JPS6245420Y2 - - Google Patents

Info

Publication number
JPS6245420Y2
JPS6245420Y2 JP12313481U JP12313481U JPS6245420Y2 JP S6245420 Y2 JPS6245420 Y2 JP S6245420Y2 JP 12313481 U JP12313481 U JP 12313481U JP 12313481 U JP12313481 U JP 12313481U JP S6245420 Y2 JPS6245420 Y2 JP S6245420Y2
Authority
JP
Japan
Prior art keywords
electrostrictive
sample
holder
electrostrictive element
magnetostrictive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12313481U
Other languages
Japanese (ja)
Other versions
JPS5828969U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12313481U priority Critical patent/JPS5828969U/en
Publication of JPS5828969U publication Critical patent/JPS5828969U/en
Application granted granted Critical
Publication of JPS6245420Y2 publication Critical patent/JPS6245420Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は電歪又は磁歪素子を利用して試料に引
張や疲労を与えるようにした電子顕微鏡等におけ
る試料装置に関する。
[Detailed Description of the Invention] The present invention relates to a sample device for an electron microscope or the like that uses an electrostrictive or magnetostrictive element to apply tension or fatigue to a sample.

電子顕微鏡により金属試料の動的観察を行なう
場合、試料に引張り力や繰り返し伸縮力を与え
(以下疲労と略記する)て行なつている。従来か
らある試料に引張や疲労を与える装置は機械方式
のもので、操作が厄介であり、観察に長時間を要
した。又、引張と疲労を与える装置は夫々独立し
たものしかなく、非合理的操作を強いられて来
た。
When performing dynamic observation of a metal sample using an electron microscope, tensile force or repeated stretching force (hereinafter abbreviated as fatigue) is applied to the sample. Conventional devices that apply tension or fatigue to samples are mechanical, which are cumbersome to operate and require a long time to observe. Furthermore, there are only independent devices for applying tension and fatigue, which has forced irrational operations.

本考案は斯くの如き点を一掃することを目的と
してなされたもので、電歪又は磁歪素子を利用
し、引張と疲労の両印加機能を持つようになした
新規な試料装置を提供するものである。
The present invention was developed with the aim of eliminating such problems, and provides a new sample device that utilizes electrostrictive or magnetostrictive elements and has both tensile and fatigue application functions. be.

第1図は本考案の一実施例を示した装置であ
る。図中2は鏡筒壁、3は試料4が光軸5上に位
置するように鏡筒壁2を介して鏡筒内に設置され
たホルダである。尚、6はOリングである。この
ホルダ3の上方には図示しないが電子銃、集束レ
ンズ等のレンズ系が、下方には対物レンズ、投影
レンズ、蛍光板等が配置されており、電子銃から
射出された電子ビームはホルダ3内の試料4に照
射される。該ホルダは以下の様に構成されてい
る。前記試料4は薄膜状のもので、第2図に示す
様に中央に孔7が明けられた基板8上に付着させ
られる。(第1図中では便宜上試料4のみ示した
が、これは実際には基板でこの上に薄膜状の試料
が付着されている。)該基板の一方の端部はホル
ダ3に固定された第1試料台9に取り付けられ、
他方の端部はホルダ内で水平方向に移動可能な第
2試料台10に取り付けられる。該第2試料台1
0には連結棒11が接続されており、該連結棒の
前記第2試料台10と反対側の端部は第1電歪素
子12と接続されている。該第1電歪素子は光軸
方向に伸縮するもので、印加される電圧がオンの
時縮み、オフの時、伸びて元の長さに戻ることに
よりホルダ内壁に当り、摩擦力によつて固定され
る。それにより、連結棒11等は水平方向に移動
しない。14は該第1電歪素子から水平方向に適
宜な距離をおいて配置された第3電歪素子で、前
記第1電歪素子12と同様に光軸方向に伸縮す
る。該第1電歪素子と第3電歪素子との間には第
3図に示す様に、電圧が印加されると水平方向
(光軸と直角方向)に伸び、切られると縮んで元
の長さに戻る第2電歪素子13が両者と一体化す
るように配置される。15は電圧コントロール装
置で、前記第1電歪素子12の入力端子AA′、第
2電歪素子13の入力端子BB′、第3電歪素子1
4の入力端子CC′を介して該第1〜3電歪素子の
両端に適宜な電圧を印加するものである。尚、こ
れらの電歪素子は実際には複数の圧電素子を重ね
合わしているので、重ね合わされている複数の素
子の各々の両端に電圧を印加しなければならない
が、説明の都合上前記第1〜第3電歪素子の両端
のみに電圧を印加するようにした。
FIG. 1 shows an apparatus showing an embodiment of the present invention. In the figure, 2 is a lens barrel wall, and 3 is a holder installed in the lens barrel via the lens barrel wall 2 so that the sample 4 is located on the optical axis 5. Note that 6 is an O-ring. Although not shown, an electron gun, a focusing lens, and other lens systems are arranged above the holder 3, and an objective lens, a projection lens, a fluorescent screen, etc. are arranged below. sample 4 is irradiated. The holder is constructed as follows. The sample 4 is in the form of a thin film, and is deposited on a substrate 8 having a hole 7 in the center, as shown in FIG. (Although only sample 4 is shown in FIG. 1 for convenience, this is actually a substrate on which a thin film sample is attached.) One end of the substrate is attached to a sample 4 fixed to holder 3. 1 attached to the sample stage 9,
The other end is attached to a second sample stage 10 that is horizontally movable within the holder. The second sample stage 1
0 is connected to a connecting rod 11, and the end of the connecting rod opposite to the second sample stage 10 is connected to a first electrostrictive element 12. The first electrostrictive element expands and contracts in the optical axis direction, and when the applied voltage is on, it contracts, and when it is off, it stretches and returns to its original length, hitting the inner wall of the holder, and is caused by frictional force. Fixed. As a result, the connecting rod 11 and the like do not move in the horizontal direction. A third electrostrictive element 14 is arranged at an appropriate distance from the first electrostrictive element in the horizontal direction, and expands and contracts in the optical axis direction similarly to the first electrostrictive element 12. As shown in FIG. 3, when a voltage is applied between the first electrostrictive element and the third electrostrictive element, it expands in the horizontal direction (direction perpendicular to the optical axis), and when cut, it contracts and returns to its original state. The second electrostrictive element 13, which returns to its length, is arranged so as to be integrated with both. Reference numeral 15 denotes a voltage control device, which connects the input terminal AA' of the first electrostrictive element 12, the input terminal BB' of the second electrostrictive element 13, and the third electrostrictive element 1.
An appropriate voltage is applied to both ends of the first to third electrostrictive elements through the input terminal CC' of No. 4. Note that these electrostrictive elements are actually composed of a plurality of piezoelectric elements stacked one on top of the other, so a voltage must be applied to both ends of each of the plurality of stacked elements; however, for the sake of explanation, the first ~A voltage was applied only to both ends of the third electrostrictive element.

斯くの如き装置において、試料4に伸縮力を与
えて疲労テストを行う時は、電圧コントロール装
置15から端子AA′間に第4図aに示す如き電圧
を、端子BB′間に第4図bに示す如く電圧を端子
CC′間に第4図cに示す如き電圧を夫々印加す
る。そうすれば、第1電歪素子12は縮み、第3
電歪素子14はホルダ3の内壁に接して不動の状
態を保ち、第2電歪素子13は印加された電圧
(第4図b参照)のパルス数に応じた回数伸びた
り縮んだりする。従つて、該第2電歪素子13の
伸縮に同期して連結棒11、第2試料台10が水
平方向に往復運動し、基板8上の試料4に疲労が
印加されることになる。この疲労の程度は第2電
歪素子13に印加される電圧のパルス数によりコ
ントロールされる。而して、所定の疲労を与えた
後、電子ビーム5を該試料上に照射し、その透過
像を蛍光板(図示せず)上で観察する。又、試料
4に引張り力を与えて引張テストを行なうとき
は、電圧コントロール装置15から端子AA′間に
第5図aに示す如き電圧を、端子BB′間に第5図
bに示す如き電圧を、端子CC′間に第5図cに示
す如き電圧を夫々印加する。そうすれば、第1電
歪素子12はo〜t3の間電圧“0”レベルで元の
長さに伸びているので、ホルダ3の内壁に接して
水平方向に不動の状態にある。第3電歪素子14
はo〜t2(t2<t3)の間電圧“1”レベルで縮み水
平方向に移動可能な状態となる。第2電歪素子1
3はt1〜t4(0<t1<t2<t3<t4)の間電圧“1”レ
ベルで水平方向に伸びるので、該伸びに応じて前
記第3電歪素子14は(t1〜t2間)右方向に移動
する。次に、該第3電歪素子14はt2〜t6の間電
圧“0”レベルで伸びて元の長さに戻るので、水
平方向に不動の状態となる。又、第1電歪素子1
2はt3〜t5(t2<t3<t5<t6)間で電圧“1”レベル
で縮み水平移動可能状態となる。この時(t4
t7)、第2電歪素子13は電圧“0”レベルで縮
むので、その縮みに応じて前記第1電歪素子12
が(t4〜t5間)右方向に移動する。従つて、連結
棒11、第2試料台10も同期して右方向に移動
するので、基板8と共に試料4は引張られる。こ
の引張りの程度は前記第1〜第3電歪素子に与え
られる電圧の高さ或いはパルス数でコントロール
することが出来る。
In such a device, when performing a fatigue test by applying stretching force to the sample 4, a voltage as shown in Figure 4a is applied from the voltage control device 15 to terminal AA', and a voltage as shown in Figure 4b is applied between terminal BB'. Connect the voltage to the terminals as shown in
A voltage as shown in FIG. 4c is applied between CC'. This causes the first electrostrictive element 12 to contract and the third
The electrostrictive element 14 remains immobile in contact with the inner wall of the holder 3, and the second electrostrictive element 13 expands and contracts a number of times depending on the number of pulses of the applied voltage (see FIG. 4b). Therefore, the connecting rod 11 and the second sample stage 10 reciprocate in the horizontal direction in synchronization with the expansion and contraction of the second electrostrictive element 13, and fatigue is applied to the sample 4 on the substrate 8. The degree of fatigue is controlled by the number of voltage pulses applied to the second electrostrictive element 13. After applying a predetermined fatigue, an electron beam 5 is irradiated onto the sample, and the transmitted image is observed on a fluorescent screen (not shown). When performing a tensile test by applying a tensile force to the sample 4, a voltage as shown in FIG. 5a is applied between the voltage control device 15 and the terminal AA', and a voltage as shown in FIG. and voltages as shown in FIG. 5c are applied between terminals CC'. Then, since the first electrostrictive element 12 extends to its original length at the voltage "0" level from o to t3 , it remains in contact with the inner wall of the holder 3 and remains immobile in the horizontal direction. Third electrostrictive element 14
is contracted at the voltage "1" level from o to t 2 (t 2 <t 3 ), and becomes movable in the horizontal direction. Second electrostrictive element 1
3 extends in the horizontal direction at the voltage "1" level between t 1 and t 4 (0<t 1 <t 2 <t 3 <t 4 ). Accordingly, the third electrostrictive element 14 ( (between t 1 and t 2 ) move to the right. Next, the third electrostrictive element 14 stretches at the voltage "0" level between t 2 and t 6 and returns to its original length, so that it remains immobile in the horizontal direction. Moreover, the first electrostrictive element 1
2 contracts at the voltage "1" level between t3 and t5 ( t2 < t3 < t5 < t6 ) and becomes horizontally movable. At this time (t 4 ~
t 7 ), since the second electrostrictive element 13 contracts at the voltage "0" level, the first electrostrictive element 12
moves to the right (between t 4 and t 5 ). Therefore, since the connecting rod 11 and the second sample stage 10 also move in the right direction in synchronization, the sample 4 is pulled together with the substrate 8. The degree of this tension can be controlled by the height or number of pulses of the voltage applied to the first to third electrostrictive elements.

尚、本実施例では試料4に引張りや疲労を与え
るための第1素子12、第2素子13、第3素子
14を電歪素子で構成したが、これら素子のいず
れをも夫々電歪素子で代替して、該電歪素子に駆
動用電気信号を与えるようにしても良いし、又、
これらの素子の一部のみ、その素子毎に電歪素子
で代替するようにしても良い。
In this example, the first element 12, the second element 13, and the third element 14 for applying tension and fatigue to the sample 4 were constructed with electrostrictive elements, but each of these elements was constructed with an electrostrictive element. Alternatively, a driving electric signal may be applied to the electrostrictive element, or
Only some of these elements may be replaced with electrostrictive elements.

以上本考案によれば、試料に引張りや疲労を与
えるのに電歪又は電歪素子を使用し、この電歪又
は電歪素子に適宜な電気信号を与えるだけで、容
易に引張り又は疲労のいずれかを試料に与えるこ
とができるため、操作が著しく簡単となる。
As described above, according to the present invention, an electrostrictive or electrostrictive element is used to apply tension or fatigue to a sample, and by simply applying an appropriate electric signal to the electrostrictive or electrostrictive element, either tensile or fatigue can be easily applied. can be applied to the sample, which greatly simplifies the operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例を示した試料装置の
概略図、第2図及び第3図はその一部詳細図、第
4図及び第5図は本考案の動作の説明を補足する
為の信号図である。 3:ホルダ、4:試料、9:第1試料台、1
0:第2試料台、11:連結棒、12:第1電歪
素子、13:第2電歪素子、14:第3電歪素
子。
Fig. 1 is a schematic diagram of a sample device showing an embodiment of the present invention, Figs. 2 and 3 are partially detailed views thereof, and Figs. 4 and 5 supplement the explanation of the operation of the present invention. This is a signal diagram for 3: Holder, 4: Sample, 9: First sample stage, 1
0: second sample stage, 11: connecting rod, 12: first electrostrictive element, 13: second electrostrictive element, 14: third electrostrictive element.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 試料4の一方の端部を支持した第1試料台9
と、該試料4の他方の端部を支持した第2試料台
10と、該第2試料台に接続され電子線光軸と直
角な方向に沿つて配置された連結棒11と、該連
結棒11に接続され光軸方向に伸縮可能な第1電
歪又は磁歪素子12と、該第1電歪又は磁歪素子
12に前記連結棒11とは反対側で接続され光軸
と直角な方向に伸縮可能な第2電歪又は磁歪素子
13と、該第2電歪又は磁歪素子13に接続され
光軸方向に伸縮可能な第3の電歪又は磁歪素子1
4と、前記各電歪又は磁歪素子に夫々の伸縮を制
御するため電気信号を与えるための制御電源15
とを備え、前記各電歪又は磁歪素子は共にホルダ
3内に配置され、前記第1電歪又は磁歪素子12
及び第3電歪又は磁歪素子14は前記制御電源よ
りの電気信号に基づいて伸長した際に前記ホルダ
3内の内壁に接して固定されるように構成されて
いると共に、前記試料が光軸上に位置するように
該ホルダ3の先端部を電子顕微鏡筒内に配置した
ことを特徴とする電子顕微鏡等における試料装
置。
A first sample stage 9 supporting one end of the sample 4
, a second sample stand 10 that supported the other end of the sample 4, a connecting rod 11 connected to the second sample stand and arranged along a direction perpendicular to the electron beam optical axis, and the connecting rod. a first electrostrictive or magnetostrictive element 12 that is connected to the connecting rod 11 and is expandable and contractible in the optical axis direction; a possible second electrostrictive or magnetostrictive element 13; and a third electrostrictive or magnetostrictive element 1 connected to the second electrostrictive or magnetostrictive element 13 and expandable and contractible in the optical axis direction.
4, and a control power source 15 for applying electric signals to each of the electrostrictive or magnetostrictive elements to control expansion and contraction of each element.
The electrostrictive or magnetostrictive elements are both arranged in the holder 3, and the first electrostrictive or magnetostrictive element 12
The third electrostrictive or magnetostrictive element 14 is configured to be fixed in contact with the inner wall of the holder 3 when expanded based on an electric signal from the control power source, and the third electrostrictive or magnetostrictive element 14 is configured such that it is fixed in contact with the inner wall of the holder 3, and the sample is on the optical axis. 1. A sample device for an electron microscope, etc., characterized in that the tip of the holder 3 is disposed within an electron microscope cylinder so that the tip of the holder 3 is located within the electron microscope cylinder.
JP12313481U 1981-08-20 1981-08-20 Sample equipment for electron microscopes, etc. Granted JPS5828969U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12313481U JPS5828969U (en) 1981-08-20 1981-08-20 Sample equipment for electron microscopes, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12313481U JPS5828969U (en) 1981-08-20 1981-08-20 Sample equipment for electron microscopes, etc.

Publications (2)

Publication Number Publication Date
JPS5828969U JPS5828969U (en) 1983-02-24
JPS6245420Y2 true JPS6245420Y2 (en) 1987-12-04

Family

ID=29917038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12313481U Granted JPS5828969U (en) 1981-08-20 1981-08-20 Sample equipment for electron microscopes, etc.

Country Status (1)

Country Link
JP (1) JPS5828969U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181970A (en) * 1984-09-28 1986-04-25 松下電器産業株式会社 Packer
JPH0743935Y2 (en) * 1986-09-19 1995-10-09 日本電子株式会社 Sample moving device for electron microscope

Also Published As

Publication number Publication date
JPS5828969U (en) 1983-02-24

Similar Documents

Publication Publication Date Title
DE60316488T2 (en) MEMS optical reflection modulator and optical display system
US20030227559A1 (en) Piezoelectric actuator for digital camera optical system
GB2232294A (en) Sample moving mechanism in scanning tunneling microscope and electron micro- scope arrangement.
ATE148582T1 (en) DRIVE DEVICE FOR A CONVERTER, ITS PRODUCTION AND APPARATUS AND DRIVE WITH SUCH DEVICE
JPS6245420Y2 (en)
JPH10301013A (en) Lens driving mechanism
JPS607245B2 (en) lens moving device
JPH0619485B2 (en) Piezoelectric lens driving device
JPH07249802A (en) Sealing type ultraprecise fine adjustment device
GB1469777A (en) Electron microscope
JPH06315282A (en) Actuator
DE102021116165B3 (en) LISSAJOUS MICROSCANNER WITH MIRROR CENTRAL SUSPENSION AND METHOD FOR ITS MANUFACTURE
JPS60181718A (en) Synchronous scanning microscope
JP2003315239A (en) Scanner for spm
JPS62184428A (en) Observing device for minute object in solution
Johnson et al. Microchannel plate inverter image intensifiers
JPS5935344A (en) Electro-optical image tube and method of operating same
SU124677A1 (en) A method of manufacturing a stroke world using an electron-optical system
SU1394191A1 (en) Method of centering endoscope
Doung et al. Smart piezo stacks as actuators for precision control of adaptive reflectors
KR100269189B1 (en) Actuator for Positioning Mechanism
SU1554006A2 (en) Device for lecture demonstrations
SU1243046A1 (en) Electron microscope
ATE75056T1 (en) FINE ADJUSTMENT DEVICE OF A UNIT ELEMENT REGARDING A REFERENCE SYSTEM AND ITS APPLICATION.
JPS56165938A (en) Optical scanner