JPS6248393B2 - - Google Patents

Info

Publication number
JPS6248393B2
JPS6248393B2 JP56064050A JP6405081A JPS6248393B2 JP S6248393 B2 JPS6248393 B2 JP S6248393B2 JP 56064050 A JP56064050 A JP 56064050A JP 6405081 A JP6405081 A JP 6405081A JP S6248393 B2 JPS6248393 B2 JP S6248393B2
Authority
JP
Japan
Prior art keywords
gate electrode
silicon compound
semiconductor substrate
compound
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56064050A
Other languages
Japanese (ja)
Other versions
JPS57180184A (en
Inventor
Toyokazu Oonishi
Naoki Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6405081A priority Critical patent/JPS57180184A/en
Publication of JPS57180184A publication Critical patent/JPS57180184A/en
Publication of JPS6248393B2 publication Critical patent/JPS6248393B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明は電界効果トランジスタの製法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a field effect transistor.

同一出願人により化合物半導体基板に、800℃
程度の熱処理において安定な高融点金属けい素化
合物でゲート電極を形成し、これをマスクとして
イオン注入する電界効果トランジスタの製法が既
に出願されている。
Compound semiconductor substrate by the same applicant, 800℃
An application has already been filed for a method for manufacturing a field effect transistor in which a gate electrode is formed of a high melting point metal silicon compound that is stable under certain heat treatments, and ions are implanted using this as a mask.

この製法においては、たとえば化合物半導体と
してGaAs、高融点金属けい素化合物として
Ti0.3W0.7Si2を使用し、CF4+5%O2でドライエ
ツチングしてゲート電極を形成するが、ゲート電
極はサイドエツチングされて、断面構造が、第1
図に示すように、テーパ型となる。その結果ゲー
ト電極の薄い部分を、次のソース ドレインコン
タクト領域形成用のイオン注入において打ち込ま
れたイオンが透過する。従つてこのゲート部の下
方にも高濃度の不純物拡散領域が形成される。こ
の不純物拡散領域は、特にイオン濃度ピーク部分
がゲート電極と接触するので、シヨツトキーゲー
トの逆方向耐圧が劣化する欠点を有する。
In this manufacturing method, for example, GaAs is used as a compound semiconductor, and silicon compound as a high melting point metal.
A gate electrode is formed using Ti 0 . 3 W 0 . 7 Si 2 and dry-etched with CF 4 +5% O 2 .
As shown in the figure, it is a tapered type. As a result, ions implanted in the next ion implantation for forming source/drain contact regions pass through the thin portion of the gate electrode. Therefore, a highly doped impurity diffusion region is also formed below this gate portion. This impurity diffusion region has the disadvantage that the reverse breakdown voltage of the Schottky gate is degraded because the ion concentration peak portion in particular contacts the gate electrode.

本発明の目的は上記欠点を解消することであ
る。
The aim of the invention is to eliminate the above-mentioned drawbacks.

本発明の上記目的は、逆テーパ型のシヨツトキ
ーゲート電極をマスクとしてイオン注入し、ソー
スおよびドレインのオーミツク接触用不純物拡散
領域を形成することによつて達成することができ
る。
The above object of the present invention can be achieved by performing ion implantation using a reverse tapered Schottky gate electrode as a mask to form impurity diffusion regions for ohmic contact of the source and drain.

本発明の逆テーパ型のシヨツトキーゲート電極
を形成するには、化合物半導体基板上に、高融点
金属けい素化合物のけい素含有量が、前記基板の
界面からこの金属けい素化合物の表面に向けて減
少するように、高融点金属けい素化合物層を形成
し、これを方向性を有するエツチング、たとえば
ガスエツチング、により表面方向からエツチング
することが便宜である。
To form the reverse tapered shot key gate electrode of the present invention, the silicon content of the high melting point metal silicon compound is distributed from the interface of the substrate to the surface of the metal silicon compound on the compound semiconductor substrate. It is expedient to form a layer of high-melting metal silicon compound and to etch it from the surface direction by directional etching, for example gas etching, such that the layer decreases toward the surface.

本発明の製法において、化合物半導体をGaAs
とし、高融点金属けい素化合物として、MoSi2
WSi2,TiSi2,TaSi2またはTi0.3W0.7Si2を使用す
ることができる。これらのけい素化合物はけい素
含有量が多い程エツチング速度が大きいので、例
えば化合物半導体の界面に近い領域においてけい
素原子比を2とし、ゲート電極の表面においてけ
い素原子比をゼロとすれば、方向性を有するガス
イオンエツチングによつて、第2図に示すような
逆テーパ型ゲート電極を形成することができる。
In the manufacturing method of the present invention, the compound semiconductor is GaAs
As a high melting point metal silicon compound, MoSi 2 ,
WSi 2 , TiSi 2 , TaSi 2 or Ti 0.3 W 0.7 Si 2 can be used . The etching rate of these silicon compounds increases as the silicon content increases. For example, if the silicon atomic ratio is set to 2 in the region near the interface of the compound semiconductor, and the silicon atomic ratio is set to 0 at the surface of the gate electrode, A reverse tapered gate electrode as shown in FIG. 2 can be formed by directional gas ion etching.

実施例 化合物半導体をGaAsとし、ゲート材料として
Ti0.3W0.7Sixを使用し、第3図に示すように、
GaAsとの界面d0から表面d1に向けてSi原子比x
が2からゼロに減少するようにマルチ・ターゲツ
ト・スパツター法等によつてけい素化合物層を付
着させた。次にCF4+10%O2のガス圧を3.5Paと
して、出力100Wでガスイオンエツチングした。
このときのエツチング速度は、第4図に示すよう
に、Si2の領域はSi0の領域のほぼ3倍である。こ
うしてパターニングされたゲート電極は、第2図
に示すように、テーパ角θが約75゜であつた。こ
れに加圧電圧175KeV、ドーズ量1.7×1013/cmで
Si+を注入した。このときゲート電極の陰になつ
た部分にもイオンが注入されるが、n+領域、特
にピーク濃度部分が電極の界面まで達しない。従
つてこの電界効果トランジスタのシヨツトキー逆
方向耐圧は少くとも5V、通常は8〜9Vであつ
た。従来のゲート電極がテーパ型である場合にシ
ヨツトキー逆方向耐圧が2.5V程度であるのと比
べて、この値ははるかに大きい。このように、本
発明の電界効果トランジスタは動作の安定性が優
れていることを示した。
Example Using GaAs as a compound semiconductor and using it as a gate material
Using Ti 0.3 W 0.7 Si x , as shown in Figure 3 ,
Si atomic ratio x from the interface d 0 with GaAs to the surface d 1
A silicon compound layer was deposited by a multi-target sputtering method or the like such that the number decreased from 2 to zero. Next, gas ion etching was performed using CF 4 +10% O 2 at a gas pressure of 3.5 Pa and an output of 100 W.
At this time, as shown in FIG. 4, the etching rate in the Si 2 region is approximately three times that in the Si 0 region. The gate electrode thus patterned had a taper angle θ of about 75°, as shown in FIG. This was applied with a voltage of 175KeV and a dose of 1.7×10 13 /cm.
Si + was injected. At this time, ions are also implanted into the shadowed portion of the gate electrode, but the n + region, especially the peak concentration portion, does not reach the electrode interface. Therefore, the shot key reverse breakdown voltage of this field effect transistor was at least 5V, and usually 8 to 9V. This value is much larger than the Schottky reverse breakdown voltage of about 2.5V when the conventional gate electrode is tapered. Thus, the field effect transistor of the present invention was shown to have excellent operational stability.

又、上記実施例においては、GaAs界面d0から
表面d1に向けて、ゲート電極となるけい素化合物
のSi原子比Xが2からゼロに減少するよう形成さ
れており、面積の大きいゲート電極上部において
Si含有量が少ない。そのためゲート電極全体のSi
含有量が少なくなり、その結果ゲート電極の抵抗
値が低減されるので、装置の特性が向上する。
又、該ゲート電極の材料としてはイオン注入後の
不純物活性化の熱処理に耐える高融点金属けい素
化合物等の使用が好ましい。
In addition, in the above embodiment, the Si atomic ratio X of the silicon compound forming the gate electrode decreases from 2 to zero from the GaAs interface d 0 to the surface d 1 , and the gate electrode has a large area. at the top
Low Si content. Therefore, the Si of the entire gate electrode
Since the content is reduced and the resistance value of the gate electrode is reduced as a result, the characteristics of the device are improved.
As the material for the gate electrode, it is preferable to use a high melting point metal silicon compound that can withstand heat treatment for impurity activation after ion implantation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の製法によるテーパ型ゲート電極
を有する電界効果トランジスタの要部断面図であ
り、第2図は本発明の製法による逆テーパ型ゲー
ト電極を有する電界効果トランジスタの要部断面
図であり、第3図は本発明の製法によるゲート電
極の厚みとSi原子比との関係を示すグラフであ
り、第4図は本発明の製法によるゲート電極のSi
原子比とガスイオンエツチング速度との関係を示
すグラフである。 1……半導体基板、2……ゲート電極、3……
イオン濃度のピーク部分。
FIG. 1 is a sectional view of a main part of a field effect transistor having a tapered gate electrode manufactured by a conventional manufacturing method, and FIG. 2 is a sectional view of a main part of a field effect transistor having a reverse tapered gate electrode manufactured by a manufacturing method of the present invention. 3 is a graph showing the relationship between the thickness and Si atomic ratio of the gate electrode produced by the method of the present invention, and FIG. 4 is a graph showing the relationship between the thickness of the gate electrode produced by the method of the present invention and the Si atomic ratio.
3 is a graph showing the relationship between atomic ratio and gas ion etching rate. 1... Semiconductor substrate, 2... Gate electrode, 3...
Peak part of ion concentration.

Claims (1)

【特許請求の範囲】 1 化合物半導体基板上に、高融点金属けい素化
合物であつて、そのけい素含有量が該化合物半導
体基板界面近傍においては大であり、上方になる
に従つて該けい素含有量が小となるように高融点
金属けい素化合物層を形成し、方向性を有するエ
ツチングを施して逆テーパー型のシヨツトキゲー
ト電極を形成する工程と、次に 該逆テーパー型のシヨツトキゲート電極をマス
クとしてイオン注入し、ソースおよびドレインの
オーミツク接触用高濃度不純物拡散領域を形成す
る工程とを含むことを特徴とする電界効果トラン
ジスタの製造方法。 2 該化合物半導体基板がGaAsであり、該けい
素化合物がMo,W,Ti、およびTaの少なくとも
いずれか一つの金属のけい素化合物であり、注入
イオンがSi+であることを特徴とする特許請求の
範囲第1項記載の電界効果トランジスタの製造方
法。
[Scope of Claims] 1. A high melting point metal silicon compound is deposited on a compound semiconductor substrate, the silicon content of which is high near the interface of the compound semiconductor substrate, and increases as the silicon content increases upward. A step of forming a high melting point metal silicon compound layer so that the content is small and performing directional etching to form a reverse tapered shot gate electrode, and then masking the reverse tapered shot gate electrode. 1. A method of manufacturing a field effect transistor, comprising the steps of: performing ion implantation as a step to form a highly concentrated impurity diffusion region for ohmic contact between a source and a drain. 2. A patent characterized in that the compound semiconductor substrate is GaAs, the silicon compound is a silicon compound of at least one of the metals Mo, W, Ti, and Ta, and the implanted ions are Si + A method for manufacturing a field effect transistor according to claim 1.
JP6405081A 1981-04-30 1981-04-30 Manufacturing method for fet Granted JPS57180184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6405081A JPS57180184A (en) 1981-04-30 1981-04-30 Manufacturing method for fet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6405081A JPS57180184A (en) 1981-04-30 1981-04-30 Manufacturing method for fet

Publications (2)

Publication Number Publication Date
JPS57180184A JPS57180184A (en) 1982-11-06
JPS6248393B2 true JPS6248393B2 (en) 1987-10-13

Family

ID=13246873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6405081A Granted JPS57180184A (en) 1981-04-30 1981-04-30 Manufacturing method for fet

Country Status (1)

Country Link
JP (1) JPS57180184A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219765A (en) * 1984-04-16 1985-11-02 Mitsubishi Electric Corp Schottky barrier electrode
JPS61220376A (en) * 1985-03-26 1986-09-30 Sumitomo Electric Ind Ltd Schottky gate field-effect transistor and manufacture thereof
DE3751278T2 (en) * 1986-12-11 1996-01-25 Gte Laboratories Inc Transistor composed of a semiconductor material and a conductive material.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194775A (en) * 1975-02-19 1976-08-19
JPS5197383A (en) * 1975-02-21 1976-08-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194775A (en) * 1975-02-19 1976-08-19
JPS5197383A (en) * 1975-02-21 1976-08-26

Also Published As

Publication number Publication date
JPS57180184A (en) 1982-11-06

Similar Documents

Publication Publication Date Title
US4566021A (en) Semiconductor device
US5536967A (en) Semiconductor device including Schottky gate of silicide and method for the manufacture of the same
JPS6248393B2 (en)
US4586063A (en) Schottky barrier gate FET including tungsten-aluminum alloy
US5200349A (en) Semiconductor device including schotky gate of silicide and method for the manufacture of the same
JPS5837967A (en) Manufacture of mis semiconductor device
JPS60169169A (en) Semiconductor device and manufacture thereof
JPS627165A (en) Manufacture of semiconductor device
EP0201713A1 (en) Method of making a FET gate by angled evaporation
JPS6160591B2 (en)
JPH063814B2 (en) Method for manufacturing semiconductor device
JPH01251669A (en) Manufacture of field effect transistor
JP3072335B2 (en) Method for manufacturing field effect transistor
JP2835398B2 (en) Manufacturing method of field effect transistor
JPH0353774B2 (en)
JP2731194B2 (en) Method for manufacturing compound semiconductor device
JPH0810706B2 (en) Method for manufacturing field effect transistor
JPS6092666A (en) Manufacture of mis transistor
DE1614356C3 (en) Method for producing an n-conducting channel between the n-conducting source and drain regions of a field effect transistor
JPS6068662A (en) Semiconductor device and manufacture thereof
JPS5816566A (en) Semiconductor device and manufacture thereof
JPH03289142A (en) Manufacture of compound semiconductor device
JPS6323370A (en) Manufacture of semiconductor device
JPS6086871A (en) Manufacture of field effect transistor
JPS6323369A (en) Manufacture of semiconductor device