JPS6246286B2 - - Google Patents

Info

Publication number
JPS6246286B2
JPS6246286B2 JP781181A JP781181A JPS6246286B2 JP S6246286 B2 JPS6246286 B2 JP S6246286B2 JP 781181 A JP781181 A JP 781181A JP 781181 A JP781181 A JP 781181A JP S6246286 B2 JPS6246286 B2 JP S6246286B2
Authority
JP
Japan
Prior art keywords
current
machining
capacitor
discharge
machining gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP781181A
Other languages
Japanese (ja)
Other versions
JPS57127624A (en
Inventor
Yoichi Ueishi
Masatoshi Yamaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP781181A priority Critical patent/JPS57127624A/en
Publication of JPS57127624A publication Critical patent/JPS57127624A/en
Publication of JPS6246286B2 publication Critical patent/JPS6246286B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/022Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2300/00Power source circuits or energization
    • B23H2300/20Relaxation circuit power supplies for supplying the machining current, e.g. capacitor or inductance energy storage circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明は放電加工装置、特に立上がり、立下が
り時間の短い放電電流波形を得るための放電回路
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric discharge machining apparatus, and particularly to an improvement of a discharge circuit for obtaining a discharge current waveform with short rise and fall times.

第1図は従来の放電加工装置の回路例を示す図
であり、電極1と被加工物2とを加工間隙3を介
して対向させ、この加工間隙3に直流電源4と電
流制限用抵抗器5とトランジスタのような制御用
開閉素子6を加工パルス伝送線路10,11を介
し直列に接続して閉回路を構成し、制御部7から
の信号により制御用開閉素子6を繰返しオンオフ
動作させることによつて加工間隙3に加工パルス
を印加し、加工間隙に発生するパルス放電により
被加工物2の加工を行なうものである。
FIG. 1 is a diagram showing an example of a circuit of a conventional electric discharge machining device, in which an electrode 1 and a workpiece 2 are opposed to each other with a machining gap 3 interposed therebetween, and a DC power source 4 and a current limiting resistor are connected to the machining gap 3. 5 and a control switching element 6 such as a transistor are connected in series via processed pulse transmission lines 10 and 11 to form a closed circuit, and the control switching element 6 is repeatedly turned on and off by a signal from the control section 7. A machining pulse is applied to the machining gap 3, and the workpiece 2 is machined by the pulsed discharge generated in the machining gap.

このような放電加工装置において、超硬合金等
を被加工物として能率良く加工するためには加工
間隙に印加される加工パルスのエネルギーを大き
くすることが必要であり、また、被加工物の加工
面粗さを良くするためには放電電流のパルス幅を
短くすることが有効である。
In such electrical discharge machining equipment, in order to efficiently machine cemented carbide etc. as a workpiece, it is necessary to increase the energy of the machining pulse applied to the machining gap, and it is also necessary to increase the energy of the machining pulse applied to the machining gap. In order to improve the surface roughness, it is effective to shorten the pulse width of the discharge current.

すなわち、電流パルス幅の短い、電流ピーク値
の高いパルス放電を発生できるか否かが超硬合金
等を加工する放電加工装置の性能の良否を決定す
る要因になる。
That is, whether or not a pulse discharge with a short current pulse width and a high current peak value can be generated is a factor that determines the performance of an electric discharge machining apparatus for machining cemented carbide or the like.

しかし、前述したような従来の放電回路におい
ては、電流パルス幅を短くすると、電流ピーク値
の低い電流しか流せなくなり、所望の電流ピーク
値が得にくい。
However, in the conventional discharge circuit as described above, when the current pulse width is shortened, only a current with a low current peak value can flow, making it difficult to obtain a desired current peak value.

第2図は前述した従来の放電回路の加工間隙に
現われる電圧EGの波形および加工パルス伝送線
路10,11を流れる電流ILの波形を示す図で
ある。a,bは電圧印加時間が長い場合の電圧、
電流波形図で、電圧印加時点T0から放電開始時
点T1に移行したとき電流ILが流れ始め、線路の
等価インピーダンス12,13による遅れを伴い
ながら立上がり、所定の電流ピース値IP1に達し
ている。時刻T2で制御用開閉素子6がオフにな
ると、電圧EGは放電を維持できない値に下がる
が、等価インピーダンス12,13に蓄積された
電磁エネルギーによる電流が時刻T3まで流れ続
ける。
FIG. 2 is a diagram showing the waveform of the voltage E G appearing in the machining gap of the conventional discharge circuit described above and the waveform of the current I L flowing through the machining pulse transmission lines 10 and 11. a, b are voltages when voltage application time is long;
In the current waveform diagram, when the voltage application time T 0 transitions to the discharge start time T 1 , the current I L starts flowing, rises with a delay due to the equivalent impedance 12 and 13 of the line, and reaches the predetermined current piece value I P1 . ing. When the control switching element 6 is turned off at time T 2 , the voltage E G drops to a value that cannot sustain discharge, but the current due to the electromagnetic energy accumulated in the equivalent impedances 12 and 13 continues to flow until time T 3 .

このように電圧印加時間T0−T2が長い場合に
は、所定の電流ピーク値IP1に達するものの制御
用開閉素子のオンオフ制御による予定の通電時間
T1−T2に比べて電流パルス幅はT1−T3のように
長くなつてしまう。
If the voltage application time T 0 −T 2 is long in this way, the scheduled energization time due to the on/off control of the control switching element reaches the predetermined current peak value I P1 .
The current pulse width becomes longer as T 1 −T 3 compared to T 1 −T 2 .

第2図c,dは電圧印加時間が短い場合の電
圧、電流波形図で、時刻T1で放電を開始し、時
刻T4で制御用開閉素子6がオフとなつており、
この時間T1−T4が短いために電流ILのピーク値
はIP1よりはるかに低いIP2までしか達しない。
なお、加工間隙3に流れる電流IGは第2図b,
dともILに等しい。
Figures 2c and d are voltage and current waveform diagrams when the voltage application time is short; discharge starts at time T1 , and the control switching element 6 is turned off at time T4 ;
Because this time T 1 -T 4 is short, the peak value of the current I L reaches only I P2 , which is much lower than I P1 .
Note that the current I G flowing through the machining gap 3 is as shown in Fig. 2b,
Both d are equal to IL .

このようになる原因の一つは制御用開閉素子6
の高速スイツチング特性が該素子の電荷蓄積時間
等に支配されることであり、他の原因としては直
流電源4の高周波インピーダンス、直流電源4お
よび電流制限用抵抗器5から加工間隙3に至る加
工パルス伝送線路10,11の高周波インピーダ
ンス、さらに電流制限用抵抗器5の高周波インピ
ーダンスなどがあげられる。これらの高周波イン
ピーダンスを第1図に等価インピーダンス12,
13として示す。
One of the reasons for this is that the control switching element 6
The high-speed switching characteristics of the device are controlled by the charge accumulation time of the element, and other causes include the high frequency impedance of the DC power source 4 and the machining pulse from the DC power source 4 and the current limiting resistor 5 to the machining gap 3. Examples include the high frequency impedance of the transmission lines 10 and 11, and the high frequency impedance of the current limiting resistor 5. These high frequency impedances are shown in Figure 1 as equivalent impedances of 12,
13.

上記諸原因の中で、直流電源4の高周波インピ
ーダンスについては、第1図に示すように電源4
と並列に高分子フイルム形の高周波用コンデンサ
9を付加することによつて、その高周波インピー
ダンスを十分低減できる場合が多い。
Among the above causes, the high frequency impedance of the DC power supply 4 is affected as shown in Figure 1.
By adding a high-frequency capacitor 9 of polymer film type in parallel with the high-frequency capacitor 9, the high-frequency impedance can often be sufficiently reduced.

制御用開閉素子の高速スイツチング特性の改善
については、適当な素子を選択するとともに、1
素子当りの電流を下げるように並列に接続する素
子数を増加させ、さらに電荷蓄積時間に支配され
るスイツチング時のターンオン時間を短くするた
め、たとえばトランジスタであればベース駆動回
路に図示されていないスピードアツプコンデンサ
を付加したり、ターンオフ時間を短くするためベ
ース電流を制限してトランジスタを飽和領域ぎり
ぎりで駆動するなどの方法が知られている。ま
た、電流制限用抵抗器5の高周波インピーダンス
は金属皮膜形抵抗器を使用することで改善が可能
である。
To improve the high-speed switching characteristics of control switching elements, select appropriate elements and
In order to increase the number of elements connected in parallel to lower the current per element, and to shorten the turn-on time during switching, which is dominated by the charge accumulation time, for example, in the case of a transistor, the speed not shown in the base drive circuit is increased. Methods are known, such as adding a boost capacitor or limiting the base current to shorten the turn-off time to drive the transistor at the very edge of its saturation region. Further, the high frequency impedance of the current limiting resistor 5 can be improved by using a metal film resistor.

これらの改善によつても解決できない加工パル
ス伝送線路10,11の高周波インピーダンスに
ついては、従来は第1図に示すように加工間隙3
の近辺にコンデンサ8を配置し、充電回路によつ
てコンデンサ8にエネルギーを蓄積し、コンデン
サ8の端子電圧が加工間隙3の絶縁を破壊する放
電開始電圧に達したとき、コンデンサ8から加工
間隙3へ放電電流を流し込む、いわゆるコンデン
サ付加形放電回路の採用によつて解決がはかられ
ていた。
Regarding the high frequency impedance of the processed pulse transmission lines 10 and 11, which cannot be solved even with these improvements, conventionally, as shown in FIG.
A capacitor 8 is placed near the machining gap 3, and energy is stored in the capacitor 8 by the charging circuit. A solution was sought by adopting a so-called capacitor-added discharge circuit, in which a discharge current is passed through the circuit.

このコンデンサ付加形放電回路は、コンデンサ
と加工間隙との間の高周波インピーダンスを極く
低く抑えることができるため、目的とする高い電
流ピーク値を持つ微小パルス幅の放電電流が得ら
れやすいことが特徴であるが、反面、放電開始電
圧が加工間隙の物理的条件(加工面の凹凸や加
工液中の介在物の分布など)によつて左右される
ために、1発当りの放電エネルギー、すなわちコ
ンデンサ蓄積エネルギー1/2CV2の大きなバラツ
キが生じ、必ずしも所望する加工面粗さにはなら
ないという欠点を有する。
This capacitor-added discharge circuit can keep the high-frequency impedance between the capacitor and the machining gap extremely low, so it is easy to obtain a discharge current with a minute pulse width and a high current peak value as desired. However, on the other hand, since the discharge starting voltage is affected by the physical conditions of the machining gap (such as the unevenness of the machined surface and the distribution of inclusions in the machining fluid), the discharge energy per shot, that is, the capacitor This method has the drawback that large variations occur in the stored energy 1/2CV 2 and the desired machined surface roughness is not necessarily obtained.

加工パルス伝送線路10,11の高周波インピ
ーダンスを改善する他の方法として、上記伝送線
路自体を同軸ケーブルのような高周波用低インピ
ーダンス線路で置き換えることも考えられる。同
軸ケーブルを用いる場合、その等価インピーダン
スが数オームであれば十分改善の目的を達成でき
るが、通常放電加工装置は電流値の大きい荒加工
領域と電流値の小さい微小パルス幅による仕上げ
加工領域の両方を備えていることが要求され、大
電流での使用に耐え得る熱容量を持つた上記のよ
うな高周波用低インピーダンスケーブルの製作は
極めて困難であるか、不可能な場合が多い。
Another method for improving the high frequency impedance of the processed pulse transmission lines 10 and 11 is to replace the transmission lines themselves with high frequency low impedance lines such as coaxial cables. When using a coaxial cable, the purpose of improvement can be achieved sufficiently if the equivalent impedance is several ohms, but normally electric discharge machining equipment can handle both rough machining areas with large current values and finishing machining areas with small current values and minute pulse widths. It is extremely difficult or often impossible to manufacture a low impedance high frequency cable as described above that has a heat capacity that can withstand use with large currents.

本発明は上記の点にかんがみてなされたもの
で、荒加工領域と仕上げ加工領域の両方に使用で
き、仕上げ加工のような放電電流パルス幅の極め
て短い場合でも所望する電流ピーク値が得られる
放電加工装置を提供することを目的とする。
The present invention has been made in view of the above points, and can be used in both rough machining and finishing machining areas, and can obtain a desired current peak value even when the discharge current pulse width is extremely short, such as in finishing machining. The purpose is to provide processing equipment.

上記目的を達成するため本発明では、電源部と
加工間隙との間に通常の加工パルス伝送線路とは
別に、加工パルス伝送線路およびその他の部分
(電流制限用抵抗器など)の高周波インピーダン
スによる放電電流波形の遅れを補償する電流のみ
を流すようにコンデンサと高周波用低インピーダ
ンス線路の直列回路を設け、この直列回路を流れ
る上記補償電流によつて放電電流の立上がり、立
下がり時間を短縮するようにしたものである。
In order to achieve the above object, in the present invention, in addition to the normal machining pulse transmission line between the power supply section and the machining gap, electric discharge is caused by the high frequency impedance of the machining pulse transmission line and other parts (current limiting resistor, etc.). A series circuit of a capacitor and a low impedance line for high frequency is provided so that only the current that compensates for the delay in the current waveform flows, and the rise and fall times of the discharge current are shortened by the compensation current flowing through this series circuit. This is what I did.

以下、本発明の実施例を図面によつて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例を示す回路図であ
り、第1図と同一符号は対応する部分を示してい
る。本実施例の第1図と異なる点は、加工パルス
伝送線路10,11の高周波インピーダンスによ
る放電電流波形の立上がり、立下がりの遅れを改
善するため、高周波用低インピーダンス線路を加
工パルス伝送線路10,11と並列に設けたこと
にある。14は高周波用低インピーダンス線路の
一例として示した同軸ケーブルであり、同軸ケー
ブル14の内部導体14−1の一端は電流制限用
抵抗器5に、他の一端はコンデンサ15を介して
被加工物2にそれぞれ接続され、また同軸ケーブ
ル14の外部導体14−2の一端は電極1に、他
の一端は分流抵抗16を介して直流電源4にそれ
ぞれ接続されている。
FIG. 3 is a circuit diagram showing an embodiment of the present invention, and the same reference numerals as in FIG. 1 indicate corresponding parts. This embodiment is different from FIG. 1 in that in order to improve the delay in the rise and fall of the discharge current waveform due to the high frequency impedance of the processed pulse transmission lines 10 and 11, the processed pulse transmission line 10 and the processed pulse transmission line are This is because it is installed in parallel with 11. 14 is a coaxial cable shown as an example of a low impedance line for high frequency, one end of the internal conductor 14-1 of the coaxial cable 14 is connected to the current limiting resistor 5, and the other end is connected to the workpiece 2 via the capacitor 15. One end of the outer conductor 14-2 of the coaxial cable 14 is connected to the electrode 1, and the other end is connected to the DC power source 4 via the shunt resistor 16.

このように同軸ケーブル14は、加工パルス伝
送線路10,11と並列に、加工間隙3と直流電
源4および電流制限用抵抗器5をコンデンサ15
を介して接続する高周波用低インピーダンス線路
を構成しており、この同軸ケーブル14を流れる
コンデンサ15の充放電電流をICと呼ぶことに
する。
In this way, the coaxial cable 14 connects the machining gap 3, DC power source 4, and current limiting resistor 5 to the capacitor 15 in parallel with the machining pulse transmission lines 10 and 11.
The charging/discharging current of the capacitor 15 flowing through this coaxial cable 14 will be referred to as I C .

制御部7からの信号により制御用開閉素子6が
オン状態になると、加工間隙3に電圧が印加さ
れ、放電が開始される。このとき、加工パルス伝
送線路10,11を流れる電流ILと同軸ケーブ
ル14を流れる電流ICの和が加工間隙3を流れ
る電流IGになるが、電流ICの立上がりの速さは
加工パルス伝送線路10,11の等価インピーダ
ンス12,13による影響を受けず、同軸ケーブ
ル14、コンデンサ15、分流抵抗16の高周波
特性によつてのみ決定される。また、電流IC
大きさはコンデンサ15に充電する電荷の量によ
つてのみ決定され、電流ILの立上がりの遅延す
る分を補償するだけでよいから、使用状態でのI
Cの実効値はILに比べて極めて小さい値となる。
When the control switching element 6 is turned on by a signal from the control section 7, a voltage is applied to the machining gap 3 and electric discharge is started. At this time, the sum of the current I L flowing through the machining pulse transmission lines 10 and 11 and the current I C flowing through the coaxial cable 14 becomes the current I G flowing through the machining gap 3, but the rising speed of the current I C is determined by the machining pulse It is not affected by the equivalent impedances 12 and 13 of the transmission lines 10 and 11, and is determined only by the high frequency characteristics of the coaxial cable 14, capacitor 15, and shunt resistor 16. Furthermore, the magnitude of the current I C is determined only by the amount of charge charged in the capacitor 15, and it is only necessary to compensate for the delay in the rise of the current I L.
The effective value of C is extremely small compared to IL .

分流抵抗16を設けた目的は、電流ILが印加
電圧と電流制限用抵抗器5によつて決まる電流値
まで立ち上がつたとき、この電流ILの一部が同
軸ケーブル14に分流して流れ込むのを抑えて主
に線路10,11を流れるようにするためである
が、一般には電力の供給を目的としない同軸ケー
ブル14の直流抵抗値は、線路10,11の直流
抵抗値に比べ大となるので、分流抵抗16を設け
ることは必須要件ではない。分流抵抗16を設け
る場合には金属皮膜抵抗器のような高周波特性の
良いものを用いる。
The purpose of providing the shunt resistor 16 is that when the current I L rises to a current value determined by the applied voltage and the current limiting resistor 5, a part of this current I L is shunted to the coaxial cable 14. This is to suppress the flow of electricity and allow it to flow mainly through the lines 10 and 11, but generally the DC resistance value of the coaxial cable 14, which is not intended for power supply, is larger than the DC resistance value of the lines 10 and 11. Therefore, providing the shunt resistor 16 is not an essential requirement. When providing the shunt resistor 16, one with good high frequency characteristics, such as a metal film resistor, is used.

高周波用低インピーダンス線路として用いる同
軸ケーブル14は、放送機器用の同軸ケーブルで
よい。
The coaxial cable 14 used as a high frequency low impedance line may be a coaxial cable for broadcasting equipment.

また、コンデンサ15の高周波特性は、従来加
工間隙に並列に接続して使用されていた放電用コ
ンデンサと同程度で十分である。
Furthermore, it is sufficient that the high frequency characteristics of the capacitor 15 are comparable to those of a discharge capacitor that has conventionally been used by being connected in parallel to the machining gap.

このコンデンサ15は後述するように高周波イ
ンピーダンスの改善に役立つものであるが、同時
に過大な連続した電流が同軸ケーブル14に流れ
込むのを防ぐ役目も兼ねている。
This capacitor 15 is useful for improving high frequency impedance as will be described later, but at the same time it also serves to prevent excessive continuous current from flowing into the coaxial cable 14.

このように入手容易な部品によつて構成される
補償回路の作用を以下第4図および第5図を参照
して説明する。
The operation of the compensation circuit constructed from such readily available parts will be explained below with reference to FIGS. 4 and 5.

第4図aは加工間隙に印加される電圧EGの波
形図で、第2図aのEG波形と同一である。第4
図bは加工パルス伝送線路10,11を流れる電
流ILの波形図で、第2図bのIL波形と同一であ
り、補償回路の有無にかかわらず、EG,ILの波
形は基本的に変わりない。
FIG. 4a is a waveform diagram of the voltage E G applied to the machining gap, which is the same as the E G waveform of FIG. 2a. Fourth
Figure b is a waveform diagram of the current I L flowing through the processed pulse transmission lines 10 and 11, which is the same as the I L waveform in Figure 2 b, and regardless of the presence or absence of a compensation circuit, the waveforms of E G and I L are basic. There is no difference.

第4図cはコンデンサ充放電電流ICの波形図
で、加工間隙の放電開始時点T1にILと同時に立
上り始める。電流ILと異なり、電流ICは加工パ
ルス伝送線路の等価インピーダンス12,13の
影響を受けず、電流制限用抵抗器5、分流抵抗1
6などの直列抵抗Rと、コンデンサ15の容量C
と、線路に含まれるインダタンスLとによつて定
まる時定数に比例した立上がり特性を示す。ここ
で、分流抵抗16は無いか、あつても極く小さな
値、たとえば1オーム以下、好ましくは0.5オー
ム以下に設定され、一方電流制限用抵抗器5の抵
抗値は第1図および第3図に示すように複数個の
並列抵抗の合成された値となり、一般に数オーム
ないし数十オームの値を持つので、電流ICの流
れる線路の直流抵抗値は主として抵抗器5の値に
よつて決まる。このような回路定数の下では、電
流ICは第4図cに示すような急峻な立上がり特
性を示す。この立上がりの傾きは時間に対して理
想的には無限大であるが、実際には僅かながら存
在する線路のインダクタンス成分による遅延が生
じ、結果として、第4図cのような波形となる。
FIG. 4c is a waveform diagram of the capacitor charging/discharging current I C , which starts to rise at the same time as I L at the start time of discharge in the machining gap T 1 . Unlike the current I L , the current I C is not affected by the equivalent impedances 12 and 13 of the processed pulse transmission line, and is not affected by the current limiting resistor 5 and the shunt resistor 1.
6, etc., and the capacitance C of the capacitor 15.
It shows a rise characteristic proportional to the time constant determined by the inductance L included in the line and the inductance L included in the line. Here, the shunt resistor 16 is either absent or set to a very small value, for example, 1 ohm or less, preferably 0.5 ohm or less, while the resistance value of the current limiting resistor 5 is set as shown in FIGS. 1 and 3. As shown in , it is a composite value of multiple parallel resistances, and generally has a value of several ohms to several tens of ohms, so the DC resistance value of the line through which the current I C flows is mainly determined by the value of resistor 5. . Under such circuit constants, the current I C exhibits a steep rise characteristic as shown in FIG. 4c. Ideally, the slope of this rise would be infinite with respect to time, but in reality, a slight delay occurs due to the existing inductance component of the line, resulting in a waveform as shown in FIG. 4c.

時刻T1から立上がつた電流ICの波形は時刻
T1′でピーク値に達した後、次第に下降する。こ
れは、当初の放電開始時点T1では等価インピー
ダンス12,13の電磁エネルギー保存の特性に
よりそれまでゼロであつた電磁エネルギーの値を
保持するような端子電圧が等価インピーダンス1
2,13に発生し、この端子電圧によつてコンデ
ンサ15の充電が行なわれるが、時刻T1′ではコ
ンデンサ端子電圧が高くなり、以後充電電流は減
衰し初めるからである。
The waveform of the current I C that started rising from time T1 is the time
After reaching the peak value at T 1 ′, it gradually decreases. This means that at the initial discharge start time T 1 , the terminal voltage maintains the value of electromagnetic energy, which was zero, due to the electromagnetic energy conservation characteristic of the equivalent impedances 12 and 13, and the equivalent impedance becomes 1.
2 and 13, and the capacitor 15 is charged by this terminal voltage, but the capacitor terminal voltage becomes high at time T 1 ', and the charging current begins to attenuate thereafter.

電流ILが等価インピーダンス12,13のイ
ンダクタンス成分に電磁エネルギーを蓄えながら
増加していく過程で、この電磁エネルギーの蓄積
量と前記コンデンサ15に蓄積される静電エネル
ギーの量が相等しく、かつ時刻T1′以降のIC波形
の下降の傾きとIL波形の上昇の傾きとほぼ等し
くなる場合、第4図dに示すように電流IC+I
L、すなわち加工間隙を流れる電流IGの立上がり
が最も急峻で、その電流ピーク値はほぼIP1に等
しくなる。
In the process in which the current I L increases while storing electromagnetic energy in the inductance components of the equivalent impedances 12 and 13, the amount of accumulated electromagnetic energy and the amount of electrostatic energy accumulated in the capacitor 15 are equal to each other, and at a certain time. If the slope of the fall of the I C waveform after T 1 ' is approximately equal to the slope of the rise of the I L waveform, the current I C +I
L , that is, the rise of the current I G flowing through the machining gap is the steepest, and the current peak value is approximately equal to I P1 .

時刻T2で加工間隙の印加電圧が断ち切られた
後も、電流ILは第2図bと同様に時刻T3まで流
れ続ける。この電流波形の立下がりの遅れは、電
流立上がり時に等価インピーダンス12,13に
蓄えられた電磁エネルギーの放出によるものであ
る。
Even after the voltage applied to the machining gap is cut off at time T 2 , the current I L continues to flow until time T 3 as in FIG. 2b. This delay in the fall of the current waveform is due to the release of electromagnetic energy stored in the equivalent impedances 12 and 13 when the current rises.

前記のように蓄積される静電エネルギーと電磁
エネルギーの量が相等しいときには、印加電圧が
断ち切られた後、前二者の蓄積エネルギーのみが
電流源となり、コンデンサ15に蓄えられた電荷
は逆流し、等価インピーダンス13の電磁エネル
ギーを保存する電流ILとなつて消費され、等量
づつ蓄えられたエネルギーが相殺し合うことにな
り、結果として外の線路、すなわち加工間隙3を
通る線路の電流は急速にしや断され、第4図dに
示すように時刻T2以降の立下がりの急峻な電流
波形となる。
When the amounts of electrostatic energy and electromagnetic energy stored are equal as described above, after the applied voltage is cut off, only the stored energy of the former two becomes a current source, and the charge stored in the capacitor 15 flows backwards. , the electromagnetic energy of the equivalent impedance 13 is consumed as a current I L that stores it, and the energy stored in equal amounts cancels each other out, and as a result, the current on the outside line, that is, the line passing through the machining gap 3, is The current waveform is rapidly cut off and has a steep fall after time T2 , as shown in FIG. 4d.

以上要約すれば、電流立上がり時には等価イン
ピーダンス12,13による放電電流IGの立上
がりの遅れをコンデンサ15の充電電流により補
償して急峻な立上がり波形とし、一方電流立下が
り時には等価インピーダンス12,13に蓄えら
れた電磁エネルギーをコンデンサ15からの放電
電流により急速に解消させて急峻な立下がり波形
とすることができる。
In summary, when the current rises, the delay in the rise of the discharge current I G due to the equivalent impedances 12 and 13 is compensated by the charging current of the capacitor 15, resulting in a steep rising waveform, while when the current falls, it is stored in the equivalent impedances 12 and 13. The generated electromagnetic energy can be rapidly eliminated by the discharge current from the capacitor 15, resulting in a steep falling waveform.

これは電圧印加時間の短い場合にも言えること
であつて、第5図a〜dは、従来例の第2図c,
dと同じく電圧印加時間T0−T4の短い条件のも
とで、電流IC+ILの波形の立上がり、立下がり
が改善されることを示している。
This is true even when the voltage application time is short, and FIGS. 5 a to d are similar to FIGS.
It is shown that the rise and fall of the waveform of the current I C +I L is improved under the short condition of voltage application time T 0 -T 4 as in d.

第6図は本発明の他の実施例を示す図で、コン
デンサ15は同軸ケーブル14の電源側、すなわ
ち加工間隙3とは反対側に設けられている。この
ようにコンデンサ15は同軸ケーブル14と直列
に、加工パルス伝送線路11とは並列に置かれて
いることが必要であつて、同軸ケーブル14のい
ずれの側にあるかは問わない。本実施例では、コ
ンデンサ15と電源部の制御用開閉素子6との間
に直列抵抗17−1〜17−3が接続されてい
る。この抵抗17−1〜17−3は結果的に電流
制限用抵抗器5と並列に設けられていて、コンデ
ンサ充放電電流の設定を容易にしている。
FIG. 6 is a diagram showing another embodiment of the present invention, in which a capacitor 15 is provided on the power supply side of the coaxial cable 14, that is, on the side opposite to the processing gap 3. In this way, the capacitor 15 needs to be placed in series with the coaxial cable 14 and in parallel with the processed pulse transmission line 11, and it does not matter which side of the coaxial cable 14 it is placed. In this embodiment, series resistors 17-1 to 17-3 are connected between the capacitor 15 and the control switching element 6 of the power supply section. As a result, these resistors 17-1 to 17-3 are provided in parallel with the current limiting resistor 5, making it easy to set the capacitor charging/discharging current.

第7図は本発明のさらに他の実施例を示し、第
6図における抵抗17−1〜17−3とコンデン
サ15の位置を置き変えたものである。すなわ
ち、抵抗17は集中して配置され、コンデンサ1
5−1〜15−3は制御用開開閉素子6と同数だ
け分散して配置されていて、制御用開閉素子6の
うちオンオフ制御を行なう素子数を変更した場
合、それに対応してコンデンサ容量も増減し、制
御用開閉素子6のうちオンオフ制御を行なう素子
数に比例した充放電電流が得られるようになされ
ている。
FIG. 7 shows still another embodiment of the present invention, in which the positions of resistors 17-1 to 17-3 and capacitor 15 in FIG. 6 are replaced. That is, the resistors 17 are arranged in a concentrated manner, and the capacitors 1
5-1 to 15-3 are distributed in the same number as the control switching elements 6, and when the number of elements that perform on/off control among the control switching elements 6 is changed, the capacitor capacity also changes accordingly. The charge/discharge current is increased or decreased in proportion to the number of control switching elements 6 that perform on/off control.

以上説明したように本発明は、加工パルス伝送
線路の高周波インピーダンスによる放電電流波形
の立上がり、立下がりの遅れを、別の高周波用低
インピーダンス線路とコンデンサの直列回路を付
加することによつて改善したもので、本発明の実
施により放電電流パルス幅の極めて短い場合でも
所望の電流ピーク値を得ることが可能となり、面
粗さの良い加工を能率良く行なうことができる高
性能の放電加工装置を提供できる。
As explained above, the present invention improves the delay in the rise and fall of the discharge current waveform due to the high frequency impedance of the processed pulse transmission line by adding a series circuit of another high frequency low impedance line and a capacitor. By implementing the present invention, it is possible to obtain a desired current peak value even when the discharge current pulse width is extremely short, thereby providing a high-performance electrical discharge machining device that can efficiently perform machining with good surface roughness. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の放電加工装置の一例を示す回路
図、第2図は加工パルス伝送線路のインピーダン
ス補償をしない場合の加工間隙に印加される電圧
と放電電流の波形図、第3図は本発明の一実施例
を示す回路図、第4図および第5図は本発明によ
る放電加工装置の各部の電圧、電流波形図、第6
図および第7図は本発明の他の実施例を示す回路
図である。 1……電極、2……被加工物、3……加工間
隙、4……直流電源、5……電流制限用抵抗器、
6……制御用開閉素子、10,11……加工パル
ス伝送線路、12,13……等価インピーダン
ス、14……高周波用低インピーダンス線路であ
る同軸ケーブル、15……コンデンサ。
Figure 1 is a circuit diagram showing an example of a conventional electrical discharge machining device, Figure 2 is a waveform diagram of the voltage and discharge current applied to the machining gap when impedance compensation of the machining pulse transmission line is not performed, and Figure 3 is a diagram of the present invention. FIGS. 4 and 5 are circuit diagrams showing one embodiment of the invention, and FIGS.
7 and 7 are circuit diagrams showing other embodiments of the present invention. 1... Electrode, 2... Workpiece, 3... Machining gap, 4... DC power supply, 5... Current limiting resistor,
6... Control switching element, 10, 11... Processed pulse transmission line, 12, 13... Equivalent impedance, 14... Coaxial cable which is a low impedance line for high frequency, 15... Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 電極と被加工物とを加工間隙を介して対向さ
せ、上記加工間隙と直流電源との間に接続した制
御用開閉素子の繰返しオンオフ動作によつて上記
加工間隙に加工パルスを印加し放電を発生させる
放電加工装置において、上記直流電源および制御
用開閉素子を含む電源部と上記加工間隙とを接続
する加工パルス伝送線路と並列に、コンデンサを
介して上記電源部と上記加工間隙とを接続する高
周波用低インピーダンス線路を設けたことを特徴
とする放電加工装置。
1. The electrode and the workpiece are opposed to each other with a machining gap interposed therebetween, and a machining pulse is applied to the machining gap by repeated on/off operations of a control switching element connected between the machining gap and a DC power source to generate electrical discharge. In the electrical discharge machining device that generates electric discharge, the power supply unit and the machining gap are connected via a capacitor in parallel with a machining pulse transmission line that connects the machining gap to a power supply unit including the DC power source and control switching element. An electrical discharge machining device characterized by being provided with a low impedance line for high frequency.
JP781181A 1981-01-23 1981-01-23 Electric discharge machining device Granted JPS57127624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP781181A JPS57127624A (en) 1981-01-23 1981-01-23 Electric discharge machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP781181A JPS57127624A (en) 1981-01-23 1981-01-23 Electric discharge machining device

Publications (2)

Publication Number Publication Date
JPS57127624A JPS57127624A (en) 1982-08-07
JPS6246286B2 true JPS6246286B2 (en) 1987-10-01

Family

ID=11675981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP781181A Granted JPS57127624A (en) 1981-01-23 1981-01-23 Electric discharge machining device

Country Status (1)

Country Link
JP (1) JPS57127624A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029213A (en) * 1983-07-24 1985-02-14 Inoue Japax Res Inc Electric discharge machining circuit
JPS61219532A (en) * 1985-03-22 1986-09-29 Amada Co Ltd Energy feeding cable foe electric discharge machine
JPS63312017A (en) * 1987-06-11 1988-12-20 Mitsubishi Electric Corp Power source for electric discharge machining
JP2653900B2 (en) * 1990-06-28 1997-09-17 株式会社牧野フライス製作所 Electric discharge machine

Also Published As

Publication number Publication date
JPS57127624A (en) 1982-08-07

Similar Documents

Publication Publication Date Title
JP5202639B2 (en) Electric discharge machine power supply
JP2914104B2 (en) Electric discharge machining method and apparatus, and variable electrostatic capacity and variable inductance applicable to this electric discharge machine
US4117303A (en) Arrangement in electrical welding apparatus
DE3447865C2 (en)
US3728516A (en) Welding power source
EP0516397B1 (en) Pulsed laser
US20080173626A1 (en) Capacitive discharge welding power supply and capacitive discharge welder using the same
JPS6246286B2 (en)
JPS60180718A (en) Discharge machining power supply
US5580469A (en) Electrical discharge machine with prevention of pulse crack phenomenon
JP2652392B2 (en) EDM power supply
JPWO2002067410A1 (en) Discharge pulse generator
US2843215A (en) Automatic precipitator control
US3254193A (en) Arc-welding means
JP3664879B2 (en) Electric discharge machining method and electric discharge machining apparatus
US6222149B1 (en) Power supply device for electric discharge machining apparatus
US9440300B2 (en) Electric discharge machining apparatus
US4897580A (en) Amplifier drive circuit for inductive loads
JPS5973226A (en) Machining power supply of electric discharge machining device
JP2708484B2 (en) Chopper control automatic voltage regulator for synchronous generator
JP2653900B2 (en) Electric discharge machine
JPH118986A (en) Pulse power source
JP3360619B2 (en) Electric discharge machine
JPH059209B2 (en)
JPH04331020A (en) Electric discharge machine