JPS62457B2 - - Google Patents

Info

Publication number
JPS62457B2
JPS62457B2 JP10846883A JP10846883A JPS62457B2 JP S62457 B2 JPS62457 B2 JP S62457B2 JP 10846883 A JP10846883 A JP 10846883A JP 10846883 A JP10846883 A JP 10846883A JP S62457 B2 JPS62457 B2 JP S62457B2
Authority
JP
Japan
Prior art keywords
signal
waveform
resolver
sample
hold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10846883A
Other languages
Japanese (ja)
Other versions
JPS60367A (en
Inventor
Juzo Takakado
Takumi Yoshida
Masanori Tsuda
Hirotoshi Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP10846883A priority Critical patent/JPS60367A/en
Publication of JPS60367A publication Critical patent/JPS60367A/en
Publication of JPS62457B2 publication Critical patent/JPS62457B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/46Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring amplitude of generated current or voltage

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 この発明はレゾルバによる速度検出装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a speed detection device using a resolver.

レゾルバでは、2相の励振源sin ωt、cos
ωtに対し、レゾルバ出力はsin(ωt±Θ)に
なる。Θはレゾルバ極対数をp、モータの機械角
周波数をωMとすれば、pωMtで表わされ、モー
タ速度ωMを検出するにはΘの微分をとりdΘ/
dtを求めればよく、モータ速度ωMに比例した信
号が得られる。
In the resolver, two-phase excitation sources sin ωt, cos
For ωt, the resolver output becomes sin(ωt±Θ). Θ is expressed as pω M t, where p is the number of resolver pole pairs and ω M is the mechanical angular frequency of the motor. To detect the motor speed ω M , the differential of Θ is obtained as dΘ/
All that is required is to find dt, and a signal proportional to the motor speed ω M can be obtained.

このdΘ/dtを演算するには、励振源sin ω
tとレゾルバ出力sin(ωt±Θ)の差分角周波
数信号sin Θ、を求め、このΘに関する周期関
数sin Θを1回微分してdΘ/dt・cos Θの信号波 形を得ればよく、この式より明らかのように振幅
がdΘ/dtに比例する。
To calculate this dΘ/dt, the excitation source sin ω
It is sufficient to obtain the differential angular frequency signal sin Θ between t and the resolver output sin (ωt±Θ), and differentiate the periodic function sin Θ with respect to this Θ once to obtain the signal waveform of dΘ/dt・cos Θ. As is clear from the equation, the amplitude is proportional to dΘ/dt.

2つの周期関数の差分角周波数信号を得る方法
としては、一方の信号で他方の信号をサンプルホ
ールドするサンプルホールド法、一方の信号の
180゜毎に他方の信号を正/負反転し平滑する同
期整流方式、の2つがある。サンプルホールド法
に比較し、同期整流方式は、リツプルが大きく、
微分前に大時定数の平滑回路を配する必要が生
じ、速応性に難がある。
Methods to obtain a differential angular frequency signal between two periodic functions include the sample-and-hold method, in which one signal samples and holds the other signal;
There are two methods: synchronous rectification, which inverts the other signal every 180 degrees to smooth it. Compared to the sample-and-hold method, the synchronous rectification method has larger ripples.
It becomes necessary to arrange a smoothing circuit with a large time constant before the differentiation, which poses a problem in quick response.

差分角周波数信号はΘに関する周期関数
(Θ)であり、これがいかなる波形であれ微分す
ればd(Θ)/dt=d(Θ)/dΘ・dΘ/dt
の形で表わされ、 d(Θ)/dΘを一定とすれば、d(Θ)/dtは
dΘ/dtに比例す ることとなる。すなわち、上記する例のように
(Θ)がsin Θであれば、d(Θ)/dtを求め
ると、d(Θ)/dΘはcos Θとなり周期関
数で表わされ、従つてこのcos Θの振幅がd
Θ/dtに対応するのであり、得られた微分信号波
形の振幅に着目すれば、これが検出すべきモータ
速度信号となる。
The differential angular frequency signal is a periodic function (Θ) regarding Θ, and no matter what waveform it is, if you differentiate it, d(Θ)/dt = d(Θ)/dΘ・dΘ/dt
If d(Θ)/dΘ is constant, d(Θ)/dt is proportional to dΘ/dt. In other words, if (Θ) is sin Θ as in the example above, then when d(Θ)/dt is calculated, d(Θ)/dΘ becomes cos Θ and is expressed as a periodic function, so this cos Θ The amplitude of is d
It corresponds to Θ/dt, and if we focus on the amplitude of the obtained differential signal waveform, this becomes the motor speed signal to be detected.

次に周期関数(Θ)の波形を考える。すなわ
ち、モータ速度信号は時間遅れのない瞬時の検出
値が理想でありもちろん連続して検出できること
が必要である。すなわち、(Θ)を微分して得
るΘの周期関数(d(Θ)/dΘ)・(dΘ/
dt)の微分波形にあつて、速度信号に対応する振
幅(dΘ/dt)が、何らかの手段を用いて連続し
た線形の高さ信号波形に変換できる(Θ)を選
ぶようにすればよい。
Next, consider the waveform of the periodic function (Θ). That is, the ideal motor speed signal is an instantaneous detection value without time delay, and of course it is necessary to be able to detect it continuously. In other words, the periodic function of Θ obtained by differentiating (Θ) (d(Θ)/dΘ)・(dΘ/
dt), the amplitude (dΘ/dt) corresponding to the velocity signal can be converted into a continuous linear height signal waveform using some means (Θ).

ところで、レゾルバは2相励磁であり、励振源
をレゾルバ出力でサンプルホールドして得る差分
角周波数信号は90゜の相差を有する2つの信号と
なり、従つてこの微分信号波形も同じく90゜の相
差を有する2つの同一波形の信号が得られ、
(Θ)の微分波形d(Θ)/dtは2つ存在する
ことになり、上記微分波形振幅を連続した高さ信
号に変換するに際し、この2つの微分波形を用い
ることが考えられる。
By the way, the resolver is two-phase excitation, and the differential angular frequency signal obtained by sampling and holding the excitation source at the resolver output is two signals with a phase difference of 90 degrees. Therefore, this differential signal waveform also has a phase difference of 90 degrees. Two identical waveform signals are obtained,
There are two differential waveforms d(Θ)/dt of (Θ), and it is conceivable to use these two differential waveforms when converting the differential waveform amplitude into a continuous height signal.

すなわち、この発明は、上記のように、レゾル
バが2相励磁であり、差分角周波数信号の微分信
号は、90゜の相差を持つ2つの同一波形信号であ
ることに鑑み、この2つの微分波形信号を加算合
成するという簡易の手法により、当微分波形信号
の振幅に一致した連続の高さ信号を得るようにし
たもので、90゜の位相差をもつ2つの微分波形信
号を三角波形として、一方の波形が零のとき他方
の波形は最大値にあり、かつ前者が位相の進むに
つれ増大するのに対し後者は同じ勾配で減少して
いき、両者の加算合成値は三角波形振幅の最大値
として変化せず、これは前者が最大値に達し後者
が零の場合でも全く変らず、結局90゜位相差の2
つの三角波形の加算合成は、三角波形の振幅値に
一致し高さ信号として一定値の信号を得ることに
なる。
That is, in this invention, in view of the fact that the resolver has two-phase excitation and the differential signals of the differential angular frequency signal are two identical waveform signals with a phase difference of 90 degrees, the present invention A simple method of adding and combining signals is used to obtain a continuous height signal that matches the amplitude of the differential waveform signal. Two differential waveform signals with a phase difference of 90 degrees are treated as a triangular waveform. When one waveform is zero, the other waveform is at its maximum value, and while the former increases as the phase progresses, the latter decreases with the same slope, and the summed value of both is the maximum value of the triangular waveform amplitude. This does not change at all even when the former reaches its maximum value and the latter is zero, and in the end, the 90° phase difference between the two
Additive synthesis of the two triangular waveforms yields a signal with a constant value as a height signal that matches the amplitude value of the triangular waveforms.

以下、図示する実施例によりこの発明を具体的
に説明する。図面は、第1図がレゾルバの構成
図、第2図がレゾルバによる速度検出装置ブロツ
ク図、第3図が動作説明のタイムチヤートであ
る。
Hereinafter, the present invention will be specifically explained with reference to illustrated embodiments. As for the drawings, FIG. 1 is a configuration diagram of the resolver, FIG. 2 is a block diagram of a speed detection device using the resolver, and FIG. 3 is a time chart for explaining the operation.

第1図に示すように、レゾルバは固定子側の2
相の励磁巻線1,2と、回転子側の1相の出力巻
線3より構成される。励磁巻線1,2はそれぞれ
90゜位相差の2相の正弦波信号sin ωt、cos
ωtで励磁され、出力巻線3には回転角Θ(電気
角に換算)で位相変調された出力信号sin(ωt
±Θ)が発生し、回転トランス4を介して外部へ
取出される。この回転角Θは、時間とともに変化
し、モータ速度ωMとすれば、また極対数をpと
して、pωMtと表わすことができ、レゾルバ出
力信号はsin(ωt±pωMt)となる。すなわ
ち、レゾルバによる速度検出は、レゾルバ出力の
位相変調信号sin(ωt±Θ)より、モータ速度
ωMに比例の位相微分信号dΘ/dtを如何にして
得るかに係り、この発明は、レゾルバ励磁信号と
出力信号との間の差分角周波数信号を得、このΘ
に関する周期関数を1回微分してΘの微分信号d
Θ/dtを、この1回微分のΘ周期関数の振幅とし
て取出すようにしたものである。
As shown in Figure 1, the resolver is located on the stator side.
It is composed of phase excitation windings 1 and 2 and a one-phase output winding 3 on the rotor side. Excitation windings 1 and 2 are each
Two-phase sine wave signal sin ωt, cos with a 90° phase difference
The output winding 3 receives an output signal sin(ωt
±Θ) is generated and taken out to the outside via the rotary transformer 4. This rotation angle Θ changes with time, and if the motor speed is ω M and the number of pole pairs is p, it can be expressed as pω M t, and the resolver output signal becomes sin(ωt± M t). In other words, speed detection by a resolver involves how to obtain a phase differential signal dΘ/dt proportional to the motor speed ω M from a phase modulation signal sin (ωt±Θ) of the resolver output. Obtain the difference angular frequency signal between the signal and the output signal, and this Θ
The differential signal d of Θ is obtained by differentiating the periodic function once with respect to
Θ/dt is extracted as the amplitude of this one-time differential Θ periodic function.

第2図のブロツク線図において、5,6はレゾ
ルバ励振源のsin ωt、cos ωtに同期の三角
波を形成する回路、7はレゾルバ出力のsin(ω
t±Θ)を矩形波に変換する回路、8,9は先の
三角波形成回路5,6の出力の励振源に同期した
三角波を積分した放物波形を得る積分回路、1
0,11は、放物波形をレゾルバ出力に同期の矩
形波の立下り(立上り)タイミングでサンプリン
グするサンプルホールド回路、12,13はサン
プリングして得られたレゾルバ励磁信号と出力信
号との間の差分角周波数信号を波形整形しサンプ
リングのホールドステツプを除去するフイルタ
ー、14,15は波形整形された差分角周波数信
号の放物波形を微分しΘの微分dΘ/dtを振幅と
するΘの周期関数の三角波に変換する微分回路、
16,17はこの三角波(振幅がモータ速度ωM
に比例)を整流する整流回路、18は2つの整流
三角波を加算合成し、モータ速度ωMに比例する
高さ信号を得る加算回路である。
In the block diagram shown in Figure 2, 5 and 6 are circuits that form triangular waves synchronous with the resolver excitation source sin ωt and cos ωt, and 7 is the resolver output sin(ω
t±Θ) into a rectangular wave; 8 and 9 are integrating circuits that obtain a parabolic waveform by integrating the triangular wave synchronized with the excitation source output from the triangular wave forming circuits 5 and 6;
0 and 11 are sample and hold circuits that sample the parabolic waveform at the fall (rise) timing of a rectangular wave that is synchronized with the resolver output, and 12 and 13 are sample and hold circuits that sample the parabolic waveform at the fall (rise) timing of a rectangular wave that is synchronized with the resolver output. Filters 14 and 15 waveform-shape the differential angular frequency signal and remove the hold step of sampling, and filters 14 and 15 are periodic functions of Θ that differentiate the parabolic waveform of the waveform-shaped differential angular frequency signal and have the amplitude of the differential dΘ/dt of Θ. Differential circuit that converts into a triangular wave,
16 and 17 are this triangular wave (amplitude is motor speed ω M
18 is an adder circuit that adds and synthesizes the two rectified triangular waves to obtain a height signal proportional to the motor speed ω M.

第3図のタイムチヤートは、先のブロツク線図
において各回路の入出力波形を示す。上から順
に、レゾルバ励磁信号sin ωt、cos ωtに同
期した三角波A,Bレゾルバ出力信号sin(ωt
+Θ)に同期した矩形波C、三角波A,Bを積分
した放物波形D,E、及びこの放物波形D,Eを
矩形波Cの立下りタイミングでサンプリングして
得た差分角周波数信号のサンプルホールド波形
F,G、このサンプルホールド波形F,Gのホー
ルドステツプを除去した差分角周波数の放物波形
H,I、放物波形H,Iを微分して得た差分角周
波数に比例の振幅を持つ三角波J,K、この三角
波J,Kを整流した波形L,M、この整流三角波
L,Mを加算合成し振幅に一致した一定の高さ信
号N、を表わす。
The time chart in FIG. 3 shows the input and output waveforms of each circuit in the previous block diagram. From the top, triangular waves A and B resolver output signals sin(ωt) synchronized with resolver excitation signals sin ωt, cos ωt.
+Θ), parabolic waveforms D and E obtained by integrating the rectangular waves A and B, and the differential angular frequency signal obtained by sampling these parabolic waveforms D and E at the falling timing of the rectangular wave C. Sample and hold waveforms F and G, parabolic waveforms H and I of the difference angular frequency obtained by removing the hold step of these sample and hold waveforms F and G, and an amplitude proportional to the difference angular frequency obtained by differentiating the parabolic waveforms H and I. 2, waveforms L and M obtained by rectifying the triangular waves J and K, and a constant height signal N whose amplitude corresponds to the rectified triangular waves L and M are added and synthesized.

すなわち、この発明は、レゾルバが2相励磁で
あり、出力信号によりサンプルホールドして得ら
れる差分角周波数信号は2相ありこれの微分波形
信号も2相得られるということに鑑み、この2つ
の90゜位相差の微分波形を利用して、当微分波形
振幅に一致した一定の高さ信号を取り出そうとす
るもので、2つの微分信号波形を三角波としたこ
とを特徴とする。
That is, in this invention, the resolver has two-phase excitation, and the difference angular frequency signal obtained by sampling and holding the output signal has two phases, and the differential waveform signal of this can also be obtained with two phases. It attempts to extract a constant height signal that matches the amplitude of the differential waveform by using the differential waveform of the phase difference, and is characterized in that the two differential signal waveforms are triangular waves.

第3図タイムチヤートで明らかのように、三角
波J,Kの整流波形L,Mを加算合成すれば、上
記三角波J,Kの振幅に一致した高さ信号Nが得
られ、モータ速度ωMすなわち位相微分dΘ/dt
の信号を検出することができる。従つて、この微
分波形が三角波J,Kとなるためには、J,K波
形を積分した波形は放物波形でなければならず、
サンプルホールド前のレゾルバ励磁信号も放物波
形に変換しなければならない。
As is clear from the time chart in Figure 3, if the rectified waveforms L and M of the triangular waves J and K are added and combined, a height signal N that matches the amplitude of the triangular waves J and K is obtained, and the motor speed ω M is Phase differential dΘ/dt
signals can be detected. Therefore, in order for this differential waveform to become triangular waves J and K, the waveform obtained by integrating the J and K waveforms must be a parabolic waveform,
The resolver excitation signal before sample and hold must also be converted to a parabolic waveform.

すなわち、この発明は、レゾルバ励磁信号を矩
形波に変換、更に積分を行い三角波を得、かつま
たこの三角波を積分して放物波形を得るもので、
これをレゾルバ出力の零クロスタイミングでサン
プリングし、放物波形でレゾルバ励磁信号と出力
信号との間の差分角周波数信号を得、かつこの差
分角周波数の放物波形信号を微分して、振幅が速
度信号に対応する三角波に変換、これら2相の90
゜相差の三角波を加算合成して振幅に一致した一
定の高さ信号を得ることになる。
That is, this invention converts the resolver excitation signal into a rectangular wave, further integrates it to obtain a triangular wave, and also integrates this triangular wave to obtain a parabolic waveform.
This is sampled at the zero cross timing of the resolver output to obtain a differential angular frequency signal between the resolver excitation signal and the output signal in a parabolic waveform, and the parabolic waveform signal of this differential angular frequency is differentiated to calculate the amplitude. Convert these two phases into a triangular wave corresponding to the speed signal.
By adding and synthesizing the triangular waves with phase differences, a constant height signal matching the amplitude is obtained.

第2図のブロツク図、第3図のタイムチヤート
により機能を説明すると、三角波形成回路5,6
より励磁信号に同期の90゜相差の三角波A,Bが
形成され、この三角波A,Bは積分回路8,9を
介し放物波形D,Eに変換される。一方、矩形波
変換回路7よりレゾルバ出力に同期の矩形波Cが
出力され、この立上りあるいは立下りのタイミン
グでサンプルホールド回路10,11により放物
波形D,Eがサンプルホールドされ、サンプルホ
ールド波形F,Gが形成される。サンプルホール
ド波形F,Gは、フイルター12,13を介しス
テツプ状箇所の整形を行い、レゾルバ励磁と出力
の差分角周波数の放物波形H,Iに変換され、更
に微分回路14,15を経て差分角周波数(速度
信号)に一致した振幅を持つ三角波J,Kに変換
される。三角波J,Kは整流回路16,17によ
り整流され整流波形L,Mに変換、更に加算回路
18により加算合成され、三角波J,Kの振幅に
一致した連続の線形信号Nが得られる。
To explain the function using the block diagram in Fig. 2 and the time chart in Fig. 3, the triangular wave forming circuits 5, 6
As a result, triangular waves A and B having a phase difference of 90° are formed in synchronization with the excitation signal, and these triangular waves A and B are converted into parabolic waveforms D and E via integrating circuits 8 and 9. On the other hand, a rectangular wave C synchronized with the resolver output is output from the rectangular wave conversion circuit 7, and at this rising or falling timing, the sample and hold circuits 10 and 11 sample and hold the parabolic waveforms D and E, and the sample and hold waveform F , G are formed. The sample and hold waveforms F and G undergo step-shaped shaping through filters 12 and 13, and are converted into parabolic waveforms H and I of the difference angular frequency between the resolver excitation and output, and further pass through differentiating circuits 14 and 15 to form the difference angular frequency. It is converted into triangular waves J and K with amplitudes matching the angular frequency (velocity signal). The triangular waves J and K are rectified by rectifier circuits 16 and 17, converted into rectified waveforms L and M, and further summed and combined by an adder circuit 18 to obtain a continuous linear signal N that matches the amplitude of the triangular waves J and K.

以上のように、この発明は、レゾルバが2相励
磁であり、位相変調信号のレゾルバ出力でサンプ
ルホールドすれば、モータ速度に対応の2相の差
分角周波数信号を得られることに鑑み、この微分
波形が差分角周波数に比例した振幅の周期関数で
あり、これら90゜相差の2相の周期関数を用いて
周期に関係なく振幅を連続した信号として取り出
すもので、時間遅れのない速応性のよい速度信号
が得られ速制御御ループのフイードバツク信号と
して最適である。なお、放物状のサンプルホール
ド波形を整形する際のステツプ高さは、レゾルバ
励磁周波数が5KHz前後であるに対しモータ速度
は150Hz程度の低速であり、左程問題とするまで
もなく、1msec位の短時定数のフイルターでよ
く、従来の同期整流方式のような大きなリツプル
を除去する必要はなく、このフイルターの、速応
性に与える影響は殆んどない。また、回転構成
も、OPアンプ、抵抗、コンデンサ、FET等の部
品を組合せてなり、簡単かつ低価格であり、高精
度の速応性に優れたアナログ速度検出器を提供す
ることができる。
As described above, the present invention is based on the fact that the resolver has two-phase excitation, and if the resolver output of the phase modulation signal is sampled and held, a two-phase differential angular frequency signal corresponding to the motor speed can be obtained. The waveform is a periodic function with an amplitude proportional to the differential angular frequency, and these two-phase periodic functions with a 90° phase difference are used to extract the amplitude as a continuous signal regardless of the period, and it has good quick response without time delay. A speed signal can be obtained, which is ideal as a feedback signal for the speed control loop. Note that the step height when shaping a parabolic sample-hold waveform is not so much a problem as the resolver excitation frequency is around 5KHz, but the motor speed is slow at around 150Hz, and it is around 1msec. A filter with a short time constant of 1 is sufficient, and there is no need to remove large ripples as in the conventional synchronous rectification method, and this filter has almost no effect on the quick response. In addition, the rotational configuration is a combination of components such as an OP amplifier, a resistor, a capacitor, and an FET, making it possible to provide an analog speed detector that is simple and inexpensive, and has high precision and excellent quick response.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、第1図がレゾルバの構成図、第2図が
実施例のブロツク線図、第3図がその動作を説明
するためのタイムチヤートである。 1,2……レゾルバ励磁巻線、3……レゾルバ
出力巻線、5,6……三角波発生回路、7……矩
形波発生回路、8,9……積分回路、10,11
……サンプルホールド回路、12,13……フイ
ルター、14,15……微分回路、16,17…
…整流回路、18……加算回路。
As for the drawings, FIG. 1 is a configuration diagram of the resolver, FIG. 2 is a block diagram of the embodiment, and FIG. 3 is a time chart for explaining its operation. 1, 2... Resolver excitation winding, 3... Resolver output winding, 5, 6... Triangular wave generation circuit, 7... Rectangular wave generation circuit, 8, 9... Integrating circuit, 10, 11
...sample hold circuit, 12,13...filter, 14,15...differentiation circuit, 16,17...
... Rectifying circuit, 18... Adding circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 2相の励磁巻線と1相の出力巻線よりなるレ
ゾルバにおいて、2相の励磁巻線の励磁信号に同
期して三角波を形成する2つの三角波発生回路、
この三角波を放物波形に変換する2つの積分回
路、出力巻線の位相変調信号を矩形波に変換する
矩形波発生回路、この矩形波の立上りあるいは立
下りのタイミングで上記2つの放物波形をサンプ
ルホールドする2つのサンプルホールド回路、こ
のサンプルホールド波形を整形する2つのフイル
ター、この整形後のサンプルホールド波形を微分
し三角波に変換する2つの微分回路、この三角波
を整流する2つの整流回路、この整流三角波を加
算合成し振幅に一致の連続した高さ信号を出力す
る加算回路、を備えたことを特徴とするレゾルバ
による速度検出装置。
1 In a resolver consisting of a two-phase excitation winding and a one-phase output winding, two triangular wave generation circuits that form a triangular wave in synchronization with the excitation signal of the two-phase excitation winding;
Two integrating circuits convert this triangular wave into a parabolic waveform, a rectangular wave generation circuit converts the phase modulation signal of the output winding into a rectangular wave, and the above two parabolic waveforms are generated at the rising or falling timing of the rectangular wave. Two sample and hold circuits that sample and hold, two filters that shape this sample and hold waveform, two differentiating circuits that differentiate this shaped sample and hold waveform and convert it into a triangular wave, two rectifier circuits that rectify this triangular wave, and this A speed detection device using a resolver, comprising an addition circuit that adds and synthesizes rectified triangular waves and outputs a continuous height signal that matches the amplitude.
JP10846883A 1983-06-15 1983-06-15 Speed detector by resolver Granted JPS60367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10846883A JPS60367A (en) 1983-06-15 1983-06-15 Speed detector by resolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10846883A JPS60367A (en) 1983-06-15 1983-06-15 Speed detector by resolver

Publications (2)

Publication Number Publication Date
JPS60367A JPS60367A (en) 1985-01-05
JPS62457B2 true JPS62457B2 (en) 1987-01-08

Family

ID=14485517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10846883A Granted JPS60367A (en) 1983-06-15 1983-06-15 Speed detector by resolver

Country Status (1)

Country Link
JP (1) JPS60367A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196317U (en) * 1987-07-17 1989-06-27

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3834384A1 (en) * 1988-10-10 1990-04-12 Lenze Gmbh & Co Kg Aerzen METHOD AND CIRCUIT ARRANGEMENT FOR GENERATING DIGITAL SPEED AND ROTARY ANGLE INFORMATION BY MEANS OF A FUNCTION TERMINAL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196317U (en) * 1987-07-17 1989-06-27

Also Published As

Publication number Publication date
JPS60367A (en) 1985-01-05

Similar Documents

Publication Publication Date Title
US4475105A (en) System for detecting mechanical movement
US4384242A (en) Speed control systems of synchronous motors
JPH04505801A (en) Method for generating rotational speed proportional voltage by a resolver and circuit device for implementing this method
US4556885A (en) System for detecting position or speed
WO1982003692A1 (en) Speed detecting device
JPS62457B2 (en)
US4481468A (en) Velocity detecting apparatus having a two-phase resolver
US4484129A (en) Speed control apparatus for polyphase induction motors
JPH0347076B2 (en)
JPS6038659A (en) Speed detecting apparatus by resolver
JPH0415417B2 (en)
US4647861A (en) Method and means for producing a D.C. signal proportional to the peak amplitude of an A.C. signal
US3983494A (en) Frequency insensitive sine wave-to-cosine wave converter
JPS6115610B2 (en)
GB2100538A (en) AM or FM demodulator
JPH02212775A (en) Pll circuit and alternating current voltage detecting circuit
JP2576104B2 (en) Synchronous sampling circuit
SU1113827A1 (en) Device for converting shaft turn angle to signal with pulse-width modulation
JPS5786761A (en) Low speed detection circuit
SU1374429A1 (en) Shaft angular position-to-code converter
JPS63218818A (en) Resolver type rotation angle detector
JPS6248448B2 (en)
SU790184A1 (en) Frequency-to-pulse train converter
JPH0211059B2 (en)
SU1272461A1 (en) Control device for a.c.motor