ダイオード,P―n接合注入形
レーザー,カシ・ダイオード,電界効果トランジ
スタ受光素子等々)を生みつゝある材料である
し、また化合物半導体であるがために不注意な熱
処理プロセスによつて化学量論的欠陥の導入がき
わめて容易に行なわれる材料であるので、以下材
料としてGaAsを例にとつて説明することにす
る。
Due to its basic properties, GaAs is a material that has produced many practical devices (e.g., infrared light emitting diodes, P-n junction injection lasers, oak diodes, field effect transistor light receiving devices, etc.), and it is also a material that has been used as a compound. Since GaAs is a semiconductor, it is very easy to introduce stoichiometric defects through careless heat treatment processes, so GaAs will be explained below as an example of a material.

GaAsの熱処理過程として極めて一般的であ
り、重大な代表例はp形不純物亜沿の熱拡散であ
ろう。
This is a very common heat treatment process for GaAs, and an important example is thermal diffusion along the p-type impurity.

亜沿の熱拡散はGaAs発光ダイオードや、プレ
ーナ形と呼ばれるストライプ・ダブル・ヘテロ接
合レーザー・ダイオード製造の上で欠くことの出
来ないものである点から、さらに以下の説明は
GaAsへの亜沿の熱拡散を例にとつて説明しよ
う。
Since thermal diffusion along the axis is indispensable in the production of GaAs light-emitting diodes and striped double heterojunction laser diodes called planar type, the following explanation is further explained below.
Let's explain this using an example of thermal diffusion into GaAs.

GaAsに亜沿を拡散する場合には、母材GaAsの
周囲をGa、As、Znの系から成る熱平衡にある蒸
気のもとで行なわないと、GaAs母材表面から母
材構成元素のGaやAsが飛散し、表面に化学量論
比的欠陥が生じる。
When diffusing GaAs along its surface, it must be done in a thermally balanced vapor consisting of Ga, As, and Zn around the GaAs base material. As scatters and stoichiometric defects occur on the surface.

上記した熱平衡から大きくずれた系でGaAsへ
のZn拡散を行なうと、GaAsの表面状態さえも著
しく乱したり、拡散前面が粗れたりすることさえ
あることはよく知られている。
It is well known that when Zn is diffused into GaAs in a system that deviates significantly from the thermal equilibrium described above, the surface condition of GaAs may be significantly disturbed and the diffusion front may even become rough.

エツチ・シー・キヤセイ・ジユニア(H.C.
CaseyJr)とエム・ビー・パニツシユ(M.B.
Panish)は「トランスアクシヨン・オブ・メタ
ラジカル・ソサエテイ・オブ・エイ・アイ・エ
ム・イー(Trans―actions of Metallurgical
Society of AIME)第242巻,第406―412頁
(1968年3月)」において、Zn拡散を行なう場合
の熱平衡状態をGa,AsおよびZnより成る三元系
の相図を検討し、GaAs被拡散基板への化学量論
的欠陥の導入を最小とするZnの熱拡散はZn拡散
源として例えばCa5%,Zn45%,As50%より成
る合金を用いることが必要であることを述べ、再
現性の良いZn拡散源を提案した。
HC
Casey Jr) and MB Punishyu (MB
Trans-actions of Metallurgical Society of A.I.M.E.
Society of AIME), Vol. 242, pp. 406-412 (March 1968), examined the phase diagram of a ternary system consisting of Ga, As, and Zn to determine the thermal equilibrium state when Zn is diffused. It is stated that thermal diffusion of Zn that minimizes the introduction of stoichiometric defects into the diffusion substrate requires the use of an alloy consisting of, for example, 5% Ca, 45% Zn, and 50% As as a Zn diffusion source, and it is necessary to improve reproducibility. A good Zn diffusion source was proposed.

しかし、このGa,As,およびZnより成るZnの
三元系拡散源は高温(約1100℃)でかつ、高圧下
封管で合成されるため危検が伴なうし、封管材
料、ルツボ材料からの汚染が激しく純度的見地か
ら良好な拡散源とはなりにくい。また、この
Ga,As,およびZnより成る上記キヤセイとパニ
ツシユの提案によるZn拡散源を用いた熱平衡蒸
気圧下のZn拡散はGaに較べてAsの蒸気圧が高い
所での拡散であり、Znの蒸気圧も高いために、
Znの拡散層の濃度は高く、GaAs基板表面のZn濃
度は700℃での熱拡散においても1020cm-3を越え
る。そこで1019cm-3以下のZnの表面濃度をもつた
拡散を行なうには、拡散源としてZnとGaより成
る系が用いられる。しかもZnとGaより成る系の
Zn拡散源を用いた閉管拡散においてはきわめて
正確なGaとZnの微量秤量が必要なこと、さらに
GaおよびZnより成る合金の融点が約30℃以下と
低く、拡散源が空気中の酸素等で汚染されやす
く、取扱いや不便なこと、また封管材料に通常用
いられる石英材はGa金属と高温で濡れやすく、
反応しやすいこと等のために再現性の良いZn拡
散をのぞみにくい。
However, this ternary Zn diffusion source consisting of Ga, As, and Zn is synthesized in a sealed tube at high temperatures (approximately 1100°C) and high pressure, resulting in dangerous inspections, and materials for the sealed tube and crucible. It is difficult to be a good diffusion source from a purity standpoint as it is heavily contaminated. Also, this
Zn diffusion under thermal equilibrium vapor pressure using the above-mentioned Zn diffusion source proposed by Cathay and Punish, which consists of Ga, As, and Zn, is diffusion in a place where the vapor pressure of As is higher than that of Ga, and the vapor pressure of Zn is also higher than that of Ga. Because of the high
The concentration of Zn in the diffusion layer is high, and the Zn concentration on the surface of the GaAs substrate exceeds 10 20 cm -3 even during thermal diffusion at 700°C. Therefore, in order to perform diffusion with a surface concentration of Zn of 10 19 cm -3 or less, a system consisting of Zn and Ga is used as a diffusion source. Moreover, the system consisting of Zn and Ga
Closed-tube diffusion using a Zn diffusion source requires extremely accurate microweighing of Ga and Zn;
The melting point of the alloy consisting of Ga and Zn is low at approximately 30°C or less, and the diffusion source is easily contaminated with oxygen in the air, making it inconvenient to handle.Also, the quartz material normally used for sealing tube materials is high temperature due to the Ga metal. easy to get wet,
Due to its easy reaction, it is difficult to achieve Zn diffusion with good reproducibility.

またZnの低濃度拡散はZnを添加したSiO2膜を
GaAa基板上に作つて、このSiO2膜中のZnからも
成されることがエイツチ・カワノとケイ・モリに
よつて「ジヤパーズ・ジヤーナル・オブ・アツプ
ライド・ジツクス(Japanese Journal of
AppliedPhysics)第15巻4号727頁(1976年)で
報告されているがこの拡散温度は900℃以上の高
温を必要とすること、SiO2膜とGaAs基板界面で
の反応等が生じるために良好なZn拡散源ではな
い。
In addition, low-concentration diffusion of Zn can be achieved by using a Zn-doped SiO 2 film.
H. Kawano and Kei Mori reported in the Japanese Journal of Applied Phys.
Applied Physics), Vol. 15, No. 4, p. 727 (1976), this diffusion temperature is favorable because it requires a high temperature of 900°C or higher, and reactions occur at the interface between the SiO 2 film and the GaAs substrate. It is not a significant Zn diffusion source.

さらに開管中でのZn拡散はZn蒸気圧のGaAs基
板面で精密な制御およびGaAs基板の熱劣化を防
ぐためにGaAs基板上でのGaおよびAs蒸気圧の制
御を必要としZn拡散中、絶えずGa,As,および
Znの蒸気を反応管中に流し、制御しなければな
らないため再現性のあるZn拡散はなかなか困難
である。またこの方法では反応系より多量の
Ga,AsおよびZnの蒸気が排出されるため、人体
にもきわめて危検な要素をはらんでいる。
Furthermore, Zn diffusion in an open tube requires precise control of Zn vapor pressure on the GaAs substrate surface and control of Ga and As vapor pressure on the GaAs substrate to prevent thermal deterioration of the GaAs substrate. , As, and
Reproducible Zn diffusion is difficult because Zn vapor must be flowed into the reaction tube and controlled. Also, in this method, a larger amount of
Ga, As, and Zn vapors are emitted, making it extremely dangerous for humans.

したがつて、この発明の目的はきわめて簡単な
装置により例えば1019cm-3以下の低濃度のZn拡散
を石英封管に伴なう真空プロセス、石英のバーナ
ー加工等の頻雑さや、開管法での有害ガスの発
生、蒸気圧制御の困難さ等をとり除いて、再現性
良い不純物拡散や熱劣化のない熱処理を達成する
熱処理法を提供することにある。
Therefore, the purpose of the present invention is to diffuse Zn at low concentrations of, for example, 10 19 cm -3 or less using an extremely simple device, without the need for vacuum processes associated with sealed quartz tubes, the frequency of quartz burner processing, or the need for open tubes. The object of the present invention is to provide a heat treatment method that eliminates the generation of harmful gases and the difficulty of controlling vapor pressure, etc., and achieves heat treatment with good reproducibility without impurity diffusion or thermal deterioration.

この発明によれば、溶融金属で封止する容器を
用いることを特徴とする熱処理法が得られる。
According to this invention, a heat treatment method characterized by using a container sealed with molten metal is obtained.

この発明の熱処理の方法の骨子は、被熱処理材
料と、これとは別の位置に配置した容器に被熱処
理材料構成元素の一部ないし全種の物質を、ある
いは加えて母材への不純物の添加を行なう場合に
はその所定元素から成る物質を入れ、容器の容器
外部への開口部あるいは問隙を少なくとも熱処理
温度において溶融した金属で少なくとも被熱処理
材料の熱処理時には封じて熱処理するものであり
被熱処理材料の熱的劣化を防ぐのにきわめいて有
効である。
The gist of the heat treatment method of this invention is to add or add some or all of the constituent elements of the material to be heat treated to the material to be heat treated and a container placed at a separate location to remove impurities from the base material. When adding, a substance consisting of the specified element is put in, and the opening or gap to the outside of the container is sealed with metal molten at least at the heat treatment temperature, at least when the material to be heat treated is heat treated. It is extremely effective in preventing thermal deterioration of heat-treated materials.

以下、本発明の実施例としてGaAsへのZnの熱
拡散に用いた本発明の適用例について図を用いて
詳細に説明する。
Hereinafter, as an example of the present invention, an application example of the present invention used for thermal diffusion of Zn into GaAs will be described in detail with reference to the drawings.

第1図は、本発明の熱処理方法を適用したとこ
ろのGaAsへのZnの熱拡散するための装置の概念
を示す断面図である。第1図aは熱拡散の前段階
を示し、第1図bは熱拡散の段階での装置の状態
を示すものである。本発明の熱処理方法を適用し
たGaAsへのZnの熱拡散法について詳細に説明す
る。
FIG. 1 is a cross-sectional view showing the concept of an apparatus for thermally diffusing Zn into GaAs to which the heat treatment method of the present invention is applied. FIG. 1a shows the stage before heat diffusion, and FIG. 1b shows the state of the device at the stage of heat diffusion. A method for thermally diffusing Zn into GaAs using the heat treatment method of the present invention will be described in detail.

まず第1図aに示すようにカーボン等で作られ
た容器1にGaを0.5g,GaAsを20mgより成る材
料3を入れ、同時に容器1の上部の円筒状にほら
れた溝5にもGa5′を入れる。また容器1の蓋2
には穴6および7が貫通してあげられた、穴6に
はZn6′が穴7には必要に応じてAsまたはGaAs
7′が設置される。ふた2の上部には基板設置穴
があけられており、被Zn熱拡散用GaAs4′が設
置されている。また、ふた2の円筒状テーパー部
分8は第1図bの熱拡散時にGa5′に押し込ま
れ、ふた2と容器1をシールするためのものであ
り、石英片封じ管9は反応管10の外部よりふた
を可動させるものである。
First, as shown in Fig. 1a, a material 3 consisting of 0.5 g of Ga and 20 mg of GaAs is placed in a container 1 made of carbon or the like, and at the same time, Ga5 is placed in a cylindrical groove 5 at the top of the container 1. ’ is inserted. Also, the lid 2 of container 1
Holes 6 and 7 were drilled through the hole, hole 6 was filled with Zn6' and hole 7 was filled with As or GaAs as required.
7' is installed. A substrate installation hole is made in the upper part of the lid 2, and a GaAs film 4' for Zn thermal diffusion is installed therein. The cylindrical tapered part 8 of the lid 2 is pushed into the Ga 5' during thermal diffusion as shown in FIG. This allows the lid to move.

さらに熱拡散用熱源であるところの高周波コイ
ル11が容器1の周囲に反応管10を介して配置
されている。
Further, a high frequency coil 11 serving as a heat source for heat diffusion is arranged around the container 1 via a reaction tube 10.

この状態で拡散を行なうには、まず第1図aの
ように反応管10中に容器1とふた2を別々に配
置した後、反応10中にH2ガスを流して反応管
10中をH2ガスで置換し雰囲気をH2雰囲気に保
つため100ml/mm割合でH2を供給、排出する。こ
の後高周波コイル11に電流を通じ、容器1を
800℃に加熱した。このときふた2は基板4′,
GaAsまたはAs(実施した場合はDaAs)7′Zn
6′の温度を100℃以下に保つべく充分容器1から
離しておく。容器1を800℃に加熱して30分間保
つことによりGa溶液3には充分にGaAsが溶融す
ると共にGa溶液3,Ga5′が設置段階で受けた酸
素汚染は還元雰囲気H2中で除去される。この
後、高周波コイル11に流す電流を減少して容器
1の温度をZn拡散設定温度700℃に設定した。ま
たZn6′にはこの場合5mgを用意した。容器1が充
分に700℃に達した後、石英片封じ管9を外部よ
り動かして速やかにふた2を容器1にかぶせる。
この状態が第1図bに示されている。第1図bの
状態でGa5′にふた2のテーパー部分8が入り容
器内は密閉される。この時Ga溶液3はふた2を
構成するカーボンで液面を押し上げられZn6′を
入れる穴より高くなる。密閉された容器1内の空
間部は図のように極力小さくなるように設計され
ており、容器1とふた2を含めた容器全体は約10
分後に700℃の拡散温度に達し、容器内空洞はGa
蒸気とAs蒸気およびGa溶液3に溶け込んだZnに
よるZn蒸気で平衡状態となる。この状態でZnお
よびAs蒸気はGa5′にとけこむがわずかの量であ
り、GaとAs蒸気の供給源Ga溶液3,GaAs7′か
ら(GaAs7′は容器内空間のAs圧を速かに上げ
るために粉状にしてある)常に空洞内が熱平衡系
となるようにGa,Asの蒸気が供給され、GaAs基
板4′は化学量論比のいずれを生じる熱的な劣化
を起すことなくZnの熱拡散が行なわれる。この
実施例に示す例ではGa溶液3は容器密閉時GaAs
7まで溶液があがらないようにした。上記のZn
拡散においては拡散時間をtとすると拡散深さは
√に比例して増加するが√=1に対し、拡散
深さは0.6μmとなつた。また拡散後のGaAsの表
面状態はほとんど拡散前と同様であること、拡散
前面の平坦性もきわめて良好なことを確められ
た。また拡散層でのZn表面濃度は7×1018cm-3
得られた。
To perform diffusion in this state, first place the container 1 and the lid 2 separately in the reaction tube 10 as shown in FIG. In order to replace the atmosphere with 2 gases and maintain an H 2 atmosphere, H 2 is supplied and discharged at a rate of 100 ml/mm. After that, a current is passed through the high frequency coil 11, and the container 1 is heated.
Heated to 800℃. At this time, the lid 2 is the substrate 4',
GaAs or As (DaAs if performed) 7′Zn
6' is kept far enough away from container 1 to keep the temperature below 100°C. By heating container 1 to 800°C and keeping it for 30 minutes, enough GaAs is melted in Ga solution 3, and the oxygen contamination that Ga solution 3 and Ga 5' received during the installation stage is removed in the reducing atmosphere H2. . Thereafter, the current flowing through the high frequency coil 11 was reduced to set the temperature of the container 1 to the Zn diffusion set temperature of 700°C. In this case, 5 mg of Zn6' was prepared. After the container 1 reaches a sufficient temperature of 700° C., the quartz piece sealing tube 9 is moved from the outside and the lid 2 is immediately placed over the container 1.
This situation is shown in FIG. 1b. In the state shown in FIG. 1b, the tapered portion 8 of the lid 2 is inserted into the Ga 5' and the inside of the container is sealed. At this time, the liquid level of the Ga solution 3 is pushed up by the carbon forming the lid 2, and becomes higher than the hole in which the Zn 6' is inserted. The space inside the sealed container 1 is designed to be as small as possible as shown in the figure, and the entire container including the container 1 and the lid 2 is approximately 10
After a few minutes, the diffusion temperature of 700℃ is reached, and the cavity inside the container is filled with Ga.
An equilibrium state is created between the steam, As vapor, and Zn vapor due to Zn dissolved in the Ga solution 3. In this state, Zn and As vapors dissolve into Ga 5', but only in small amounts, and from the sources of Ga and As vapors, Ga solution 3 and GaAs 7' (GaAs 7' is dissolved in order to quickly increase the As pressure in the space inside the container). Vapors of Ga and As are always supplied so that the inside of the cavity is in a thermal equilibrium system, and the GaAs substrate 4' allows the thermal diffusion of Zn without causing any thermal deterioration that would cause the stoichiometric ratio to change. will be carried out. In the example shown in this example, the Ga solution 3 is GaAs when the container is sealed.
I made sure that the solution did not rise to 7. Above Zn
In diffusion, when the diffusion time is t, the diffusion depth increases in proportion to √, but when √=1, the diffusion depth was 0.6 μm. It was also confirmed that the surface condition of GaAs after diffusion is almost the same as before diffusion, and that the flatness of the diffusion front surface is also very good. The surface concentration of Zn in the diffusion layer was 7×10 18 cm -3 .

以上本発明の方法による熱処理方法を適用した
GaAsへのZnの熱拡散法について述べたがGa5′
の代りにIn金属を用いても同様なZn拡散の結果
が得られた。また、GaAs7′に代わつてAsを用
いた場合にもZn拡散の結果は良好であり、上記
結果と同様となつた。なお、GaAs7′を除いて熱
処理することは可能である。
As described above, the heat treatment method according to the present invention was applied.
We have described the thermal diffusion method of Zn into GaAs, but Ga5'
Similar Zn diffusion results were obtained by using In metal instead of Zn. Also, when As was used instead of GaAs7', the Zn diffusion results were good and similar to the above results. Note that it is possible to perform heat treatment except for GaAs 7'.

以上の実施例においてはGaAsへのZnの熱拡散
法に対して本発明の熱処理方法を適用した例を述
べたがこの発明の方法は母材々料をGaAsに限る
必要はなく、また熱拡散過程に限るものではな
い。すなわち各種―化合物、―化合物半
導体を始めとした化合物半導体材料のきわめて多
様な熱処理プロセスに適用できることは言うまで
もない。また本発明の骨子である溶融金属は実施
例ではGaを用いたが、被熱処理材料の種類によ
り熱処理温度で溶融する各種金属を用いることも
できる。例えばAlGaAsをAlの融点660.2℃以上で
熱処理する場合、溶融金属としてAlを用いると
よいし、―化合物であるHgTeやHgCdTeを
熱処理する場合に溶融金属としてHgを用いるこ
とができる。また溶融金属は被熱処理材料を構成
する元素に限るこはとなく、GaAsを熱処理する
ときAlを用いてもよいし、HgTeやHgCdTe以外
の―化合物を熱処理するときHgを用いても
よい。
In the above embodiment, an example was described in which the heat treatment method of the present invention was applied to the thermal diffusion method of Zn to GaAs, but the method of the present invention does not need to limit the base materials to GaAs, and It is not limited to the process. In other words, it goes without saying that it can be applied to a wide variety of heat treatment processes for compound semiconductor materials, including various compounds and compound semiconductors. Further, although Ga was used in the embodiment as the molten metal that is the gist of the present invention, various metals that melt at the heat treatment temperature may be used depending on the type of material to be heat treated. For example, when heat-treating AlGaAs at a temperature higher than the melting point of Al, 660.2°C, Al can be used as the molten metal, and when heat-treating the HgTe or HgCdTe compounds, Hg can be used as the molten metal. Furthermore, the molten metal is not limited to the elements constituting the material to be heat treated; Al may be used when heat treating GaAs, and Hg may be used when heat treating compounds other than HgTe and HgCdTe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の熱処理法をGaAsへのZnの熱
拡散の方法に適用した場合の実施例を示す断面図
であり、第1図aは熱拡散における前処理段階の
断面図、第1図bは熱拡散時の断面図である。 第1図において参照数字1はカーボン製容器で
2はやはりカーボン製のふたで、3はGa0.5g,
GaAs20mgより成る材料、4は被熱拡散材料挿入
部4′は被熱拡散材料のGaAs基板、5は容器1に
形成された円筒状の溝で本発明の容器封じ用Ga
5′が入つている。6は拡散材料Zn6′を挿入す
る穴、7は熱処理時に容器1内のAs圧を速やか
に上げるべく用意された粉状のGaAs7′を入れる
穴、8はふた2に付属した円筒状のテーパ部分で
あり、9はふた2を支え、移動するための石英片
封じ管、10は石英製反応管、11は熱源である
ところの高周波コイルをそれぞれ示す。
FIG. 1 is a cross-sectional view showing an example in which the heat treatment method of the present invention is applied to a method for thermally diffusing Zn into GaAs. Figure b is a cross-sectional view during thermal diffusion. In Figure 1, reference numeral 1 is a carbon container, 2 is a carbon lid, 3 is Ga0.5g,
A material consisting of 20 mg of GaAs, 4 is a thermally diffused material insertion part 4' is a GaAs substrate of a thermally diffused material, 5 is a cylindrical groove formed in the container 1, and 4 is a GaAs substrate for sealing the container of the present invention.
5' is included. 6 is a hole for inserting the diffusion material Zn 6', 7 is a hole for inserting powdered GaAs 7' prepared to quickly increase the As pressure inside the container 1 during heat treatment, and 8 is a cylindrical tapered part attached to the lid 2. 9 is a sealed quartz tube for supporting and moving the lid 2, 10 is a quartz reaction tube, and 11 is a high frequency coil serving as a heat source.

Claims (1)

【特許請求の範囲】 1 化合物半導体をいれた第1の容器と、前記化
合物半導体の構成元素の少なくとも一部を含む材
料を入れた第2の容器との結合部を溶融した金属
で封じて前記化合物半導体を熱処理することを特
徴とする熱処理法。 2 前記被加熱処理材料として化合物半導体を用
い、該半導体への不純物の熱拡散を行なうことを
特徴とする特許請求の範囲第1項記載の熱処理
法。 3 前記溶融した金属が前記被熱処理材料構成元
素の少なくとも一部を含むことを特徴とする特許
請求の範囲第2項記載の熱処理法。
[Claims] 1. A first container containing a compound semiconductor and a second container containing a material containing at least a part of the constituent elements of the compound semiconductor are sealed with molten metal, A heat treatment method characterized by heat treating a compound semiconductor. 2. The heat treatment method according to claim 1, wherein a compound semiconductor is used as the material to be heat treated, and impurities are thermally diffused into the semiconductor. 3. The heat treatment method according to claim 2, wherein the molten metal contains at least a part of the constituent elements of the material to be heat treated.
JP991477A 1977-01-31 1977-01-31 Heat treatment method Granted JPS5394868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP991477A JPS5394868A (en) 1977-01-31 1977-01-31 Heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP991477A JPS5394868A (en) 1977-01-31 1977-01-31 Heat treatment method

Publications (2)

Publication Number Publication Date
JPS5394868A JPS5394868A (en) 1978-08-19
JPS6122453B2 true JPS6122453B2 (en) 1986-05-31

Family

ID=11733361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP991477A Granted JPS5394868A (en) 1977-01-31 1977-01-31 Heat treatment method

Country Status (1)

Country Link
JP (1) JPS5394868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022241490A1 (en) 2021-05-17 2022-11-24 Ktm Ag Single-track vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175828A (en) * 1982-04-08 1983-10-15 Agency Of Ind Science & Technol Cap-less-annealing method by metallic solution seal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022241490A1 (en) 2021-05-17 2022-11-24 Ktm Ag Single-track vehicle

Also Published As

Publication number Publication date
JPS5394868A (en) 1978-08-19

Similar Documents

Publication Publication Date Title
US4115163A (en) Method of growing epitaxial semiconductor films utilizing radiant heating
US3839084A (en) Molecular beam epitaxy method for fabricating magnesium doped thin films of group iii(a)-v(a) compounds
Guggenheim Growth of Single‐Crystal Calcium Fluoride with Rare‐Earth Impurities
US4693207A (en) Apparatus for the growth of semiconductor crystals
JPS6122453B2 (en)
US3549401A (en) Method of making electroluminescent gallium phosphide diodes
JP4022997B2 (en) Zn diffusion method and diffusion apparatus for group 3-5 compound semiconductor crystal
US3290181A (en) Method of producing pure semiconductor material by chemical transport reaction using h2s/h2 system
US3902860A (en) Thermal treatment of semiconducting compounds having one or more volatile components
US4158851A (en) Semi-insulating gallium arsenide single crystal
US3725149A (en) Liquid phase diffusion technique
US4135952A (en) Process for annealing semiconductor materials
JPS5917846B2 (en) 3↓-5 Method of diffusing impurities into compound semiconductors
JPH0480880B2 (en)
US3694275A (en) Method of making light emitting diode
US4717443A (en) Mass transport of indium phosphide
KR930004120B1 (en) Thermal treating method of compound semiconductor wafer
US5259900A (en) Reflux annealing device and method
US3287188A (en) Method for producing a boron diffused sillicon transistor
JPS62122122A (en) Diffusing method for impurity
JP3412853B2 (en) Semiconductor crystal manufacturing equipment
JP2813711B2 (en) (III)-(V) Method for diffusing zinc into compound semiconductor crystal
JPS62143421A (en) Impurity diffusion and device thereof
JPS6369219A (en) Molecular beam source cell
US3755006A (en) Diffused junction gap electroluminescent device