JPS6248773A - Heat-resistant coating material - Google Patents

Heat-resistant coating material

Info

Publication number
JPS6248773A
JPS6248773A JP18659185A JP18659185A JPS6248773A JP S6248773 A JPS6248773 A JP S6248773A JP 18659185 A JP18659185 A JP 18659185A JP 18659185 A JP18659185 A JP 18659185A JP S6248773 A JPS6248773 A JP S6248773A
Authority
JP
Japan
Prior art keywords
heat
polymetallocarbosilane
inorganic filler
group
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18659185A
Other languages
Japanese (ja)
Other versions
JPH0579711B2 (en
Inventor
Yoshio Nishihara
義夫 西原
Satoshi Kodera
小寺 智
Noriyuki Isobe
磯部 典之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP18659185A priority Critical patent/JPS6248773A/en
Priority to EP19860111801 priority patent/EP0217129B1/en
Priority to DE8686111801T priority patent/DE3667070D1/en
Publication of JPS6248773A publication Critical patent/JPS6248773A/en
Priority to US07/172,962 priority patent/US4929507A/en
Publication of JPH0579711B2 publication Critical patent/JPH0579711B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:The titled novel heat-resistant coating material, obtained by dispersing or dissolving a polymetallocarbosilane and inorganic filler in an organic solvent and capable of giving coating films having improved corrosion and impact resistance and flexibility. CONSTITUTION:A heat-resistant coating material obtained by dispersing or dissolving (A) a polymetallocarbosilane consisting of (i) carbosilane linking units expressed by formula I (R1 and R2 are lower alkyl, phenyl or H and (ii) metalloxane linking units expressed by formula II (M is Ti, Zr, Cr or Mo and, as necessary, respective elements partially have lower alkoxy group or phenoxy group), preferably 1:1-10:1 ratio of the total number of linking units of the components (A) to (B) and having 400-50,000 number-average molecular weight and (B) an inorganic filler, e.g. oxide, borate or phosphate, in an organic solvent. The compounding ratio of the component (B) is preferably 10-90pts.wt. based on 100pts.wt. component (A).

Description

【発明の詳細な説明】 本発明は、ポリメタロカルボシランを含有する新規な耐
熱性塗料に関する。さらに詳しくは、ポリメタロカルボ
シラン及び充填剤を含有する新規な耐熱性塗料に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to novel heat-resistant coatings containing polymetallocarbosilanes. More specifically, the present invention relates to a novel heat-resistant paint containing a polymetallocarbosilane and a filler.

(従来技術) 金属・非金属基材の高温における腐食、劣化を防止する
耐熱性塗料としてポリオルガノシロキサンをビヒクルと
し、各種顔料を添加した塗料が知られている。このポリ
オルガノシロキサン系塗料は、従来から公知のポリエス
テル、ポリイミド等の有機高分子系塗料との比較では耐
熱性に優れているが、それでも400℃を越える高温の
空気雰囲気下では塗膜は基材から剥離する。
(Prior Art) Paints containing polyorganosiloxane as a vehicle and various pigments added thereto are known as heat-resistant paints that prevent corrosion and deterioration of metal and non-metallic base materials at high temperatures. This polyorganosiloxane paint has excellent heat resistance compared to conventionally known organic polymer paints such as polyester and polyimide, but even so, in an air atmosphere at a high temperature of over 400°C, the paint film does not coat the base material. Peel it off.

さらに産業の発展に伴い、例えば航空機部品、製鉄ある
いは金属の精練炉の炉体及び周辺部分など1000℃を
越える高温にさらされる金属あるいは非金属基材の酸化
、腐食を防止しうる塗装材料への要求が増加してきてい
る。
Furthermore, with the development of industry, coating materials that can prevent oxidation and corrosion of metal or non-metallic base materials that are exposed to high temperatures exceeding 1000°C, such as aircraft parts, steel manufacturing, or the furnace body and surrounding parts of metal smelting furnaces, are being developed. Demand is increasing.

特公昭第59−12746号公報には、炭素とケイ素を
骨格成分とする少量の金属元素を含むポリカルボシラン
を金属材料に塗布した後非酸化性雰囲気中で800〜2
000℃に加熱焼成することにより、ポリカルボシラン
を炭化ケイ素化させる耐熱金属材料の製造方法が記載さ
れている。特開昭第55−84370号公報には、ポリ
カルボシランを含むセミ無機化合物にセラミックあるい
は金属粉末を添加した塗料用組成物を金属あるいは非金
属材料に塗布した後、非酸化性雰囲気下で400〜20
00℃に加熱、焼き付けを行って耐熱性塗膜を得る方法
が記載されている。
Japanese Patent Publication No. 59-12746 discloses that polycarbosilane containing carbon and silicon as skeleton components and a small amount of metal elements is coated on a metal material and then heated to 800-200% in a non-oxidizing atmosphere.
A method for producing a heat-resistant metal material is described in which polycarbosilane is converted to silicon carbide by heating and firing at 000°C. Japanese Patent Application Laid-Open No. 55-84370 discloses that a coating composition containing ceramic or metal powder added to a semi-inorganic compound containing polycarbosilane is applied to a metal or non-metal material, and then heated for 400 minutes in a non-oxidizing atmosphere. ~20
A method for obtaining a heat-resistant coating film by heating to 00°C and baking is described.

しかし、このポリカルボシランの1000℃(空気中)
における焼成残存率は約30%(重量換りであるため、
加熱焼き付は途中でのポリカルボシランの熱分解に伴い
、大きな体積収縮が発生する。
However, the temperature of this polycarbosilane at 1000℃ (in air)
The firing residual rate in is approximately 30% (based on weight,
Due to the thermal decomposition of polycarbosilane during baking, a large volumetric shrinkage occurs.

このため、焼き付は塗膜の基材への密着性は不充分なも
のとなる。空気中など酸化性雰囲気で加熱焼き付を行う
と、塗膜は殆ど基材から剥離する。
For this reason, the adhesion of the coating film to the substrate becomes insufficient in the case of baking. When baking is performed in an oxidizing atmosphere such as air, most of the coating film peels off from the base material.

また生成した塗膜の耐熱性は空気中では約400℃であ
り、従来からあるポリオルがノシロキサン系塗料の耐熱
温度と比較しても天外な差はない。
Furthermore, the heat resistance of the resulting coating film is approximately 400° C. in air, which is comparable to the heat resistance temperature of conventional polyol and nosiloxane paints.

(発明が解決しようとする問題点) 本発明は、空気中での焼成残存率が高く、空気中でめ焼
成焼き付が可能であり、さらには空気中での耐熱温度が
高い耐熱性塗料の提供により、高温度条件下でも金属あ
るいは非金属基材の酸化、腐食を効果的に防止しようと
するものである。
(Problems to be Solved by the Invention) The present invention provides a heat-resistant paint that has a high firing residual rate in air, can be baked in air, and has a high heat resistance temperature in air. The present invention aims to effectively prevent oxidation and corrosion of metal or nonmetallic substrates even under high temperature conditions.

(問題点を解決するための手段) 本発明は、ポリメタロカルボシラン及び黒磯充填剤を有
機溶剤に溶解または分散させてなる耐熱性塗料である。
(Means for Solving the Problems) The present invention is a heat-resistant paint made by dissolving or dispersing polymetallocarbosilane and Kuroiso filler in an organic solvent.

本発明で用いるポリメタロカルボシランは、下記(A)
のカルボシラン結合単位及び少な(とも1種の下記(B
)のメタロキサン結合単位とからなり、 (A):  +5i−CH2+− (但し、R5及びR2は同−又は異なってもよく相互に
独立に低級アルキル基、フェニール基又は水素原子を表
す) (B):  −+M−〇≠ (但し、MはTi、Zr、Cr及V M oからなる群
から選ばれた少なくとも1種の元素を示し、場合によっ
ては前記各元素の少なくとも1部分が側鎖基として低級
アルコキシ基又はフェノキシ基を少なくとも1個有する
) 前記(A)及び(B)各結合単位が主鎖骨格中でランダ
ムに結合した重合体、及V/又は前記(A)の結合単位
のケイ素原子の少なくとも1部が前記(B)の結合単位
の前記各元素と酸−素原子を介して結合し、これによっ
て前記(A)の結合単位の連鎖によりえられるポリカル
ボシラン部分が前記(B)の結・合単位によって架橋さ
れた重合体であり、前記(A>の結合単位の全数対前記
(B)の結合単位の全数の比率力弓:1から10:1の
範囲にあり数平均分子量が400〜50,000である
ことからなる有機金属重合体である。
The polymetallocarbosilane used in the present invention is the following (A)
of carbosilane bonding units and less than one of the following (B
), (A): +5i-CH2+- (However, R5 and R2 may be the same or different and independently represent a lower alkyl group, phenyl group or hydrogen atom) (B) : -+M-〇≠ (However, M represents at least one element selected from the group consisting of Ti, Zr, Cr, and V Mo, and in some cases, at least one part of each element is a side chain group. (having at least one lower alkoxy group or phenoxy group) (A) and (B) a polymer in which each bonding unit is randomly bonded in the main chain skeleton; is bonded to each element of the bonding unit of (B) via an oxygen atom, whereby the polycarbosilane moiety obtained by the chain of bonding units of (A) is bonded to each of the elements of the bonding unit of (B). It is a polymer cross-linked by bonding units of (A>) to the total number of bonding units of (B) in the range of 1 to 10:1 and has a number average molecular weight. is 400 to 50,000.

前記するポリメタロカルボシランとはカルボシラン結合
単位及v1種又は2種以上のメタロキサン結合単位から
主としてなり、該カルボシラン及びメタロキサンの各結
合単位が主鎖骨格中でランダムに結合した重合体及び/
又は該カルボシラン結合単位のケイ素原子の少なくとも
1部が該メタロキサン結合単位の前記各元素と酸素原子
を介して結合し、これによってカルボシラン結合単位の
連鎖により得られるポリカルボシラン部分が該メタロキ
サン結合単位によって架橋された重合体である。
The above-mentioned polymetallocarbosilane is a polymer mainly composed of a carbosilane bonding unit and one or more metalloxane bonding units, in which the carbosilane and metalloxane bonding units are randomly bonded in the main chain skeleton.
Or, at least a portion of the silicon atoms of the carbosilane bonding unit are bonded to each of the above elements of the metalloxane bonding unit via an oxygen atom, whereby a polycarbosilane moiety obtained by a chain of carbosilane bonding units is bonded to the metalloxane bonding unit. It is a crosslinked polymer.

本発明で用いる無機充填材とは酸化物、ホウ酸塩、リン
酸塩、ケイ酸塩、ケイ化物、ホウ化物、窒化物及び炭化
物からなる群から選ばれた少なくとも一種であり、それ
らを例示すれば下記のようなものである。
The inorganic filler used in the present invention is at least one selected from the group consisting of oxides, borates, phosphates, silicates, silicides, borides, nitrides, and carbides; For example, it is as follows.

ホウ素、マグネシウム、アルミニウム、ケイ素、カルシ
ウム、チタン、バナジウム、クロム、マンガン、亜鉛、
ジルコニウム、モリブデン、カドミウム、スズ、アンチ
モン、バリウム、タングステン、鉛、ビスマスの酸化物
、炭化物、窒化物、ケイ化物、ホウ化物、リチウム、ナ
トリウム、カリウム、マグネシウム、カルシウム、亜鉛
のホウ酸塩、リン酸塩、ケイ酸塩などを含む。
Boron, magnesium, aluminum, silicon, calcium, titanium, vanadium, chromium, manganese, zinc,
Zirconium, molybdenum, cadmium, tin, antimony, barium, tungsten, lead, bismuth oxides, carbides, nitrides, silicides, borides, lithium, sodium, potassium, magnesium, calcium, zinc borates, phosphates Contains salts, silicates, etc.

これらは単独で使用しても良く、又は必要により混合し
て使用してもよい。
These may be used alone or in combination if necessary.

前記するポリメタロカルボシランと無機充填材とからな
る塗料を、金属、非金属基材に塗布した後、酸化性ある
いは非酸化性雰囲気中で200〜2000℃の加熱、焼
付を行って得られる塗膜が、前記ポリカルボシランから
なる塗膜よりも下地の金属、非金属基体への密着性が良
く、耐熱性も優れていることを見出し、本発明に到達し
た。
A coating obtained by applying the above-mentioned coating material consisting of polymetallocarbosilane and an inorganic filler to a metal or non-metallic base material, and then heating and baking the coating at 200 to 2000°C in an oxidizing or non-oxidizing atmosphere. The inventors have discovered that the film has better adhesion to underlying metal and non-metal substrates and has superior heat resistance than the coating film made of polycarbosilane, and has thus arrived at the present invention.

本発明で用いられるポリメタロカルボシランは、空気雰
囲気下で1000℃で10時間以上熱処理しでも加熱減
量は僅かに10〜15重景%に重量ない。このため、焼
付塗膜の重量減少による収縮、ヒビ割れは起こりにくく
、形成された焼付後の塗膜は緻密質なものとなる・ またポリメタロカルボシランは金属を含有するため、こ
れを特に金属基材表面に焼付けるとM11部子の金属炭
化物あるいは金属酸化物が塗膜と金属基材の間に強固な
結合を形成するため、1000°C以上でも剥離しない
m密な保護膜層を形成する。同様にセラミック、ガラス
表面上においても前記超微子がバインダとしての機能を
有し、強固に結合した塗膜を形成する。
Even when the polymetallocarbosilane used in the present invention is heat-treated at 1000° C. for 10 hours or more in an air atmosphere, the weight loss on heating is only 10 to 15% by weight. For this reason, shrinkage and cracking due to weight loss of the baked coating film are less likely to occur, and the baked coating film formed is dense.Also, since polymetallocarbosilane contains metals, When baked onto the surface of the base material, the metal carbide or metal oxide of the M11 element forms a strong bond between the coating film and the metal base material, forming a dense protective film layer that does not peel off even at temperatures above 1000°C. do. Similarly, on ceramic and glass surfaces, the ultrafine particles function as a binder and form a strongly bonded coating film.

更に、この′ポリメタロカルボシランに無機充填材を添
加すると、ポリメタロカルボシラン単独から形成される
塗膜よりも、より強固に基材に密着し、耐熱性をも向上
させ、可視性も有する塗膜が得られる。
Furthermore, when an inorganic filler is added to this polymetallocarbosilane, it adheres more firmly to the base material than a coating formed from polymetallocarbosilane alone, improves heat resistance, and has visibility. A coating film is obtained.

このポリメタロカルボシラン100重量部に対して無機
充填材を10〜900重量部iま重量は50〜500重
量部添加する。無機充填材の添加8よr1凸飲用丁や東
1−完ノ斗條隋消皿ムttゆ軸子1密着性が劣り、また
900重量部をこえると塗膜の可撓性が低下する。
To 100 parts by weight of this polymetallocarbosilane, 10 to 900 parts by weight or 50 to 500 parts by weight of an inorganic filler is added. Addition of an inorganic filler 8 results in poor adhesion to the convex drinking knife and the To 1-Kan no Tojo Sui Dissipating Dish Mutt Yushaku 1, and if the amount exceeds 900 parts by weight, the flexibility of the coating film decreases.

このポリメタロカルボシランと無機充填材とをベンゼン
、トルエン、キシレン等の適当な溶剤に溶解又は分散さ
せて塗料を得る。
A coating material is obtained by dissolving or dispersing this polymetallocarbosilane and an inorganic filler in a suitable solvent such as benzene, toluene, or xylene.

この塗料を金属基材あるいはガラス、セラミック、耐火
レンが等の非金属基材にハケ塗り、ロールコータ、スプ
レィガン、浸漬等の方法で塗布した後、乾燥焼付けを行
なう。
This paint is applied to a metal base material or a non-metal base material such as glass, ceramic, refractory brick, etc. by brushing, roll coater, spray gun, dipping, etc., and then dried and baked.

塗布量は20〜100g/m2が一般に望ましい。A coating amount of 20 to 100 g/m2 is generally desirable.

20g/m”ではピンホールが発生し防食性が低下する
。一方100g/l112以上では焼付時に塗膜の割れ
が発生し易いので好ましくない。
If it is 20 g/m'', pinholes will occur and the anticorrosion property will be reduced. On the other hand, if it is more than 100 g/l112, the coating film will easily crack during baking, which is not preferable.

焼付温度は、150℃以上が好ましいが、塗装後非塗装
物が150℃以上の使用環境に置かれる場合には特に焼
付工程を設けなくとも良い。焼付温度が150℃以下で
は塗膜の強度が低く、硬度、耐衝撃性とも劣るので好ま
しくない。
The baking temperature is preferably 150° C. or higher, but if the uncoated object is placed in a usage environment of 150° C. or higher after painting, there is no need to provide a baking step. A baking temperature of 150° C. or lower is not preferable because the strength of the coating film is low and both hardness and impact resistance are poor.

こうして得られた焼付塗膜は耐熱性に優れ、同時に良好
な耐食性、耐衝撃性お上び可撓性を示している。
The baked coating film thus obtained has excellent heat resistance, and at the same time exhibits good corrosion resistance, impact resistance, and flexibility.

次に実施例について説明する。なお、参考例及び実施例
において、%及び部は特に断りのない限り重量%及び重
量部を表示する。
Next, an example will be described. In addition, in the reference examples and examples, % and parts indicate weight % and parts by weight unless otherwise specified.

(参考例 1) 51の三ロフラスコに無水キシレン2.52とナトリウ
ム400gとを入れ、窒素ガス気流下でキシレンの沸点
まで加熱し、ジメチルノクロロシラン11を1時間で滴
下した。滴下終了後、10時間加熱還流し沈澱物を生成
させた。この沈澱を濾過し、まずメタノールで洗浄した
後、水で洗浄して、白色粉末のポリジメチルシラン42
0.を得た。
(Reference Example 1) 2.52 g of anhydrous xylene and 400 g of sodium were placed in a No. 51 three-lough flask, heated to the boiling point of xylene under a nitrogen gas stream, and dimethylnochlorosilane 11 was added dropwise over 1 hour. After the dropwise addition was completed, the mixture was heated under reflux for 10 hours to form a precipitate. This precipitate was filtered and washed first with methanol and then with water to obtain polydimethylsilane 42 as a white powder.
0. I got it.

上記のポリジメチルシラン400gを、〃ス導入管、攪
拌機、冷却器および留出管を備えた3!の三ロフラスコ
に仕込み、攪拌しながら窒素気流下(50ml / f
f1in)で、420℃で加熱処理することによって留
出受器に3501rの無色透明な少し粘性のある液体を
得た。この液体の数平均分子量は蒸気圧浸透法(V P
 O法)により測定したところ470であった。
400 g of the above polydimethylsilane was transferred to a 3-meter tube equipped with a gas inlet tube, a stirrer, a cooler, and a distillation tube. Pour the mixture into a three-lens flask and stir under a nitrogen stream (50 ml/f).
A colorless and transparent slightly viscous liquid of 3501r was obtained in the distillation receiver by heat treatment at 420°C. The number average molecular weight of this liquid is determined by vapor pressure osmosis method (VP
It was 470 when measured by O method).

またこの物質の遠赤外吸収の測定により主として+S 
i −CH2+結合単位および+5i−8i+−結合単
位からなり、ケイ素の側鎖に水素原子およびメチル基を
有する有機ケイ素ポリマーであることを確認した。
Additionally, measurements of far-infrared absorption of this material revealed that mainly +S
It was confirmed that it was an organosilicon polymer consisting of i -CH2+ bond units and +5i-8i+- bond units, and having a hydrogen atom and a methyl group in the silicon side chain.

(参考例 2) 次にこの有機ケイ素ポリマー40.とチタンテトライソ
プロポキシド20gとを秤取し、この混合物にキシレン
400mj!を加えて均一相からなる混合溶液とし、窒
素ガス雰囲気下で、130℃で1時間攪拌しながら還流
反応を行なった。還流反応終了後、さらに温度を上昇さ
せて溶媒のキシレンを留出させたのち、300℃で10
時間重合を行ないシリコンとチタンを含有する有機金属
架橋重合体を得た。この重合体の数平均分子量はVPO
法により測定したところ1165であった。
(Reference Example 2) Next, this organosilicon polymer 40. Weigh out 20g of titanium tetraisopropoxide and add 400mj of xylene to this mixture! was added to form a mixed solution consisting of a homogeneous phase, and a reflux reaction was carried out under a nitrogen gas atmosphere at 130° C. with stirring for 1 hour. After the reflux reaction was completed, the temperature was further raised to distill out the solvent xylene, and then the temperature was increased for 10 minutes at 300°C.
Time polymerization was performed to obtain an organometallic crosslinked polymer containing silicon and titanium. The number average molecular weight of this polymer is VPO
It was 1165 when measured by the method.

ゲルパーミエーシタンクロマトグラフ、赤外吸収スペク
トルからここで得られたポリマーは、有機ケイ素ポリマ
ー中の5i−H結合が一部消失し、この部分のケイ素原
子が、チタンテトライソプロポキシドのチタン原子と酸
素原子を介して結合し、これによって一部は有機ケイ素
ポリマーの側鎖に0−Ti(QC−H7)*基を有し、
また一部は有機ケイ素ポリマーが+Ti−0←結合で架
橋したポリチタノカルボシランであり、このポリマー中
のSi  H結合部分での反応率および/又は架橋率は
、44.5%であった。このポリマーの有機ケイ素ポリ
マ一部分の +Si  CH2←結合単位→5i−8i
←結合単位の全数対−〇 −T 1(OC,H,)、お
よび−Ti  O−結合単位の全数の比率は約6:1で
あることを確認した。
From gel permeacytane chromatography and infrared absorption spectra, the polymer obtained here shows that the 5i-H bonds in the organosilicon polymer have partially disappeared, and the silicon atoms in this part are the titanium atoms of titanium tetraisopropoxide. through an oxygen atom, so that some of the organosilicon polymers have 0-Ti(QC-H7)* groups in their side chains,
In addition, part of the organosilicon polymer was polytitanocarbosilane crosslinked with +Ti-0← bonds, and the reaction rate and/or crosslinking rate at the Si H bonding portion in this polymer was 44.5%. . +Si CH2 ← bonding unit → 5i-8i of the organosilicon polymer part of this polymer
It was confirmed that the ratio of the total number of ← bond units to the total number of -〇 -T 1 (OC, H,) and -Ti O- bond units was about 6:1.

上記反応生成物をキシレンに溶解させて固形分が50%
の溶液とした。
The above reaction product is dissolved in xylene so that the solid content is 50%.
A solution of

(参考例 3) 参考例2における出発物質の1つであるチタンテトライ
ソプロポキシドの代わりに、ツルコこワムテトラインプ
ロボキシド、クロミウムトリメトキシドまたはモリブデ
ントリ7エ/キシドをそれJP ?  Ua 1.s 
i ゼ II  U  ll−w  ノ a  ll−
J/  F −4’7   4F  II  h  +
|+ モカルポシランまたはポリノルコノカルボシランを得た
。反応条件、操作法はfj#例2と実質的に同一である
(Reference Example 3) Instead of titanium tetraisopropoxide, which is one of the starting materials in Reference Example 2, tetrainpropoxide, chromium trimethoxide, or molybdenum tri-7e/oxide is used. Ua 1. s
i ze II U ll-w no a ll-
J/ F -4'7 4F II h +
|+ Mocarposilane or polynorconocarbosilane was obtained. The reaction conditions and operating method are substantially the same as fj# Example 2.

〔実施例 1〕 参考例2のポリチタノカルボシランのキシレン50wt
%溶8150部及びタルク50部を混合して耐熱塗料を
得た。この塗料を11厚のステンレス鋼板(SUS30
4)にバーコータな用いて約50μ厚に塗布した後20
0℃で1時間オーブン中で焼付けた。
[Example 1] 50wt xylene of polytitanocarbosilane of Reference Example 2
A heat-resistant paint was obtained by mixing 8,150 parts of % solution and 50 parts of talc. Apply this paint to an 11-thick stainless steel plate (SUS30).
After coating 4) with a bar coater to a thickness of about 50μ,
Bake in the oven for 1 hour at 0°C.

この焼付塗装鋼板を1000°Cのオープン中にて10
時間加熱した後、オーブンから取り出して空気中で徐冷
した6塗膜のはがれ、われ等は、発生せず金属基体に良
好な密着性を示した。
This baking-painted steel plate was heated to
After heating for a period of time, the coating film was removed from the oven and slowly cooled in the air. No peeling or cracking occurred in the coating film, and it showed good adhesion to the metal substrate.

〔実施例 2〕 参考例3のポリノルコノカルボシランのキシレン50重
量%溶液40部及1三酸化タングステン60部を混合し
1(熱塗料を得た。
[Example 2] 40 parts of a 50% xylene solution of the polynorconocarbosilane of Reference Example 3 and 60 parts of tungsten trioxide were mixed to obtain 1 (thermal paint).

この塗料に0.5111m厚のチタン仮を浸漬、塗付し
た後、200℃のオーブン中に1時装置いて焼付けた。
A temporary titanium film with a thickness of 0.5111 m was dipped into this paint and applied, and then baked in an oven at 200°C for one hour.

この焼付塗装チタン板についてヒートサイクルテスト(
常温1時間−1000°Cオーブン中1時間)を3回行
ったが塗膜のわれ、はがれ等は発生しなかった。
Heat cycle test (
The test was repeated three times (1 hour at room temperature - 1 hour in a 1000°C oven), but no cracking or peeling of the coating occurred.

〔実施例 3〕 参考例3のポリジルコアカルボシランのキシシン50重
景%溶液60部及び酸化アルミニウム40部を混合して
耐熱塗料を得た。この塗料を1mm厚のステンレス鋼板
(SUS304)に刷毛塗り塗布した後250℃1時間
オーブン中で焼付けた。
[Example 3] A heat-resistant paint was obtained by mixing 60 parts of the polyzyl core carbosilane solution of Reference Example 3 in 50% xycin and 40 parts of aluminum oxide. This paint was applied with a brush to a 1 mm thick stainless steel plate (SUS304) and then baked in an oven at 250°C for 1 hour.

この焼付塗装鋼板を1000℃オープン中にて10時間
加熱した後空気中で徐冷し、次いでこの塗装鋼板を2O
Rの曲率半径で曲げたが、塗膜の剥離は起こらなかった
This baking-painted steel plate was heated at 1000°C for 10 hours in the open air, and then slowly cooled in the air.
Although it was bent with a radius of curvature R, no peeling of the coating occurred.

〔実施例 4〕 参考例3のポリクロモカルボシランのキシレン50%溶
液の30部、及びタルク70部を混合し、耐熱塗料を得
た。
[Example 4] 30 parts of the 50% xylene solution of the polychromocarbosilane of Reference Example 3 and 70 parts of talc were mixed to obtain a heat-resistant paint.

この塗料を11厚のステンレス鋼板(SUS304)に
バーコータを用いて約30μ厚に塗布した後、200℃
で1時間オーブン中で焼付けた。
After applying this paint to a thickness of about 30 μm on an 11-thick stainless steel plate (SUS304) using a bar coater,
Bake it in the oven for 1 hour.

この焼付塗装鋼板を1000℃のオープン中にて10時
間加熱した。ついでオープンから取出して空気中で徐冷
したが塗膜の剥離はみられなかった。
This baking-painted steel plate was heated at 1000° C. for 10 hours in an open environment. Then, it was taken out from the open air and slowly cooled in the air, but no peeling of the paint film was observed.

〔比較例 1〕 参考例2のポリチタノのキシレン50重量%キシレン溶
液をバーコータにより11I11厚のステンレス鋼板(
SUS304)に約50μ厚に塗布した後、200℃で
1時間オーブン中で焼付けた。
[Comparative Example 1] A 50% by weight xylene solution of the polytitano of Reference Example 2 was coated on a 11I11 thick stainless steel plate (
It was coated on SUS304) to a thickness of approximately 50 μm, and then baked in an oven at 200° C. for 1 hour.

この焼付塗装鋼板を1000℃のオーブン中にて10時
間加熱した後、オープンから取出して空気中で徐冷する
と、この冷却過程で塗膜の剥離が発生した。
This baked-coated steel plate was heated in an oven at 1000°C for 10 hours, then taken out from the open air and slowly cooled in the air. During this cooling process, the coating film peeled off.

〔比較例 2〕 参考例3のポリジルコアカルボシランの50重量%キシ
レン溶液:5部と二酸化ケイ素:95部とを混合して塗
料を得た。この塗料に0.5IIIIの厚のチタン板を
浸漬、塗布した後200℃で1時間オーブン中で焼付け
た。
[Comparative Example 2] A coating material was obtained by mixing 5 parts of a 50% by weight xylene solution of the polyzyl core carbosilane of Reference Example 3 and 95 parts of silicon dioxide. A titanium plate having a thickness of 0.5III was dipped in this paint, coated, and then baked in an oven at 200°C for 1 hour.

この焼付塗装鋼板を1000℃のオーブン中にて10時
間加熱した後、オープンから取出して空気中で徐冷した
。次いでこの塗装鋼上を2ORの曲率半径で曲げると、
塗膜は基材から剥離した。
This baking-painted steel plate was heated in an oven at 1000° C. for 10 hours, then taken out from the oven and slowly cooled in air. Next, when this painted steel is bent with a radius of curvature of 2OR,
The coating peeled off from the substrate.

外1名1 other person

Claims (4)

【特許請求の範囲】[Claims] (1)ポリメタロカルボシラン及び無機充填剤を有機溶
剤に分散又は溶解させてなることを特徴とする耐熱性塗
料。
(1) A heat-resistant paint characterized by dispersing or dissolving polymetallocarbosilane and an inorganic filler in an organic solvent.
(2)ポリメタロカルボシランが下記(A)のカルボシ
ラン結合単位及び少なくとも1種の下記(B)のメタロ
キサン結合単位とからなり、 (A):▲数式、化学式、表等があります▼ (但し、R_1及びR_2は同一又は異なってもよく相
互に独立に低級アルキル基、フェニール基又は水素原子
を表す) (B):−(M−O)− (但し、MはTi、Zr、Cr及びMoからなる群から
選ばれた少なくとも1種の元素を示し、場合によっては
前記各元素の少なくとも1部分が側鎖基として低級アル
コキシ基又はフェノキシ基を少なくとも1個有する) 前記(A)及び(B)各結合単位が主鎖骨格中でランダ
ムに結合した重合体、及び/又は前記(A)の結合単位
のケイ素原子の少なくとも1部が前記(B)の結合単位
の前記各元素と酸素原子を介して結合し、これによって
前記(A)の結合単位の連鎖によりえられるポリカルボ
シラン部分が前記(B)の結合単位によって架橋された
重合体であり、 前記(A)の結合単位の全数対前記(B)の結合単位の
全数の比率が1:1から10:1の範囲にあり数平均分
子量が400〜50,000であることを特徴とする特
許請求の範囲第1項に記載の耐熱性塗料。
(2) Polymetallocarbosilane consists of the carbosilane bond unit shown below (A) and at least one metalloxane bond unit shown below (B), (A): ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, R_1 and R_2 may be the same or different and independently represent a lower alkyl group, a phenyl group, or a hydrogen atom) (B): -(M-O)- (However, M is a group consisting of Ti, Zr, Cr, and Mo. at least one element selected from the group consisting of (A) and (B) each of the above (A) and (B). A polymer in which the bonding units are randomly bonded in the main chain skeleton, and/or at least a portion of the silicon atoms in the bonding unit (A) are connected to each of the elements in the bonding unit (B) via an oxygen atom. is a polymer in which the polycarbosilane moiety obtained by the chaining of the bonding units of (A) is crosslinked by the bonding units of (B), and the total number of bonding units of (A) to the ( The heat-resistant paint according to claim 1, wherein the ratio of the total number of bonding units in B) is in the range of 1:1 to 10:1 and the number average molecular weight is 400 to 50,000. .
(3)無機充填材が酸化物、ホウ酸塩、リン酸塩、ケイ
酸塩、ケイ化物、ホウ化物、窒化物及び炭化物からなる
群から選ばれた少なくとも一種である特許請求の範囲第
1項記載の耐熱性塗料。
(3) Claim 1, wherein the inorganic filler is at least one selected from the group consisting of oxides, borates, phosphates, silicates, silicides, borides, nitrides, and carbides. Heat-resistant paint as described.
(4)前記ポリメタロカルボシラン100重量部に対し
て、前記無機充填剤が10〜900重量部であることを
特徴とする特許請求の範囲第1項記載の耐熱性塗料。
(4) The heat-resistant paint according to claim 1, wherein the inorganic filler is contained in an amount of 10 to 900 parts by weight based on 100 parts by weight of the polymetallocarbosilane.
JP18659185A 1985-08-27 1985-08-27 Heat-resistant coating material Granted JPS6248773A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18659185A JPS6248773A (en) 1985-08-27 1985-08-27 Heat-resistant coating material
EP19860111801 EP0217129B1 (en) 1985-08-27 1986-08-26 Heat-resistant paint comprising polymetallocarbosilane
DE8686111801T DE3667070D1 (en) 1985-08-27 1986-08-26 Heat-resistant paint comprising polymetallocarbosilane
US07/172,962 US4929507A (en) 1985-08-27 1988-03-23 Heat-resistant paint comprising polymetallocarbosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18659185A JPS6248773A (en) 1985-08-27 1985-08-27 Heat-resistant coating material

Publications (2)

Publication Number Publication Date
JPS6248773A true JPS6248773A (en) 1987-03-03
JPH0579711B2 JPH0579711B2 (en) 1993-11-04

Family

ID=16191227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18659185A Granted JPS6248773A (en) 1985-08-27 1985-08-27 Heat-resistant coating material

Country Status (1)

Country Link
JP (1) JPS6248773A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108271A (en) * 1987-10-20 1989-04-25 Ube Ind Ltd Corrosion-preventive film which prevent diffusion of water vapor
EP0540737A1 (en) * 1987-12-28 1993-05-12 Nippon Carbon Co., Ltd. Heat- and corrosion-resistant composition
JP2005322810A (en) * 2004-05-10 2005-11-17 Tdk Corp Rare earth magnet
KR100711043B1 (en) * 2004-06-21 2007-04-24 도오꾜오까고오교 가부시끼가이샤 Composition for forming coating film comprising carbosilane based polymer and coating film obtained from the composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118495B2 (en) * 2005-12-21 2013-01-16 日本碍子株式会社 Marking composition and information display method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434332A (en) * 1977-08-23 1979-03-13 Kansai Paint Co Ltd Inorganic paint composition
JPS5441937A (en) * 1977-09-08 1979-04-03 Kansai Paint Co Ltd Film-forming composition
JPS56151732A (en) * 1980-04-28 1981-11-24 Satoshi Yajima Polycarbosilane containing metalloxane bond partly and its preparation
JPS58132025A (en) * 1983-01-13 1983-08-06 Tokushu Muki Zairyo Kenkyusho New polytitanocarbosilane
JPS58132026A (en) * 1983-01-13 1983-08-06 Tokushu Muki Zairyo Kenkyusho New polyzirconocarbosilane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434332A (en) * 1977-08-23 1979-03-13 Kansai Paint Co Ltd Inorganic paint composition
JPS5441937A (en) * 1977-09-08 1979-04-03 Kansai Paint Co Ltd Film-forming composition
JPS56151732A (en) * 1980-04-28 1981-11-24 Satoshi Yajima Polycarbosilane containing metalloxane bond partly and its preparation
JPS58132025A (en) * 1983-01-13 1983-08-06 Tokushu Muki Zairyo Kenkyusho New polytitanocarbosilane
JPS58132026A (en) * 1983-01-13 1983-08-06 Tokushu Muki Zairyo Kenkyusho New polyzirconocarbosilane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108271A (en) * 1987-10-20 1989-04-25 Ube Ind Ltd Corrosion-preventive film which prevent diffusion of water vapor
EP0540737A1 (en) * 1987-12-28 1993-05-12 Nippon Carbon Co., Ltd. Heat- and corrosion-resistant composition
JP2005322810A (en) * 2004-05-10 2005-11-17 Tdk Corp Rare earth magnet
KR100711043B1 (en) * 2004-06-21 2007-04-24 도오꾜오까고오교 가부시끼가이샤 Composition for forming coating film comprising carbosilane based polymer and coating film obtained from the composition

Also Published As

Publication number Publication date
JPH0579711B2 (en) 1993-11-04

Similar Documents

Publication Publication Date Title
JP2844896B2 (en) Heat resistant insulation paint
EP0217129B1 (en) Heat-resistant paint comprising polymetallocarbosilane
US4808659A (en) Adhesive composition comprising organometallic polymer
JPH0422190B2 (en)
JPS6248773A (en) Heat-resistant coating material
JPS6350455A (en) Sealing treatment for thermally sprayed film
JP2953152B2 (en) Heat and stain resistant paint and heat and stain resistant coating
JPS62138574A (en) Binding agent composition
JPS6312672A (en) Coating composition
JPS63297469A (en) Sialon based heat-resistant coating
JPH04100873A (en) Heat-resistant coating material
JPH02173159A (en) Polyurethane resin composition
JPH01280546A (en) Black silicon resin coated metallic plate
JPH04100875A (en) Heat-resistant coating material
JPH04239078A (en) Heat-resistant coating composition
JPH04100876A (en) Heat-resistant coating material
JPS63193951A (en) Epoxy resin composition
JPH0580957B2 (en)
JPH0538480A (en) Forming method for heat-resistant insulated coating film
JPH0491180A (en) Heat-resistant paint
JPH02305874A (en) Heat-resistant coating material
JPH02247267A (en) Coating compound composition
JPH04239075A (en) Heat-resistant coating composition
JPH04100877A (en) Heat-resistant coating material
JPH03223368A (en) Primer composition and coated metal member

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term