JPS6247546B2 - - Google Patents

Info

Publication number
JPS6247546B2
JPS6247546B2 JP54039695A JP3969579A JPS6247546B2 JP S6247546 B2 JPS6247546 B2 JP S6247546B2 JP 54039695 A JP54039695 A JP 54039695A JP 3969579 A JP3969579 A JP 3969579A JP S6247546 B2 JPS6247546 B2 JP S6247546B2
Authority
JP
Japan
Prior art keywords
glass
filling
bone
ceramic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54039695A
Other languages
Japanese (ja)
Other versions
JPS54135496A (en
Inventor
Reroi Henchi Rarii
Montogomerii Uookaa Maikeru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Florida State University
Original Assignee
Florida State University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Florida State University filed Critical Florida State University
Publication of JPS54135496A publication Critical patent/JPS54135496A/en
Publication of JPS6247546B2 publication Critical patent/JPS6247546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0013Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Ceramic Engineering (AREA)
  • Transplantation (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Dentistry (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は骨組織と強い結合を作ると共に多孔性
で高い比表面をもち、ケイ素に富む表面をもつか
又は生体内でそのような表面を生じうる組成物に
関する。従つてこれらの組成物は歯科用及び外科
用充填物又はそれらの被覆物の秀れた材料であ
る。 生物学的に活性な二酸化ケイ素(シリカ)ベー
スのガラス及びガラス−セラミツクは当業界で既
知である。これらの材料はそれらが生体内で骨と
秀れた強度の直接化学結合を生じる能力によつて
特徴づけられる。この結合の強さはその生物学的
活性材料の結晶性の程度に強くは依存しない。し
かしながら部分的に、又は完全に結晶化されたガ
ラス−セラミツクの使用が屡々好適であるがそれ
は失透性(devitrification)がその生物学的活性
材料自身の強度を増大させるからである。これら
の生物学的活性ガラス及びガラス−セラミツク及
び酸化アルミニウム並びに“表面を被覆された外
科用充填合金”のような比較的強い材料から無セ
メント充填処理用に種々の歯科用及び外科用充填
物を構成することが提案されている。先行技述に
よるこのシリカをベースとした生物学的活性ガラ
ス及びガラス−セラミツクは一般に網状構造形成
剤として約40〜60重量%のシリカ及びこれに加え
てかなりの量の可溶性変性剤例えば酸化ナトリウ
ム、酸化カリウム、酸化カルシウム、酸化マグネ
シウム、五酸化リン、酸化リチウム及びフツ化カ
ルシウムを含有する。酸化ホウ素は若干の二酸化
ケイ素の代りに置換されうる。組成物45S5(商
標名)と呼ばれる先行技術による特に好適な組成
物は45重量%の二酸化ケイ素、24.5重量%の酸化
ナトリウム、24.5重量%の酸化カルシウム、及び
6重量%の五酸化リンを含有する。生物学的活性
ガラス又はガラス−セラミツク材料と骨との間の
化学結合は巨視的に多孔性な充填物表面の中の骨
組織の内方生長(ingrowth)及び連結
(interlocking)によつて形成される機械的な型の
結合とは区別されるべきである。今日まで、生物
学的活性ガラス又はガラス−セラミツク材料は生
物学的溶液中でのその表面の反応性のために活性
をもつと一般に信じられてきた。即ちナトリウム
イオン及びカルシウムイオンのような可溶性イオ
ンはガラス又はガラス−セラミツク材料から選択
的に溶出され、それによつて周囲の生体液はアル
カリ性になる。そこでこのアルカリ性溶液はガラ
ス又はガラス−セラミツク材料を侵し、その上に
シリカゲル層を形成する。ここに提唱された機構
によればこの新たに生長する骨が結合するのはこ
のシリカゲル層にである〔Hench、L.L.、
Splinter、R.J.、Allen、W.C.及びGreenlee、T.
K.、J.Biomed.Mater.Res.Symp.No.2(Part
)、第117〜141頁1971年;Hench、L.L.、及び
Paschall、H.A.、J.Biomed.Mater.Res.Symp.、
No.4、第25〜42頁1973年;Hench、L.L.及び
Paschall、H.A.、J.Biomd、Mater.Res.Symp.、
No.5(Part)第49〜64頁1974年;Piotrowski、
G.、Hench、L.L.、Allen、W.C.及びMiller、G.
J.、J.Biomed.Mater.Res.Symp.、No.6、第47〜
61頁1975年;Clark、A.E.、Hench、L.L.及び
Paschall、H.A.、J.Biomed.Mater.Res.、10、第
161〜174頁1976年;米特第3919723号、米特第
3922155号、米特第3981736号、米特第3987499
号、米特第4031571号各明細書〕。 勿論、歯科用又は外科用充填物をポリメチルメ
タクリレートのような有機樹脂セメントの使用に
より患者の骨に固定しうることは既知である。し
かしながらかようなセメントの使用において生体
内反応性、毒性及び固定の緩みに関した欠点が知
られている。ガラス粒子を含む種々の型の補強材
を混入して充填物樹脂セメントを強化することも
知られている(米特第3919773号明細書参照)。ガ
ラス補強の硬化無機セメント(例えばポートラン
ドセメント)も知られている(米特第3147127号
明細書参照)。 患者の骨に結合する表面をもつ新規な歯科用又
は外科用充填物が今や本発明により発見された
が、そこにおいてその結合表面即ち結合面は少く
とも約80重量%の二酸化ケイ素を含み、最低約80
m2/gの比表面、約10〜約50容量%の多孔度及び
約20〜約300Åの平均孔径を有する生物学的相容
性をもつガラス、ガラス−セラミツク材料からな
る。 本発明はまた、その結合面が、約80重量%以下
の二酸化ケイ素を含む二酸化ケイ素をベースとす
るガラス或はガラス−セラミツク以外の無機材料
であつて、目的に適した物理特性をもつ生物学的
相容性を有する該無機材料からなつていて患者の
骨に結合する表面をもつ歯科用又は外科用充填物
を包含するが、それはPH7.2で37℃においてトリ
ス(ヒドロキシメチル)アミノメタン緩衝水溶液
に約10日間曝している間に最低約80m2/gの比表
面を持つ多孔性のシリカに富んだ表層を生じうる
ものである。本発明のこの第2の態様に包含され
る材料は或種のセラミツク及び硬化無機セメント
例えばポートランドセメントを包含する。 更に、本発明は湿つたセメントを骨の表面と充
填物との間に入れ、そのセメントを硬化させるこ
とからなる歯科用又は外科用充填物の骨への固定
法に関する改良方法を包含する。この改良方法
は、硬化状態においてPH7.2、温度37℃のトリス
(ヒドロキシメチル)アミノメタン緩衝液に約10
日間曝す間に最低約80m2/gの比表面をもつ多孔
性のシリカに富む表層を生じうる生物学的に相容
な無機セメントを使用することからなる。ポート
ランドセメントは使用されうる一種の無機セメン
トである。本改良方法の好適態様において、その
湿つたセメントは生物学的に活性な二酸化ケイ素
をベースとするガラス又はガラス−セラミツクの
粒子と混合される。別の好適態様において、その
無機セメントと接触する充填物の結合面は生物学
的に活性な二酸化ケイ素をベースとするガラス又
はガラス−セラミツクからなる。 標準鋳造法及び結晶法によつて製造された生物
学的に活性なシリカをベースとするガラス及びガ
ラス−セラミツク材料が、少くとも或る最少比表
面をもつ多孔性のシリカに富む表層を生体内で生
じる能力によつて骨に強く結合することが今や本
発明において意外にも発見された。生体内で上記
の特性をもつ表層を生じないシリカをベースとす
るガラス及びガラス−セラミツク材料は一般に骨
と貧弱な化学結合しか生じないか或は全く生じな
い。この高い表面領域をもつシリカに富む表層
〔およそ約25〜100μm(ミクロン)の厚さ〕は治
癒する骨の種々な有機及び無機成分の沈着及び相
互作用のための莫大な数の場所(サイト)を提供
すると考えられる。生体内における生物学的活性
は便宜的な試験管内(in vitro)試験で評価され
うる。即ちシリカをベースとするガラス又はガラ
ス−セラミツクは、それがPH7.2、温度37℃でト
リス(ヒドロキシメチル)アミノメタン緩衝水溶
液に対し約10日間曝す間にその層の1g当り最低
約80m2の比表面をもつ多孔性のシリカに富む表層
を生じうる場合には生体内で骨に強く結合するで
あろう。 表は二酸化ケイ素−酸化カルシウム−酸化ナ
トリウム−五酸化リン系の一連の非多孔性ガラス
に関するデータを示す。生物学的活性は二酸化ケ
イ素含量に強く依存するけれどもその他の3成分
の含量にはそれほど依存しない。酸化カルシウ
ム:酸化ナトリウムの重量比が約0.4〜約2.5、五
酸化リン含量が6重量%の場合に生物学的活性の
境界線は二酸化ケイ素の約54〜58重量%の間にあ
ることがわかつた。この境界範囲は五酸化リンが
除かれると約45〜55重量%に低下する酸化ナトリ
ウムを酸化カリウムで置き換えても生物学的活性
にはほとんど影響しない。約78重量%以上の二酸
化ケイ素を含む二酸化ケイ素−酸化ナトリウムガ
ラスは骨と結合しなかつた。実質上純粋な二酸化
ケイ素ガラスも結合しなかつた。表中のガラス
は試薬級の炭素カルシウム、炭酸ナトリウム、炭
酸カリウム、
The present invention relates to compositions that form strong bonds with bone tissue and have a porous, high specific surface, silicon-rich surface or are capable of producing such a surface in vivo. These compositions are therefore excellent materials for dental and surgical fillings or coatings thereof. Biologically active silicon dioxide (silica) based glasses and glass-ceramics are known in the art. These materials are characterized by their ability to form direct chemical bonds of excellent strength with bone in vivo. The strength of this bond does not strongly depend on the degree of crystallinity of the biologically active material. However, the use of partially or fully crystallized glass-ceramics is often preferred since devitrification increases the strength of the biologically active material itself. A variety of dental and surgical fillings for cementless filling processes are made from these biologically active glasses and relatively strong materials such as glass-ceramics and aluminum oxides as well as "surface-coated surgical filling alloys." It is proposed to configure The silica-based biologically active glasses and glass-ceramics according to the prior art generally contain about 40-60% by weight of silica as a network former, in addition to significant amounts of soluble modifiers such as sodium oxide, Contains potassium oxide, calcium oxide, magnesium oxide, phosphorus pentoxide, lithium oxide and calcium fluoride. Boron oxide may be substituted for some silicon dioxide. A particularly preferred composition according to the prior art called composition 45S5 (trade name) contains 45% by weight silicon dioxide, 24.5% by weight sodium oxide, 24.5% by weight calcium oxide, and 6% by weight phosphorous pentoxide. . The chemical bond between the biologically active glass or glass-ceramic material and the bone is formed by ingrowth and interlocking of bone tissue within the macroscopically porous filling surface. should be distinguished from mechanical type connections. To date, it has been generally believed that biologically active glass or glass-ceramic materials are active due to the reactivity of their surfaces in biological solutions. That is, soluble ions such as sodium and calcium ions are selectively eluted from the glass or glass-ceramic material, thereby rendering the surrounding biological fluid alkaline. The alkaline solution then attacks the glass or glass-ceramic material and forms a silica gel layer thereon. According to the mechanism proposed here, it is to this silica gel layer that this newly growing bone attaches [Hench, LL, et al.
Splinter, R.J., Allen, W.C. and Greenlee, T.
K., J.Biomed.Mater.Res.Symp.No.2 (Part
), pp. 117-141 1971; Hench, LL, and
Paschall, H. A., J. Biomed. Mater. Res. Symp.
No. 4, pp. 25-42 1973; Hench, LL and
Paschall, H.A., J. Biomd, Mater.Res.Symp.,
No. 5 (Part) pp. 49-64 1974; Piotrowski,
G., Hench, L.L., Allen, W.C. and Miller, G.
J., J. Biomed. Mater. Res. Symp., No. 6, No. 47~
61 pages 1975; Clark, AE, Hench, LL and
Paschall, H.A., J.Biomed.Mater.Res., 10th, No.
Pages 161-174 1976; US Special No. 3919723, US Special No.
No. 3922155, US Special No. 3981736, US Special No. 3987499
No., US Patent No. 4031571 specifications]. It is, of course, known that dental or surgical fillings may be secured to a patient's bone through the use of organic resin cements such as polymethyl methacrylate. However, drawbacks with respect to bioreactivity, toxicity and loosening of the fixation are known in the use of such cements. It is also known to strengthen filled resin cements by incorporating various types of reinforcing agents, including glass particles (see US Pat. No. 3,919,773). Glass-reinforced hardened inorganic cements (eg Portland cement) are also known (see US Pat. No. 3,147,127). A novel dental or surgical filling having a surface that binds to a patient's bone has now been discovered, in which the binding surface or bonding surface comprises at least about 80% by weight silicon dioxide and at least Approximately 80
It is comprised of a biocompatible glass, glass-ceramic material having a specific surface of m 2 /g, a porosity of about 10 to about 50% by volume, and an average pore size of about 20 to about 300 Å. The present invention also provides that the bonding surface is an inorganic material other than a silicon dioxide-based glass or glass-ceramic containing up to about 80% silicon dioxide, and that has physical properties suitable for the purpose. dental or surgical fillings having surfaces that bond to the patient's bone and are made of such inorganic materials that are chemically compatible with tris(hydroxymethyl)aminomethane buffer at 37°C at a pH of 7.2. A porous silica-rich surface layer with a specific surface of at least about 80 m 2 /g can be produced during about 10 days of exposure to an aqueous solution. Materials encompassed by this second aspect of the invention include certain ceramics and hardened inorganic cements such as Portland cement. Additionally, the present invention encompasses an improved method for fixing dental or surgical fillings to bone, which comprises placing wet cement between the surface of the bone and the filling and allowing the cement to harden. In this improved method, approximately 10% of
It consists of using a biologically compatible inorganic cement capable of producing a porous silica-rich surface layer with a specific surface of at least about 80 m 2 /g during exposure for days. Portland cement is one type of inorganic cement that can be used. In a preferred embodiment of the improved method, the wet cement is mixed with biologically active silicon dioxide-based glass or glass-ceramic particles. In another preferred embodiment, the bonding surface of the filling in contact with the inorganic cement consists of a biologically active silicon dioxide-based glass or glass-ceramic. Biologically active silica-based glasses and glass-ceramic materials produced by standard casting and crystallization methods have a porous silica-rich surface layer with at least some minimum specific surface that can be deposited in vivo. It has now been unexpectedly discovered in the present invention that the ability to bond strongly to bone by virtue of its ability to occur in the present invention. Silica-based glasses and glass-ceramic materials that do not form a surface layer with the above properties in vivo generally form only poor or no chemical bonds with bone. This silica-rich surface layer with a high surface area (approximately 25-100 microns thick) provides a vast number of sites for the deposition and interaction of various organic and inorganic components of healing bone. It is thought that it will provide the following. Biological activity in vivo can be assessed by convenient in vitro tests. That is, a silica-based glass or glass-ceramic can absorb a minimum of about 80 m 2 per gram of its layer during its exposure to an aqueous tris(hydroxymethyl)aminomethane buffer at a pH of 7.2 and a temperature of 37°C for about 10 days. If a porous silica-rich surface layer with a specific surface can be produced, it will bond strongly to bone in vivo. The table presents data for a series of non-porous glasses based on the silicon dioxide-calcium oxide-sodium oxide-phosphorus pentoxide system. The biological activity depends strongly on the silicon dioxide content, but not so much on the contents of the other three components. It has been found that when the weight ratio of calcium oxide:sodium oxide is about 0.4 to about 2.5 and the phosphorus pentoxide content is 6% by weight, the boundary of biological activity is between about 54 and 58% by weight of silicon dioxide. Ta. This marginal range drops to about 45-55% by weight when phosphorus pentoxide is removed.Replacing sodium oxide with potassium oxide has little effect on biological activity. Silicon dioxide-sodium oxide glasses containing greater than about 78% silicon dioxide by weight did not bond to bone. Substantially pure silicon dioxide glass also did not bond. The glasses in the table are reagent grade carbon calcium, sodium carbonate, potassium carbonate,

【表】【table】

【表】 五酸化リン及び5μmの二酸化ケイ素粉末の混合
物を約1200〜1500℃で融解し、円盤形試料を鋳造
し、次にその試料を約450〜700℃で焼戻しをして
製造された。そこで4×4×1mmの充填物を、以
下に記載された骨への生体内結合についてラツト
脛骨のミニプツシユアウト(mini push out)試
験にかけるために製造した。表は生物学的活性
が試験管内で生じた表面に対して強い依存性を示
すことを証明している。即ちこの系の非多孔性ガ
ラスが過度にSiO2を含むと、試験管内試験で示
されるように、生体内で骨に結合するのに適した
表層を生じることが出来ないであろう。この表面
積は臨界点(CO2)乾燥のガラス試料についてB.
E.T.窒素吸着法で得られ、増大した倍率で示さ
れる。それとは独立に測定する場合における表面
の直接測定は、全試料に対して1000倍の表面積増
大が乾燥表層材料の1g当り約80m2の比表面の生
成に相当することを示す。 骨との結合の存否は既知のラツト脛骨ミニプツ
シユアウト試験を用いて測定された。この試験は
次記の操作を利用する。4×4×1mmの寸法の充
填物を各被験組成物について製造する。各試料を
180、320及び600グリツド(grit)の炭化ケイ素
研磨円盤によつて湿潤研磨する。最後の600グリ
ツト円盤による乾燥研磨に続いて2分間試薬級ア
セトン中で超音波洗浄する。次にこの充填物を外
科用ドレープ(surgical drapes)で包み二酸化
エチレンでガス殺菌する。雄のスプラグ−ドウリ
イ(Sprague−Dawley)ラツト(体重150〜300
g)を試験動物として用いる。この動物を麻酔さ
せるためにペンタバルビタールナトリウムを腹腔
内に投与する。0.1mlのアトロピンを皮下注射し
て気管充血を防止する。左後脚の前面にひざから
脛骨の中途まで切開する。脛骨の側面の腓骨筋を
その根元から切り骨から除く。前方脛骨と共通伸
筋を脛骨の中間部から分離させる。カーバイド先
端をもつ歯科用バー(dental burr)で圧縮窒素
ガス駆動のホールドリル(Halldrill)を用い
て脛骨の前方周辺の側面及び中間皮層に溝を作
る。充填物をこの欠損部に挿入し、その切開部を
縫合する。充填物と脛骨との相対的な寸法は充填
物が充填後に脛骨の片側に僅かに突出す程度であ
る。充填後30日で骨との結合を試験することは結
合能力に対する信頼しうる試験になる。屠殺後に
試験脛骨を各動物について調べ接着している軟組
織を除く。各充填物の露出端上の面積を測り、骨
状繁茂物(boney overgrowths)を除去する。こ
れは好ましからぬ機械的な干渉を防止するために
行われる。次に骨の機械的完全性を試験する。変
改スポンジピンセツトを用いて充填物上に約30ニ
ユートン(Newtons)のプツシユアウト負荷を与
える。この充填物が与えられた負荷の下で移動に
耐えるならそれは結合に対するミニプツシユアウ
ト試験に合格したと見なされる。もし充填物と周
囲の骨との間でいくらかでも動きが認められるな
らこの骨の試験に失敗だつたと考えられる。 更に驚くべきことは、骨が、充填前に少くとも
或る最低の比表面をもつ多孔性のシリカに富む表
層を持つか或は生体内で上記の性状の表層を生じ
る全ての無機の生物学的相容性材料(この材料は
二酸化ケイ素をベースとするガラス及びガラス−
セラミツクを包含するがこれに限定されない)に
強く結合するという発見である。これらの生物学
的活性(即ち生体内で骨と強い化学結合を形成し
うる性質)をもつ材料の合一性(unifying
characteristics)は所望の高い表面積の多孔性な
シリカに富む表層を生長する骨に利用しうる性質
である。可溶性変性剤が所要の表層の生体内での
生成に寄与しうる程度がどれ位かという点を除け
ばカルシウム化合物、ナトリウム化合物もリン化
合物も生物学的活性材料に必須な成分ではない。
生物学的活性はその材料自身のB.E.T.窒素吸着
分析によつて、或は所要表層が生体内で生じる場
合には上記の試験管内試験に基づき処理された試
料のB.E.T.窒素吸着分析によつて評価されう
る。表面積はここでは軽量基準で表層材料の1g
当り平方米(m2)単位で示される。80m2/gの表
面積は被験材料によつては僅か6時間で生じう
る。生物学的活性材料が可溶性カルシウムイオン
とリン及び酸素を含む可溶性イオンとの両者を含
有するとリン酸カルシウム又は関連化合物が、生
体内及び上述の試験管内試験の双方において、シ
リカに富む表層の最外部上に迅速に沈着する。こ
の沈着は一般に生物学的活性材料自身によつて生
じるイオンから形成され、このことは生体内活性
に有利なように思われる。かような沈着現象の存
在は反応後の表面積増加に関してB.E.T.分析の
結果に本質的な影響を与えない。 本明細書中での定義によればガラスという語は
主としてガラス状の無機材料を示し、一方ガラス
−セラミツクは約20〜100容積%だけ失透してい
るガラスを意味する。セメントという語はその硬
化能力によつて異る物品と共に硬化するために使
用されうる組成物を示す。セラミツクという語は
ガラス−セラミツク以外の多結晶性セラミツク材
料を示す。 骨と生物学的活性材料との間の化学結合を、或
種の既知の充填材料の大きな(約10〜200μm)
の表面孔(surface pores)内に生じた骨組織の
連結によつて生じる機械的結合と区別することが
肝要である。ここに記載された生物学的活性材料
と骨との直接的化学結合は化学的な力によつて生
じ、広く一次(例えばイオン性、共有性、配向重
複成長性)及び二次(例えばフアンデルワール
ス、水素結合、ロンドン分散力)の化学結合を包
含するものと定義される。所要のシリカに富む表
層の多孔性は骨に結合するための機械的連結にも
とづく充填物に存在する多孔性とは異る性質のも
のである。硬組織の本質的な内方生長が生じるた
めには少くとも約50μmの孔径が必要である。し
かしながら本発明では活性なシリカに富む表層は
一般に約3000Å以下の孔径を持つ、これは生育す
る骨組織の本質的内方生長が生じるには小さすぎ
る。従つて本発明は多孔性基質内への機械的連結
という既知の欠点、即ち、生育する骨によつて占
められずに残された空隙部から生じる強度減少と
いう欠点に悩まされることはない。 本明細書中の用語の定義として歯科用充填物と
いう語は例えば義歯、歯冠、インレー等を意味す
る。外科用充填物という語は骨ピン、骨プレー
ト、骨代替補綴、骨代替補綴手段(例えば腰関節
補綴)、或はその他の全ての患者の骨と直接結合
されるべき外科用充填物乃至は補綴を意味する。
勿論、個々の場合に使用されるこの生物学的活性
材料は生物学的相容性をもつこと、目的に対し適
正な物理特性例えば強度、摩擦耐性、疲労耐性、
弾性モジユラス、延性等をもつことが必要であろ
う。本願明細書において生物学的相容性という語
は材料がその使用されるべき生体内生物系におい
て温和であるか又は無毒であり、骨の生育過程に
悪影響を与えないことを意味する。表の最後の
欄には、少くとも或る環境では酸化カルシウムを
酸化マグネシウムで代替するとおそらくは周囲の
体液中のCa:Mg比が本質的に変るので従つてシ
リカをベースとする材料を生物学的非相容性にす
ることを示している。 充填物の全結合面、即ち結合するために患者の
骨と接触する表面は生物学的相容性でなくてはな
らない。しかしながら或る場合には若干のかよう
な結合面は生物学的相容性であるが但し不活性で
あつても良い。即ち例えば本発明の範囲には相分
離ガラス(phase−separated glass)又はガラス
−セラミツク材料からなる、或はそれで被覆され
た充填物であつて活性(生体内で生じた高い表面
積)及び不活性(生体内で生じた低い表面積)の
両領域をもつものが含まれるが、その場合にこれ
らの材料から試験管内で生じた比表面の全体の平
均値が約80m2/g以下である場合でもよい。本発
明は患者の骨と接触する表面の一部が例えば生物
学的相容性であるが不活性な金属又はセラミツク
であるような充填物をも包含する。 ここに述べられる本発明の一態様として歯科用
又は外科用充填物の結合面は、最低約80重量%の
二酸化ケイ素を含み、最低約80m2/gの比表面、
約10〜約50容量%の多孔度及び約20〜約300Åの
平均孔径をもち、若干の孔は直径約3000Åにも及
ぶような生物学的相容性のガラス、ガラス−セラ
ミツク、又はセラミツク材料からなる。ここに示
された表面性状は生体内充填以前にその表面材料
自身に存在することに留意すべきである。即ち材
料が表面反応性であつたり、生理学的溶液中で選
択的溶出にかけられる必要はない。この観測結果
は極めて驚くべきことであり、予測外である。本
発明のこの態様のガラス、ガラス−セラミツク又
はセラミツク使用の長所は低価格であり、極く少
量(又は実質上ゼロ)のイオン性物質しかその材
料から体内へ溶離しないという事である。本発明
のこの態様の材料がカルシウム又はリンの化合物
を含有する必要はない。従つて一群のこれらの材
料は元素基準で約0.1重量%以下のリンを含有す
るものからなる。別の群のこれらの材料は最低約
95重量%の二酸化ケイ素、約1重量%以下のカル
シウム及び約0.1重量%以下のリンを含有するも
のからなる。別の態様においてこの材料即ち好適
にはガラスは最低約80重量%の二酸化ケイ素、約
20重量%未満の酸化ホウ素からなる。有用な生物
学的活性材料の一例はサーステイグラス
〔Thirsty Glass〕(コーニンググラスワークス、
コーニング、ニユーヨーク)、即ち主として二酸
化ケイ素と酸化ホウ素とからなる高度に多孔性な
ガラスである。サーステイグラスはそれが製造さ
れたもとの相分離ホウケイ素酸塩ガラスの酸溶出
生成物である。 本発明の態様による外科用又は歯科用充填物は
単一ガラス、ガラス−セラミツク充填剤でも生物
学的活性材料で被覆された基質材料からなるもの
でも、或はあらゆる既知の型の形状をもつもので
もよい。既知の鋳造、結晶化及び焼結法を使用し
て義歯のような単一充填物を製造しうる。この生
物学的活性材料それ自体の示す強度より大きな強
度が必要な場合には既知の金属被覆法に使用され
る金属(例えばビタリウム〔Vitallium〕、ハウメ
デイカ社〔Howmedica lnc.〕ニユーヨーク、ニ
ユーヨーク州の商標名)、非生物学的活性セラミ
ツク又はその他の基質を被覆法例えば発火
(firing)法、浸漬法、塗布及び焼結法、フレー
ム噴霧法などの技法において使用しうる。アルミ
ナ基質による生物学的活性ガラス又はガラス−セ
ラミツクの被覆の特に有利な方法が米特願第
766749号明細書に開示されている。生物学的活性
ガラス又はガラス−セラミツク材料の合金による
特に有利な被覆法が米特願第798671号明細書に開
示されている。ガラス−セラミツク被覆が望まれ
る場合にその失透化は既知の方法によつて行われ
るがその被覆物が基質に被覆される前でも後でも
該失透化を行いうる。例えばホウケイ酸塩ガラス
の母体又は被覆物からなり、その母体又は被覆物
の表面だけが溶出されてその表面が生物学的活性
になつている充填物は本発明の範囲内にある。 本発明の別の態様において歯科用又は外科用充
填物の結合面は“約80重量%以下の二酸化ケイ素
を含む二酸化ケイ素ベースのガラス又はガラス−
セラミツク”以外の全ての生物学的に相容性の無
機材料(その或種のものは既知である)からなる
が、それは既述の試験管内試験によつて約10日間
曝される間に最低約80m2/gの比表面を持つ多孔
性のシリカに富む表層を生じうる。この材料は例
えば硬化無機セメント、セラミツク、ガラス、ガ
ラス−セラミツクであつてもよいし、他の全ての
分類に属する無機材料に入つているものであつて
もよい。例えばポートランドセメントの場合には
生体内で生じた表層はかなりの量の他の無機酸化
物(即ちアルミナ及び酸化鉄)及びシリカを含有
するという事実があるからこれらの他の無機酸化
物を含む充填物は本発明の範囲内にある。生物学
的相容性の硬化無機セメントの一例はポートラン
ドセメントであつてこのものは次の組成(乾量基
準) SiO2 20〜24重量% Fe2O3 2〜4重量% Al2O3 1〜14重量% CaO 60〜65重量% MgO 1〜4重量% SO3 1〜1.8重量% を有すると共に200m2/gの比表面(硬化)を持
つ。この充填物は例えば単一材であつても生物学
的活性材料、例えばセラミツク又はセメントで被
覆された非生物学的活性セラミツク、有機ポリ
マ、プラスチツク又は金属(例えばビタリウム
〔ハウメデイカ社、ニユーヨーク、ニユーヨーク
州の商標名)のような他の材料の基質からなつて
いてもよい。当業界で既知のセメント、セラミツ
ク又はその他の材料の単一物品の製造法、或はそ
れらによる基質材料の被覆法、或は充填物として
有用なその他の全ての形状の製造法が本発明の態
様の実施に使用されうる。充填物が硬化無機セメ
ントからなる場合にはそのセメントの硬化は充填
の前でも後でも行われうる。即ち本発明の一態様
において骨代用補綴は湿つたセメントを、罹患又
は傷害した骨の除去で生じた患者の骨の空隙に挿
入し、そのセメントを所望の形に成形し、そのセ
メントをそのまゝの位置で硬化させることで製造
される。 本発明の更に別の態様において外科用又は歯科
用充填物は湿潤硬化性無機セメントを用いて骨に
結合される。この充填物の結合面、即ち患者の骨
に結合するためにこのセメントに接触する表面は
好適には生物学的に活性であつて二酸化ケイ素を
ベースとするガラス又はガラス−セラミツクから
なる。このセメントは硬化状態において既述の試
験管内試験によつて約10日間曝される間に最低約
80m2/gの比表面をもちシリカに富む多孔性の表
層を生じうるものである。このセメントは生体内
で硬化すると生物学的に活性な、高い比表面をも
ちシリカに富む多孔性の表層を生じるので、それ
は骨と極めて強い結合を形成する。この表面を用
いるとそれは充填物と生物学的活性ガラス又はガ
ラス−セラミツク面との非常に強い結合を形成す
る。勿論この硬化セメント材料はそれ自体もとも
と強固である。従つてポリメチルメタクリレート
樹脂セメントの使用に伴う諸問題即ち毒性問題、
生体内での弛緩及び反応性の問題は減少されう
る。別の好適な態様においてこのセメントはその
強度そのものを増強するのみならず骨とセメン
ト、及び充填物(上述のように生物学的に活性
な)とセメントの結合のそれぞれの強度をも改良
するために、生物学的に活性であつて二酸化ケイ
素をベースとするガラス又はガラス−セラミツク
の粒子で補強される。 以下の諸例は本発明を例示するが但し本発明を
限定するものと考えるべきではない。 例 1 サーステイグラス(コーニング・グラス・ワー
クス、コーニング、ニユーヨーク)の4×4×1
mmの充填物を製造し、320及び600グリツトの炭化
ケイ素研磨円盤で湿潤研磨した。次に蒸留水中で
それらを超音波洗浄し、煮沸殺菌した。使用され
たこのサーステイグラス試料は約96重量%の二酸
化ケイ素及び4重量%の酸化ホウ素からなり、
200m2/gの比表面、28容量%の多孔度及び40Å
の平均孔径をもつていた。この充填物を当業既知
のラツト脛骨のミニプツシユアウト操作によつて
生体内での骨への結合について試験した。充填後
11日又は18日で骨と充填物との間に結合は全く認
められなかつた。しかしながら充填後40日で2つ
の中2個の充填物が結合に関するこのミニプツシ
ユアウト試験に合格した。これらの充填物の1つ
を分割し顕微鏡検査によつてしらべたところサー
ステイグラス充填物と治癒している骨との間に直
接の化学結合が形成されていることが示された。 例 2 本例の実験に使用された乾燥ポートランドセメ
ントはアメリカンソサエテイフオアテステイング
マテリアルタイプ(American Society for
Testing Materials Type)のポートランドセ
メントであつた。このセメントに水対セメントの
比が0.4になるように水を加え、この混合物を約
2週間〜30日間硬化させて硬化試料を製造した。
硬化後に4×4×1mmの充填物をそのセメントか
ら製造した。これらを320及び600グリツトの炭化
ケイ素研磨円盤により湿潤研磨した。次にこの充
填物を蒸留水中で濯ぎ、充填するまでその洗浄溶
液中においた。骨への結合に対する生体内試験を
当業既知のラツトの脛骨のミニプツシユアウト法
によつて行つた。充填後10日及び13日経過でも結
合は認められなかつた。しかしながら充填後28日
で2個中2個の試料が結合に関するこのミニプツ
シユアウト試験に合格した。充填後69日で1個中
1個の試料がこのミニプツシユアウト試験に合格
した。充填後92日で1個中1個の試料がこのミニ
プツシユアウト試験に合格した。92日後にこの充
填物−骨接合の定性的な機械的試験を行つたとこ
ろこの骨又は充填物内に亀裂が示されたが両材質
間の界面には亀裂が全くなかつた。顕微鏡的検査
によつてこの予め硬化されたポートランドセメン
ト充填物と治癒している骨との間に直接の化合結
合のあることが示された。
[Table] Produced by melting a mixture of phosphorus pentoxide and 5 μm silicon dioxide powder at about 1200-1500°C, casting a disc-shaped sample, and then tempering the sample at about 450-700°C. A 4 x 4 x 1 mm filler was then prepared for rat tibia mini push out testing for biointegration into bone as described below. The table demonstrates the strong dependence of biological activity on the surface generated in vitro. Thus, if the non-porous glasses of this system contain too much SiO 2 , they will not be able to produce a surface layer suitable for bonding to bone in vivo, as shown in in vitro studies. This surface area is B for a critical point (CO 2 ) dried glass sample.
Obtained by ET nitrogen adsorption method and shown in increased magnification. Direct measurements of the surface when measured independently show that a 1000-fold increase in surface area for the entire sample corresponds to a production of about 80 m 2 of specific surface per gram of dry surface material. The presence or absence of integration with bone was determined using the known rat tibial mini push-out test. This test utilizes the following procedure. Packings with dimensions of 4 x 4 x 1 mm are prepared for each composition to be tested. each sample
Wet polish with 180, 320 and 600 grit silicon carbide polishing discs. A final dry sanding with a 600 grit disk is followed by a 2 minute ultrasonic cleaning in reagent grade acetone. The filling is then wrapped in surgical drapes and gas sterilized with ethylene dioxide. Male Sprague-Dawley rat (weight 150-300)
g) are used as test animals. Sodium pentabarbital is administered intraperitoneally to anesthetize the animal. Inject 0.1 ml of atropine subcutaneously to prevent tracheal congestion. Make an incision on the front of the left hind leg from the knee to the middle of the tibia. The peroneus muscle on the side of the tibia is cut from its root and removed from the bone. Separate the anterior tibia and common extensor muscles from the midsection of the tibia. A groove is made in the lateral and medial cortex of the anterior periphery of the tibia using a compressed nitrogen gas powered Halldrill with a carbide-tipped dental burr. A filling material is inserted into the defect and the incision is sutured. The relative dimensions of the filling and the tibia are such that the filling slightly protrudes to one side of the tibia after filling. Testing for bone integration 30 days after filling provides a reliable test of bonding ability. After sacrifice, the test tibia is examined for each animal and any attached soft tissue is removed. Measure the area on the exposed end of each filling and remove boney overgrowths. This is done to prevent unwanted mechanical interference. The mechanical integrity of the bone is then tested. Apply a push-out load of approximately 30 Newtons onto the filling using modified sponge tweezers. If this filling resists movement under the applied load, it is considered to have passed the mini push-out test for the bond. If any movement is observed between the filling and the surrounding bone, the bone is considered to have failed the test. What is even more surprising is that bones have a porous silica-rich surface layer with at least a certain minimum specific surface before filling, or that all inorganic biological organisms produce a surface layer of the above properties in vivo. compatible materials (this material is compatible with silicon dioxide-based glasses and glass-
The discovery was made that it strongly binds to ceramics (including but not limited to ceramics). The unifying property of materials with these biological activities (i.e., the ability to form strong chemical bonds with bone in vivo)
characteristics) that allow for the desirable high surface area, porous, silica-rich surface layer to be utilized for growing bone. Neither calcium, sodium nor phosphorus compounds are essential components of the biologically active material, except to the extent that soluble modifiers may contribute to the in vivo production of the required surface layer.
Biological activity is assessed by BET nitrogen adsorption analysis of the material itself or, if the required surface layer occurs in vivo, by BET nitrogen adsorption analysis of the treated sample according to the in vitro test described above. sell. Here, the surface area is 1g of the surface material based on the lightweight standard.
It is expressed in square meters per square meter (m 2 ). A surface area of 80 m 2 /g can be generated in as little as 6 hours depending on the material tested. If the biologically active material contains both soluble calcium ions and soluble ions containing phosphorus and oxygen, calcium phosphate or related compounds will be present on the outermost silica-rich surface layer both in vivo and in vitro as described above. Deposit quickly. This deposit is generally formed from ions generated by the biologically active material itself, which appears to favor in vivo activity. The presence of such a deposition phenomenon does not essentially affect the results of the BET analysis regarding the increase in surface area after the reaction. As defined herein, the term glass refers to an inorganic material that is primarily glassy, while glass-ceramic refers to a glass that is devitrified by about 20-100% by volume. The term cement refers to a composition that can be used to harden with different articles depending on its hardening ability. The term ceramic refers to polycrystalline ceramic materials other than glass-ceramic. Chemical bonding between bone and biologically active materials can be achieved through large (approximately 10 to 200 μm) of certain known filling materials.
It is important to distinguish this from mechanical bonding, which occurs due to the interlocking of bone tissue within the surface pores of the bone. The direct chemical bonding of the biologically active materials described herein with bone occurs through chemical forces and is broadly primary (e.g., ionic, covalent, oriented overgrowth) and secondary (e.g., Phandel). Defined to include chemical bonds (Wahls, hydrogen bonds, London dispersion forces). The required porosity of the silica-rich surface layer is of a different nature than the porosity present in mechanically interlocking fillings for bonding to bone. A pore size of at least about 50 μm is required for substantial ingrowth of hard tissue to occur. However, in the present invention, the active silica-rich surface layer generally has a pore size of about 3000 Å or less, which is too small for substantial ingrowth of growing bone tissue to occur. The invention therefore does not suffer from the known drawbacks of mechanical interlocking within porous matrices, ie the loss of strength resulting from voids left unoccupied by growing bone. As defined herein, the term dental filling means, for example, a denture, a dental crown, an inlay, and the like. The term surgical filling refers to bone pins, bone plates, bone replacement prostheses, bone replacement prosthetics (e.g. hip joint prostheses), or any other surgical filling or prosthesis that is to be connected directly to the patient's bone. means.
Of course, the biologically active material used in each case must be biologically compatible and have suitable physical properties for the purpose, such as strength, friction resistance, fatigue resistance,
It will be necessary to have elastic modulus, ductility, etc. As used herein, the term biocompatible means that the material is benign or non-toxic in the in vivo biological system in which it is used and does not adversely affect bone growth processes. The last column of the table indicates that substituting magnesium oxide for calcium oxide, at least in some circumstances, will likely inherently alter the Ca:Mg ratio in surrounding body fluids, thus making silica-based materials less biologically viable. Indicates that they are incompatible. All bonding surfaces of the filling, ie, the surfaces that contact the patient's bone for bonding, must be biocompatible. However, in some cases some such binding surfaces may be biocompatible but inert. Thus, for example, the scope of the invention includes fillers made of or coated with phase-separated glass or glass-ceramic materials, which contain active (high surface area produced in vivo) and inert (high surface areas produced in vivo). In this case, materials with a specific surface area of approximately 80 m 2 /g or less may be included. . The invention also encompasses fillings in which the portion of the surface in contact with the patient's bone is, for example, a biocompatible but inert metal or ceramic. In one aspect of the invention described herein, the bonding surface of the dental or surgical filling comprises at least about 80% by weight silicon dioxide and has a specific surface of at least about 80 m 2 /g;
A biocompatible glass, glass-ceramic, or ceramic material having a porosity of about 10 to about 50% by volume and an average pore size of about 20 to about 300 Å, with some pores up to about 3000 Å in diameter. Consisting of It should be noted that the surface textures shown here are present on the surface material itself prior to biofilling. That is, there is no need for the material to be surface-reactive or to be subjected to selective elution in a physiological solution. This observation is quite surprising and unexpected. The advantages of using glass, glass-ceramic, or ceramic in this embodiment of the invention are its low cost and the fact that very little (or virtually no) ionic substances elute from the material into the body. There is no need for the material of this aspect of the invention to contain calcium or phosphorus compounds. Accordingly, a group of these materials comprises those containing less than about 0.1% by weight of phosphorus on an elemental basis. Different groups of these materials have a minimum of approx.
It comprises 95% by weight silicon dioxide, less than about 1% by weight calcium, and less than about 0.1% by weight phosphorus. In another embodiment, the material, preferably glass, contains at least about 80% by weight silicon dioxide, about
Consisting of less than 20% by weight boron oxide. An example of a useful biologically active material is Thirsty Glass (Corning Glassworks,
Corning, New York), a highly porous glass consisting primarily of silicon dioxide and boron oxide. Thirstay glass is an acid-leached product of the phase-separated borosilicate glass from which it was made. Surgical or dental fillings according to embodiments of the invention may consist of a single glass, glass-ceramic filling or a matrix material coated with a biologically active material, or may be of any known type. But that's fine. Known casting, crystallization and sintering methods may be used to manufacture single fillings such as dentures. If a strength greater than that exhibited by the biologically active material itself is required, metals used in known metallization processes (e.g., Vitallium, a trademark of Howmedica LNC., New York, New York) may be used. Non-biologically active ceramics or other substrates can be used in coating techniques such as firing, dipping, coating and sintering, flame spraying, and the like. A particularly advantageous method of coating biologically active glass or glass-ceramic with an alumina matrix is described in U.S. patent application Ser.
It is disclosed in the specification of No. 766749. A particularly advantageous method of coating with biologically active glasses or alloys of glass-ceramic materials is disclosed in US Pat. No. 798,671. When a glass-ceramic coating is desired, the devitrification is carried out by known methods, but the devitrification can be carried out either before or after the coating is applied to the substrate. For example, a packing consisting of a matrix or coating of borosilicate glass, in which only the surface of the matrix or coating is eluted, making that surface biologically active, is within the scope of the invention. In another embodiment of the invention, the bonding surface of the dental or surgical filling is a silicon dioxide-based glass or glass containing up to about 80% silicon dioxide by weight.
All biologically compatible inorganic materials other than "ceramics" (of which certain types are known), which have been shown to exhibit a minimum A porous silica-rich surface layer with a specific surface of about 80 m 2 /g can be produced. This material can be, for example, a hardened mineral cement, ceramic, glass, glass-ceramic or belongs to all other classes. For example, in the case of Portland cement, the in vivo surface layer contains significant amounts of other inorganic oxides (i.e. alumina and iron oxides) and silica. Because of the fact that fills containing these other inorganic oxides are within the scope of this invention, an example of a biocompatible hardened inorganic cement is Portland cement, which has the following composition ( dry weight basis) SiO 2 20-24% by weight Fe 2 O 3 2-4% by weight Al 2 O 3 1-14% by weight CaO 60-65% by weight MgO 1-4% by weight SO 3 1-1.8% by weight and a specific surface (cured) of 200 m 2 /g.The filling may be made of a single material or a biologically active material, such as ceramic or non-biologically active ceramic coated with cement, an organic polymer, It may also be comprised of a matrix of other materials such as plastic or metal (e.g., Vitallium (a trade name of Haumedica Inc., New York, NY). Single articles of cement, ceramic or other materials known in the art may be used. Any method of manufacturing or coating a matrix material with them, or any other form useful as a filler, may be used in carrying out embodiments of the present invention. The hardening of the cement can occur either before or after filling; thus, in one aspect of the invention, the bone substitute prosthesis involves inserting moist cement into the void in the patient's bone created by the removal of diseased or injured bone. The surgical or dental filling is manufactured by forming the cement into the desired shape and curing the cement in situ. In yet another aspect of the invention, the surgical or dental filling comprises a wet-setting inorganic cement. The bonding surface of the filling, i.e. the surface that contacts the cement for bonding to the patient's bone, is preferably a biologically active silicon dioxide based glass or The cement consists of glass-ceramic.This cement, in its hardened state, has been shown to exhibit at least approximately
It can produce a porous surface layer rich in silica with a specific surface of 80 m 2 /g. When this cement hardens in vivo, it produces a biologically active, high specific surface, silica-rich porous surface layer, so that it forms an extremely strong bond with bone. With this surface it forms a very strong bond between the filling and the biologically active glass or glass-ceramic surface. Of course, this hardened cement material is inherently strong in itself. Therefore, there are various problems associated with the use of polymethyl methacrylate resin cement, namely toxicity problems;
In vivo relaxation and reactivity problems can be reduced. In another preferred embodiment, the cement not only enhances its strength itself, but also improves the respective strength of the bone-cement and filler (biologically active as described above)-cement bond. It is reinforced with biologically active, silicon dioxide-based glass or glass-ceramic particles. The following examples are illustrative of the invention but should not be considered limiting. Example 1 4x4x1 of Thirstay Glass (Corning Glass Works, Corning, New York)
mm fills were prepared and wet polished with 320 and 600 grit silicon carbide polishing discs. They were then ultrasonically cleaned in distilled water and sterilized by boiling. The Thirstay glass sample used consisted of approximately 96% by weight silicon dioxide and 4% by weight boron oxide;
Specific surface of 200m 2 /g, porosity of 28% by volume and 40Å
It had an average pore size of This filling was tested for in vivo bone integration by a rat tibia mini push-out procedure known in the art. After filling
No bond was observed between the bone and the filler at 11 or 18 days. However, 40 days after filling, two out of two fills passed this mini-pushout test for bonding. When one of these fillings was sectioned and examined by microscopy, it was shown that a direct chemical bond had formed between the Thirst Glass filling and the healing bone. Example 2 The dry Portland cement used in this example experiment was an American Society for Testing material type.
Testing Materials Type) Portland cement. Water was added to the cement to give a water to cement ratio of 0.4, and the mixture was cured for about 2 weeks to 30 days to produce cured samples.
After hardening, 4 x 4 x 1 mm fillings were made from the cement. These were wet polished with 320 and 600 grit silicon carbide polishing discs. The packing was then rinsed in distilled water and placed in the wash solution until filling. In-vivo testing for bone attachment was performed by the rat tibia mini-push-out method known in the art. No binding was observed even after 10 and 13 days after filling. However, 28 days after filling, 2 out of 2 samples passed this mini-pushout test for bonding. One out of every sample passed this mini-pushout test 69 days after filling. One out of every sample passed this mini-pushout test 92 days after filling. Qualitative mechanical testing of the filler-bone joint after 92 days showed cracks within the bone or filler, but no cracks at the interface between the two materials. Microscopic examination showed that there was a direct bond between the pre-hardened Portland cement filling and the healing bone.

Claims (1)

【特許請求の範囲】 1 患者の骨に結合する表面をもつ歯科用又は外
科用充填物において、その結合表面が生物学的に
相容性のガラス、ガラス−セラミツク又はセラミ
ツク材料からなり、該生物学的に相容性のガラ
ス、ガラス−セラミツク又はセラミツク材料が少
くとも約80重量%の二酸化ケイ素を含有していて
少くとも約80m2/gの比表面、約10〜約50容積%
の多孔度、約20〜約300Åの平均孔径を持つこと
を特徴とする上記の充填物。 2 セラミツク材料が約1重量%以下のカルシウ
ムと約0.1重量%以下のリンとを含む特許請求の
範囲第1項記載の充填物。 3 セラミツク材料が少くとも約95重量%の二酸
化ケイ素を含有する特許請求の範囲第2項記載の
充填物。 4 セラミツク材料が約20重量%以下の酸化ホウ
素を含有する特許請求の範囲第1項記載の充填
物。 5 セラミツク材料がガラスである特許請求の範
囲第4項記載の充填物。
[Scope of Claims] 1. A dental or surgical filling having a surface for bonding to the patient's bone, the bonding surface consisting of a biologically compatible glass, glass-ceramic or ceramic material, The chemically compatible glass, glass-ceramic or ceramic material contains at least about 80% by weight silicon dioxide and has a specific surface of at least about 80 m 2 /g, from about 10 to about 50% by volume.
The above-mentioned filling is characterized in that it has a porosity of about 20 to about 300 Å and an average pore size of about 20 to about 300 Å. 2. The filling of claim 1, wherein the ceramic material contains less than about 1% by weight of calcium and less than about 0.1% by weight of phosphorous. 3. A filling according to claim 2, wherein the ceramic material contains at least about 95% by weight silicon dioxide. 4. The filling of claim 1, wherein the ceramic material contains less than about 20% by weight boron oxide. 5. The filling according to claim 4, wherein the ceramic material is glass.
JP3969579A 1978-04-05 1979-04-02 Connection of material having high specific surface and imparting porosity with silica to surface to bone Granted JPS54135496A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/893,792 US4171544A (en) 1978-04-05 1978-04-05 Bonding of bone to materials presenting a high specific area, porous, silica-rich surface

Publications (2)

Publication Number Publication Date
JPS54135496A JPS54135496A (en) 1979-10-20
JPS6247546B2 true JPS6247546B2 (en) 1987-10-08

Family

ID=25402097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3969579A Granted JPS54135496A (en) 1978-04-05 1979-04-02 Connection of material having high specific surface and imparting porosity with silica to surface to bone

Country Status (8)

Country Link
US (1) US4171544A (en)
JP (1) JPS54135496A (en)
AU (1) AU522940B2 (en)
CA (1) CA1117796A (en)
DE (2) DE2910335C2 (en)
FR (1) FR2421595A1 (en)
GB (1) GB2020197B (en)
NL (1) NL7902497A (en)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259072A (en) * 1977-04-04 1981-03-31 Kyoto Ceramic Co., Ltd. Ceramic endosseous implant
JPS53144194A (en) * 1977-05-20 1978-12-15 Kureha Chemical Ind Co Ltd Compound implanted material and making method thereof
US4491987A (en) * 1979-09-24 1985-01-08 Clemson University Method of orthopedic implantation and implant product
FR2469916B1 (en) * 1979-11-26 1985-09-27 Davidas Jean Paul PROCESS FOR PRODUCING FIREWORKS THAT CAN BE USED IN-VIVO AND FIREWORKS MADE BY THIS PROCESS
JPS573739A (en) 1980-06-11 1982-01-09 Nippon Kogaku Kk <Nikon> Bioactive glass and glass ceramic
JPS6034252Y2 (en) 1981-02-04 1985-10-12 株式会社ニコン dental implant
DE3241589A1 (en) * 1982-11-10 1984-05-17 Pfaudler-Werke Ag, 6830 Schwetzingen IMPLANTS AND METHOD FOR THE PRODUCTION THEREOF
DE3245956A1 (en) * 1982-12-11 1984-06-14 Beiersdorf Ag, 2000 Hamburg SURGICAL MATERIAL
DE3305572A1 (en) * 1983-02-18 1984-08-23 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar BIOACTIVE IMPLANT MATERIAL
US4608350A (en) * 1983-10-27 1986-08-26 E. I. Du Pont De Nemours And Company Precursor solutions for biologically active glass
US4786555A (en) * 1983-10-27 1988-11-22 E. I. Du Pont De Nemours And Company Support particles coated with or particles of precursors for or of biologically active glass
JPS61201683A (en) * 1985-03-06 1986-09-06 オリンパス光学工業株式会社 Composite material for artificial aggregate use
JPS62281953A (en) * 1986-05-28 1987-12-07 旭光学工業株式会社 Bone filler and its production
DE58905636D1 (en) * 1989-03-23 1993-10-21 Straumann Inst Ag Metallic implant.
US5344456A (en) * 1989-06-06 1994-09-06 Tdk Corporation Materials for living hard tissue replacements
US5074916A (en) * 1990-05-18 1991-12-24 Geltech, Inc. Alkali-free bioactive sol-gel compositions
US6908466B1 (en) 1990-06-28 2005-06-21 Bonutti Ip, Llc Surgical devices having a biodegradable material with a therapeutic agent
US6464713B2 (en) 1990-06-28 2002-10-15 Peter M. Bonutti Body tissue fastening
US5163960A (en) * 1990-06-28 1992-11-17 Bonutti Peter M Surgical devices assembled using heat bondable materials
US5593425A (en) * 1990-06-28 1997-01-14 Peter M. Bonutti Surgical devices assembled using heat bonable materials
US6203565B1 (en) 1990-06-28 2001-03-20 Peter M. Bonutti Surgical devices assembled using heat bondable materials
EP0672117A4 (en) * 1992-08-13 1996-06-12 Univ Pennsylvania BIOACTIVE MATERIAL TEMPLATE FOR -i(IN VITRO) SYNTHESIS OF BONE TISSUE.
JPH06116114A (en) * 1992-10-09 1994-04-26 Nikon Corp Bone-filling material
US5814073A (en) * 1996-12-13 1998-09-29 Bonutti; Peter M. Method and apparatus for positioning a suture anchor
US5415547A (en) * 1993-04-23 1995-05-16 Loma Linda University Tooth filling material and method of use
US5642996A (en) * 1993-10-20 1997-07-01 Nikon Corporation Endosseous implant
US6491723B1 (en) 1996-02-27 2002-12-10 Implant Innovations, Inc. Implant surface preparation method
US5863201A (en) 1994-11-30 1999-01-26 Implant Innovations, Inc. Infection-blocking dental implant
EP0794745B1 (en) 1994-11-30 2004-09-01 Implant Innovations, Inc. Implant surface preparation
US5713921A (en) * 1996-03-29 1998-02-03 Bonutti; Peter M. Suture anchor
WO1997039990A1 (en) * 1996-04-24 1997-10-30 Owens Corning Glass compositions having high ki values and fibers therefrom
US6051247A (en) * 1996-05-30 2000-04-18 University Of Florida Research Foundation, Inc. Moldable bioactive compositions
US5840290A (en) * 1996-05-30 1998-11-24 University Of Florida Research Foundation Injectable bio-active glass in a dextran suspension
US5718717A (en) 1996-08-19 1998-02-17 Bonutti; Peter M. Suture anchor
US5948002A (en) * 1996-11-15 1999-09-07 Bonutti; Peter M. Apparatus and method for use in positioning a suture anchor
US5977204A (en) 1997-04-11 1999-11-02 Osteobiologics, Inc. Biodegradable implant material comprising bioactive ceramic
US20050216059A1 (en) * 2002-09-05 2005-09-29 Bonutti Peter M Method and apparatus for securing a suture
US6010525A (en) * 1997-08-01 2000-01-04 Peter M. Bonutti Method and apparatus for securing a suture
US6034014A (en) * 1997-08-04 2000-03-07 Owens Corning Fiberglas Technology, Inc. Glass fiber composition
US5972384A (en) * 1997-10-01 1999-10-26 University Of Maryland, Baltimore Use of biologically active glass as a drug delivery system
US6045551A (en) 1998-02-06 2000-04-04 Bonutti; Peter M. Bone suture
US6274159B1 (en) 1998-10-28 2001-08-14 University Of Florida Surface modified silicone drug depot
DE19858501A1 (en) * 1998-12-18 2000-06-21 Christopher Niedhart Production of an implantate consisting at least partly or ceramic, glass or vitreous ceramic, for use in a human or animal includes surface treatment with aqueous alkali hydroxide solution
US6517863B1 (en) 1999-01-20 2003-02-11 Usbiomaterials Corporation Compositions and methods for treating nails and adjacent tissues
US6592609B1 (en) * 1999-08-09 2003-07-15 Bonutti 2003 Trust-A Method and apparatus for securing tissue
US6368343B1 (en) 2000-03-13 2002-04-09 Peter M. Bonutti Method of using ultrasonic vibration to secure body tissue
US6447516B1 (en) 1999-08-09 2002-09-10 Peter M. Bonutti Method of securing tissue
US7250174B2 (en) * 1999-12-07 2007-07-31 Schott Ag Cosmetic, personal care, cleaning agent, and nutritional supplement compositions and methods of making and using same
US6635073B2 (en) * 2000-05-03 2003-10-21 Peter M. Bonutti Method of securing body tissue
US9138222B2 (en) * 2000-03-13 2015-09-22 P Tech, Llc Method and device for securing body tissue
US7094251B2 (en) 2002-08-27 2006-08-22 Marctec, Llc. Apparatus and method for securing a suture
US8932330B2 (en) 2000-03-13 2015-01-13 P Tech, Llc Method and device for securing body tissue
US6787584B2 (en) * 2000-08-11 2004-09-07 Pentron Corporation Dental/medical compositions comprising degradable polymers and methods of manufacture thereof
US20020045678A1 (en) * 2000-08-22 2002-04-18 Lopez Larry A. Dental restorative compositions and method of use thereof
US20030159618A1 (en) * 2002-01-03 2003-08-28 Primus Carolyn M. Dental material
DK1381402T3 (en) * 2001-04-27 2010-03-08 Vivoxid Oy Method for improving soft tissue reception and implants using this method
US7750063B2 (en) 2001-10-24 2010-07-06 Pentron Clinical Technologies, Llc Dental filling material
US7303817B2 (en) 2001-10-24 2007-12-04 Weitao Jia Dental filling material
US7204874B2 (en) 2001-10-24 2007-04-17 Pentron Clinical Technologies, Llc Root canal filling material
US7211136B2 (en) 2001-10-24 2007-05-01 Pentron Clinical Technologies, Llc Dental filling material
US7204875B2 (en) 2001-10-24 2007-04-17 Pentron Clinical Technologies, Llc Dental filling material
US6719765B2 (en) * 2001-12-03 2004-04-13 Bonutti 2003 Trust-A Magnetic suturing system and method
WO2005007802A2 (en) * 2002-03-15 2005-01-27 The Trustees Of The University Of Pennsylvania Fibrous composite for tissue engineering
US9155544B2 (en) 2002-03-20 2015-10-13 P Tech, Llc Robotic systems and methods
GB0225980D0 (en) * 2002-11-07 2002-12-11 Imp College Innovations Ltd Crystallisation nucleant
US7497864B2 (en) 2003-04-30 2009-03-03 Marctec, Llc. Tissue fastener and methods for using same
US8251700B2 (en) 2003-05-16 2012-08-28 Biomet 3I, Llc Surface treatment process for implants made of titanium alloy
PT1529497E (en) * 2003-11-04 2010-02-03 Friadent Gmbh Dental implant component
PT1529498E (en) * 2003-11-05 2014-09-17 Dentsply Implants Mfg Gmbh Multi part non metal implant
US20080215010A1 (en) * 2004-02-26 2008-09-04 Silver Theodore A Apparatus and method for using an intraosseous space for moving fluid into and out of the body
US20080039873A1 (en) 2004-03-09 2008-02-14 Marctec, Llc. Method and device for securing body tissue
US20060089646A1 (en) * 2004-10-26 2006-04-27 Bonutti Peter M Devices and methods for stabilizing tissue and implants
US9173647B2 (en) * 2004-10-26 2015-11-03 P Tech, Llc Tissue fixation system
US9271766B2 (en) 2004-10-26 2016-03-01 P Tech, Llc Devices and methods for stabilizing tissue and implants
US9463012B2 (en) 2004-10-26 2016-10-11 P Tech, Llc Apparatus for guiding and positioning an implant
US9089323B2 (en) 2005-02-22 2015-07-28 P Tech, Llc Device and method for securing body tissue
US7967820B2 (en) 2006-02-07 2011-06-28 P Tech, Llc. Methods and devices for trauma welding
US11253296B2 (en) 2006-02-07 2022-02-22 P Tech, Llc Methods and devices for intracorporeal bonding of implants with thermal energy
US11278331B2 (en) 2006-02-07 2022-03-22 P Tech Llc Method and devices for intracorporeal bonding of implants with thermal energy
US8496657B2 (en) 2006-02-07 2013-07-30 P Tech, Llc. Methods for utilizing vibratory energy to weld, stake and/or remove implants
US9439642B2 (en) * 2006-02-07 2016-09-13 P Tech, Llc Methods and devices for utilizing bondable materials
US11246638B2 (en) 2006-05-03 2022-02-15 P Tech, Llc Methods and devices for utilizing bondable materials
US8162154B2 (en) 2006-11-28 2012-04-24 True Manufacturing Co., Inc. Shelf organizer with glide strip
US8617185B2 (en) 2007-02-13 2013-12-31 P Tech, Llc. Fixation device
US8357205B2 (en) * 2007-04-10 2013-01-22 Mohamed Naushad Rahaman Femoral head and method of manufacture thereof
US8614263B2 (en) * 2009-02-06 2013-12-24 The Trustees Of The University Of Pennsylvania Non-biodegradable endodontic sealant composition
DE102010034194B9 (en) * 2010-08-12 2018-12-27 Kulzer Gmbh Use of kleselic acid (s) for improving the property of dental material and corresponding methods
CN102584010B (en) * 2012-03-15 2014-04-30 河南工业大学 Preparation method of multi-component aerogel
US8979991B2 (en) 2012-03-21 2015-03-17 Loma Linda University Substances and method for replacing natural tooth material
DE102012014418A1 (en) * 2012-07-20 2014-01-23 Heraeus Medical Gmbh Pasty bone cement
DE102012022134A1 (en) * 2012-11-13 2014-05-15 Heraeus Medical Gmbh Polymethylmethacrylate bone cement
US10076377B2 (en) 2013-01-05 2018-09-18 P Tech, Llc Fixation systems and methods
KR20160061991A (en) * 2013-09-27 2016-06-01 비타 찬파브릭 하. 라우터 게엠베하 & 코.카게 Implants with a removable coating
WO2016090359A2 (en) 2014-12-05 2016-06-09 Augusta University Research Institute, Inc. Glass composites for tissue augmentation, biomedical and cosmetic applications
US10058393B2 (en) 2015-10-21 2018-08-28 P Tech, Llc Systems and methods for navigation and visualization
EP3468632B1 (en) 2016-06-10 2022-12-14 DSM IP Assets B.V. Settable bone void filler
RU2705805C2 (en) 2017-12-20 2019-11-12 Андрей Викторович Пугач Bone implant
CN111971257A (en) 2018-03-28 2020-11-20 康宁股份有限公司 Borophosphate glass ceramics with low dielectric loss
WO2020112404A1 (en) * 2018-11-26 2020-06-04 Corning Incorporated Bioactive silicate glasses
US11464740B2 (en) 2019-04-29 2022-10-11 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Method and devices for delivering therapeutics by oral, respiratory, mucosal, transdermal routes
RU2754428C2 (en) * 2019-10-29 2021-09-02 Андрей Викторович Пугач Bone implant

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL242742A (en) * 1958-09-04
US3147127A (en) * 1961-12-13 1964-09-01 Owens Corning Fiberglass Corp Production of glass reinforced cementitious articles
US3804647A (en) * 1971-12-15 1974-04-16 Corning Glass Works Porous glass supports for automotive emissions control catalysts
US3923533A (en) * 1972-03-02 1975-12-02 Ppg Industries Inc Thermally stable and crush resistant microporous glass catalyst supports
GB1425577A (en) * 1972-06-30 1976-02-18 Ici Ltd Prosthetics comprising plastics materials
US3981736A (en) * 1973-05-23 1976-09-21 Ernst Leitz G.M.B.H. Biocompatible glass ceramic material
US3922155A (en) * 1973-05-23 1975-11-25 Leitz Ernst Gmbh Process of making biocompatible glass ceramic
DE2340546A1 (en) * 1973-08-10 1975-02-27 Pfaudler Werke Ag METALLIC IMPLANT AND PROCEDURE FOR ITS MANUFACTURING
GB1477899A (en) 1973-09-17 1977-06-29 Leitz Ernst Gmbh Manufacture of therapeutically useful composite materials
DE2346739C3 (en) * 1973-09-17 1978-11-23 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Process for the production of materials for therapeutic purposes, consisting of a glass matrix with embedded particles
US3919723A (en) * 1974-05-20 1975-11-18 Friedrichsfeld Gmbh Bone shaft or bone joint prosthesis and process
US4039339A (en) * 1974-07-29 1977-08-02 Corning Glass Works Method of preparing glazes
US3930194A (en) * 1974-10-21 1975-12-30 Gen Electric Inverter control circuit
CH602095A5 (en) * 1974-12-24 1978-07-31 Friedrichsfeld Gmbh
DE2501683C3 (en) 1975-01-17 1979-11-29 Ernst Leitz Wetzlar Gmbh, 6300 Wetzlar Polymer composite material for prosthetic use and process for its manufacture
SE414399B (en) * 1976-03-16 1980-07-28 Hans Scheicher CERAMIC MATERIAL FOR USE IN MEDICINE, IN PARTICULAR FOR MANUFACTURE OF IMPLANTS, FOREIGN ODONTOLOGICAL IMPLANTS AND SET FOR MANUFACTURING THE MATERIAL
US4056399A (en) * 1976-05-06 1977-11-01 Pittsburgh Corning Corporation Acid and heat resistant mortars for cellular glass bodies

Also Published As

Publication number Publication date
DE2954180C2 (en) 1987-04-16
AU4515579A (en) 1979-10-18
FR2421595A1 (en) 1979-11-02
NL7902497A (en) 1979-10-09
JPS54135496A (en) 1979-10-20
DE2910335A1 (en) 1979-10-18
GB2020197B (en) 1982-05-19
AU522940B2 (en) 1982-07-01
FR2421595B1 (en) 1984-05-11
GB2020197A (en) 1979-11-14
DE2910335C2 (en) 1986-11-13
US4171544A (en) 1979-10-23
CA1117796A (en) 1982-02-09

Similar Documents

Publication Publication Date Title
JPS6247546B2 (en)
Vogel et al. The development of bioglass ceramics for medical applications
Strnad Role of the glass phase in bioactive glass-ceramics
Kokubo et al. Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3
ES2367972T3 (en) POROUS BIOVIDRIO AND PREPARATION PROCEDURE.
Brink et al. Compositional dependence of bioactivity of glasses in the system Na2O‐K2O‐MgO‐CaO‐B2O3‐P2O5‐SiO2
US6479565B1 (en) Bioactive ceramic cement
US4437192A (en) Implants of biologically active glass or glass ceramic containing titania
US4775646A (en) Fluoride-containing Bioglass™ compositions
US3922155A (en) Process of making biocompatible glass ceramic
JPS60186455A (en) Apatite composite ceramics
JP2011507786A (en) Bioactive glass coating
Takatsuka et al. A new bioactive glass–ceramic as a coating material on titanium alloy
Possolli et al. Dissolution, bioactivity behavior, and cytotoxicity of 19. 58Li2O· 11. 10ZrO2· 69. 32SiO2 glass–ceramic
CN100445427C (en) Production of titanium and titanium-alloy glass ceramic coating
Kobayashi et al. Direct bone formation on alumina bead composite
Ivanchenko et al. Making calcium phosphate biomaterials
Höland et al. Machineable and phosphate glass-ceramics
WO1993017976A1 (en) Bioactive glass as a bone substitute
Hasirci et al. Ceramics
JPH03178652A (en) Artificial bone prosthetic member
RU2105529C1 (en) Surgical device and ceramic biologically active material for using in osteosynthesis
CA1121616A (en) Bonding of bone to materials presenting a high specific area, porous, silica-rich surface
ES2204599T3 (en) SINTERIZED HYDROXIAPATITE COMPOSITIONS AND PROCEDURE FOR THE PREPARATION OF THESE.
US20240025800A1 (en) Glass-ceramic composite material