JPS6245396B2 - - Google Patents

Info

Publication number
JPS6245396B2
JPS6245396B2 JP16262282A JP16262282A JPS6245396B2 JP S6245396 B2 JPS6245396 B2 JP S6245396B2 JP 16262282 A JP16262282 A JP 16262282A JP 16262282 A JP16262282 A JP 16262282A JP S6245396 B2 JPS6245396 B2 JP S6245396B2
Authority
JP
Japan
Prior art keywords
conduit
glass fiber
metal
insulating coating
polyetheretherketone resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16262282A
Other languages
Japanese (ja)
Other versions
JPS5952092A (en
Inventor
Ichiro Takahashi
Goro Okamoto
Kazuo Okabashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16262282A priority Critical patent/JPS5952092A/en
Publication of JPS5952092A publication Critical patent/JPS5952092A/en
Publication of JPS6245396B2 publication Critical patent/JPS6245396B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、炭化水素地下資源電気加熱用電極
支持導管の製造方法に関するものであり、とりわ
け、電気加熱法により炭化水素系地下資源を採取
する際に用いられる電気絶縁被覆された電気加熱
用電極支持導管の製造方法に関するものである。 本願明細書において、炭化水素地下資源とはオ
イルサンドまたはタールサンドに含まれるビチユ
ーメン(Bitumen)のことをいい、以下特記しな
い限りオイルという。 近年、石油資源の高騰にともない、カナダ,ベ
ネズエラ等の地下に埋蔵されている、オイルサン
ド層からオイル分を採取することが、本格的に行
なわれつつある。このオイルサンド層は通常地下
数100mの地中に厚さ約50m程度の層をなして存
在するが、このオイルは粘度が高いため常温で汲
み上げて採取することができず、それゆえ従来は
オイルサンド層に加熱水蒸気を注入してオイル分
の温度を上昇させ、その粘度を低下させて汲み上
げる方法が採用されていた。しかしながら、この
方法では効率がわるくコスト高となるため、より
生産性の高い方法として、下端部に電極部を有す
る鋼管またはステンレス管でなる導管をその電極
部がオイルサンド層に位置するように埋設し、そ
のような導管2本を約30〜200mの間隔で設置
し、両電極間に数百〜数千ボルトの電圧を印加し
てジユール熱によりオイルサンド層の温度を上昇
させ、オイルの粘度を低下させて採油する方法が
提案された。 ここで、オイルサンド層の比抵抗は上部地層の
比抵抗よりも数倍高いため、導管の地層部に埋設
される部分を電気絶縁体で被覆し、電流が上部地
層を流れないようにしなければならない。もし、
電気絶縁体で被覆しないと電流は地層部を流れ、
オイルサンド層に埋設した電極間に電流が流れな
くなる。したがつて、このような特殊な条件下で
の使用に耐えうる電気絶縁体を被覆した電極支持
導管を開発する要求が急激に高まつてきている。 このような電気絶縁被覆が具備していなければ
ならない特性としては、 (A) 常温はもちろんオイルサンド層のオイル粘度
を低下させうる約300℃の温度においても数百
〜数千ボルトの耐電圧特性ならびに106Ω−cm
以上の体積固有抵抗値を有すること、 (B) オイルサンド層中に含まれている水がオイル
サンド層の粘度を低下させうる約300℃の温度
に加熱されるため、約300℃の熱水に耐えうる
こと、および (C) 電極を懸垂できる機械的強度ならびに導管の
下端に懸垂支持した電極を埋設穴を通してオイ
ルサンド層に埋設する際、穴壁に接触して破損
を起こさない程度の機械的衝撃強度を有するこ
と。 などが要求される。 この発明は、以上の要求に応えるべくなされた
もので、耐電圧特性,耐熱性,機械的強度にすぐ
れた炭化水素地下資源電気加熱用電極支持導管の
製造方法を提供することを目的とするものであ
る。 以下、この発明について詳しく述べる。 本発明者らは、前記(A)〜(C)のすべての特性を具
備する電気絶縁体を被覆した電極支持導管を開発
すべく鋭意研究を重ねた結果、金属導管の外周面
に、ポリエーテルエーテルケトン樹脂のフイルム
とシリカ成分が90%以上を含むガラス繊維を交互
に巻きつけ、その外周を金型を用いて押さえ、
350〜450℃、10〜200Kg/cm2の条件でポリエーテ
ルエーテルケトン樹脂を加熱加圧溶融し成形する
ことにより、前記(A)〜(C)のすべての特性を具備す
る電気絶縁体を被覆した電極支持導管が得られる
ことを見出し、この発明を完成するにいたつた。 この発明に用いるポリエーテルエーテルケトン
樹脂としては、次の化学構造式で表わされ、たと
えば英国インペリアルケミカルインダストリーズ
社によつて開発された芳香族ポリエーテルエーテ
ルケトン類があげられる。 ポリエーテルエーテルケトン樹脂は、厚さが
0.01〜0.20mm、好ましくは0.02〜0.10mmのフイル
ムが用いられる。厚さが0.01mmより小さいフイル
ムの場合は、フイルムとフイルムの層間あるいは
フイルムとガラス繊維の層間に隙間を生じないよ
うに巻くためにかける張力によりフイルムが切断
してしまい、フイルムを金属導管に巻きつけるこ
とができない。厚さが0.20mmより厚いフイルムの
場合は、フイルムの弾性反発力が大きく、フイル
ムの層間を密着させて巻きつけることができない
ため、フイルムとフイルムの層間およびフイルム
とガラス繊維の層間に隙間を生じ、加熱加圧成形
時に、絶縁体内部に気泡をまきこみ、耐熱水性お
よび電気特性のすぐれた絶縁体を得ることができ
ない。 ガラス繊維としてはシリカ成分が90%以上を含
むガラス繊維が用いられる。ガラス繊維のシリカ
成分が90%未満の場合、300℃の熱水によりガラ
ス繊維の表面が溶解し、電気絶縁体の体積固有抵
抗を低下させるとともに、機械的強度を低下させ
る。 金属導管としては、耐腐食性にすぐれ、良好な
電気伝導性を有する鋼管またはステンレススチー
ル管等が好適である。導管の長さは地中のオイル
サンド層の存在する深さに応じて定められるが、
通常200〜600m程度が必要である。 ついで、電極支持導管の製造工程について述べ
る。まず、金属導管にポリエーテルエーテルケト
ン樹脂のフイルムとシリカ成分が90%以上のガラ
ス繊維を交互に巻きつけたのち、その外周面を金
型を用いて、10〜200Kg/cm2の圧力で加圧すると
ともに、350〜450℃の温度に加熱し、ポリエーテ
ルエーテルケトン樹脂を溶融してガラス繊維と一
体化することにより絶縁被覆を形成することがで
きる。加熱溶融温度が350℃より低い場合は、ポ
リエーテルエーテルケトン樹脂の溶融粘度が大き
く、ガラス繊維の内部までポリエーテルエーテル
ケトン樹脂が含浸されず、耐熱水性および電気特
性のすぐれた絶縁被覆を得ることができない。加
熱溶融温度が450℃より高い場合はポリエーテル
エーテルケトン樹脂の熱劣化が起こり、やはり耐
熱水性,機械特性および電気特性のすぐれた絶縁
被覆を得ることができない。 この発明によらないで、金属導管の外周面にポ
リエーテルエーテルケトン樹脂のフイルムのみを
直接巻きつけ、350〜450℃で加熱溶融させてポリ
エーテルエーテルケトン樹脂の被膜を形成させた
場合は、ポリエーテルエーテルケトン樹脂の被膜
と金属導管の膨張率が大きく異なるため、金属導
管と被膜の融着面に大きな内部応力が発生し、密
着力が低下する。このように金属導管の外周面に
ポリエーテルエーテルケトン樹脂のみの被膜を形
成させたものは、水中で25℃と300℃の熱水サイ
クルをくりかえした場合、ポリエーテルエーテル
ケトン樹脂の被膜が金属導管表面から剥離し、実
用に供することができない。 しかし、金属導管の外周面に、ポリエーテルエ
ーテルケトン樹脂フイルムとシリカ成分が90%以
上を含むガラス繊維を交互に巻きつけ、その外周
面を金型でおさえ、所定の温度と圧力で加熱加圧
成形したこの発明による絶縁被覆は、金属導管と
の膨張率の差が小さく、しかもその強度が大きい
ため、水中での25℃と300℃の熱水サイクルに耐
えるものであり、オイルサンド層加熱電極装置の
導管用絶縁体として好適なものとなる。 つぎに、この発明の電気絶縁被覆された電極支
持導管の実施態様について図面を参照して述べ
る。 第1図は電気絶縁被覆された電極支持導管1の
下端部を示し、電極2を結合支持した金属導管3
の外周面に前記の方法により形成された絶縁被覆
4を設けてなるものである。 また、一般に金属導管3の長さは約200〜600m
が必要であるが、通常の鋼管やステンレス管など
の1本あたりの長さは5〜50mであるため、オイ
ルサンド層にその下端部を挿入するばあいには、
導管単体を順次接合しながら挿入する。第2図は
電気絶縁被覆された金属導管の接合部を示し、絶
縁被覆4aを設けた金属導管3aと絶縁被覆4b
を設けた金属導管3bを接合する場合、金属導管
3aおよび3bそれぞれの端部にテーパネジ5を
切り、カツプリング6を用いて接合する。その場
合、接合部からの漏電を防止するために接合部、
すなわちカツプリング6の表面と金属導管端部に
わたつて、さらに絶縁被覆4cを設け、被覆す
る。 つぎに絶縁被覆4,4a,4bまたは4cの被
覆方法およびその性質について実施例および比較
例のデータをあげてさらに詳細に説明するが、こ
の発明はそれらの実施例のみに限定されるもので
はない。 実施例 1 厚さ0.05mm、幅30mmのポリエーテルエーテルケ
トン樹脂フイルムでなるテープを半重ね巻きで2
回、金属導管外周面上に巻回し、その上に厚さ
0.20mm、幅30mmのシリカ成分が90%以上のガラス
繊維テープを半重ね巻きで1回巻回した。このポ
リエーテルエーテルケトン樹脂フイルムのテープ
とガラス繊維テープの巻回操作をさらに4回、合
計5回繰り返し行ない、さらにその上に厚さ0.05
mm,幅30mmのポリエーテルエーテルケトン樹脂フ
イルムを2回巻回し、厚さ3.2mmのポリエーテル
エーテルケトン樹脂とガラス繊維の複合層を金属
導管外周面に形成させた。ついでこの複合層を巻
回した金属導管を4つ割りの金型内に入れて押さ
え、380℃の電気炉中で50Kg/cm2の圧力を加え、
導管上にポリエーテルエーテルケトン樹脂とシリ
カ成分が90%以上のガラス繊維の複合絶縁被覆を
形成させた。 こうして得られた絶縁被覆の25℃における付着
強度(Kg/cm2)と耐電圧値(kV/mm)及びその
絶縁被覆を水中に入れ300℃に加熱し、300℃の熱
水中に100時間保持後、25℃に冷却する過程を1
サイクルとして、5サイクルの熱水サイクルを繰
りかえした後、25℃で測定した付着強度と耐電圧
値を第1表の実施例1の欄に示す。 実施例 2〜8 複合絶縁層の構成および成形条件をそれぞれ第
1表に示すものに代え、他は実施例1と同様にし
て実験を行い、金属導管外周面に電気絶縁被覆を
形成させ、得られた絶縁被覆の特性を第1表に実
施例2〜8として示す。 比較例 1〜4 複合絶縁層の構成さたは成形条件を代え、他は
実施例1と同様にして実験を行い、金属導管外周
面にこの発明の範囲外の条件で絶縁被覆を形成さ
せ、得られた絶縁被覆の特性を第1表に比較例1
〜4として示す。 比較例 5 金属導管外周面に厚さ0.05mm,幅30mmのポリエ
ーテルエーテルケトン樹脂フイルムのテープのみ
を半重ね巻きで30回巻回し、その外周面を金型で
押さえ、380℃、50Kg/cm2の加熱加圧条件で成形
し、金属導管外周面にポリエーテルエーテルケト
ン樹脂のみの絶縁被覆を形成させ、得られた絶縁
被覆の特性を第1表に比較例5として示す。 比較例 6〜9 シリカ成分が90%以上のガラス繊維テープに代
えて、シリカ濃度が90%未満のガラス繊維テープ
を用い、他は実施例1と同様にして実験を行い、
得られた絶縁被覆の特性を第2表に比較例6〜9
として示す。
The present invention relates to a method for manufacturing an electrode support conduit for electrical heating of hydrocarbon underground resources, and in particular, an electrode support conduit coated with electrical insulation and used for extracting hydrocarbon underground resources by an electrical heating method. The present invention relates to a method of manufacturing a conduit. In the present specification, hydrocarbon underground resources refer to bitumen contained in oil sands or tar sands, and are hereinafter referred to as oil unless otherwise specified. In recent years, with the rise in the price of petroleum resources, extraction of oil from oil sand layers buried underground in countries such as Canada and Venezuela is being carried out in earnest. This oil sand layer normally exists several hundred meters underground as a layer approximately 50 meters thick, but due to the high viscosity of this oil, it cannot be extracted by pumping it up at room temperature. The method used was to inject heated steam into the sand layer to raise the temperature of the oil, lower its viscosity, and then pump it. However, this method is inefficient and costly, so a more productive method is to bury a conduit made of steel or stainless steel pipe with an electrode section at the lower end so that the electrode section is located in the oil sand layer. Two such conduits are installed approximately 30 to 200 meters apart, and a voltage of several hundred to several thousand volts is applied between the two electrodes to raise the temperature of the oil sand layer by Joule heat, which lowers the viscosity of the oil. A method of extracting oil by lowering the amount of oil was proposed. Since the resistivity of the oil sand layer is several times higher than that of the upper stratum, it is necessary to cover the part of the conduit buried in the stratum with an electrical insulator to prevent current from flowing through the upper stratum. No. if,
If not covered with an electrical insulator, current will flow through the strata.
Current no longer flows between the electrodes buried in the oil sand layer. Accordingly, there is a rapidly increasing need to develop electrode support conduits coated with electrical insulators that can withstand use under these special conditions. The characteristics that such an electrical insulating coating must have are: (A) Voltage resistance of several hundred to several thousand volts not only at room temperature but also at temperatures of approximately 300°C, which can reduce the viscosity of oil in the oil sand layer. and 10 6 Ω-cm
(B) Hot water at approximately 300°C because the water contained in the oil sand layer is heated to a temperature of approximately 300°C that can reduce the viscosity of the oil sand layer. (C) Mechanical strength that allows the electrode to be suspended, and mechanical strength that will not cause damage due to contact with the hole wall when the electrode suspended from the lower end of the conduit is buried in the oil sand layer through the buried hole. have the desired impact strength. etc. are required. This invention was made in response to the above requirements, and an object thereof is to provide a method for manufacturing an electrode support conduit for electric heating of hydrocarbon underground resources that has excellent voltage resistance, heat resistance, and mechanical strength. It is. This invention will be described in detail below. The present inventors have conducted extensive research to develop an electrode support conduit coated with an electrical insulator that has all of the characteristics (A) to (C) above. Etherketone resin film and glass fiber containing 90% or more of silica are alternately wrapped around each other, and the outer periphery is pressed using a mold.
By melting and molding polyetheretherketone resin under heat and pressure at 350 to 450℃ and 10 to 200Kg/ cm2 , an electrical insulator having all of the characteristics of (A) to (C) above is coated. The present inventors have discovered that an electrode supporting conduit can be obtained, and have completed the present invention. The polyetheretherketone resin used in the present invention is represented by the following chemical structural formula and includes, for example, aromatic polyetheretherketones developed by British Imperial Chemical Industries. Polyetheretherketone resin has a thickness of
A film of 0.01 to 0.20 mm, preferably 0.02 to 0.10 mm is used. If the film is less than 0.01 mm thick, the tension applied to avoid creating gaps between the layers of the film or between the layers of the glass fiber may cause the film to break, making it difficult to wind the film around the metal conduit. I can't attach it. If the film is thicker than 0.20 mm, the elastic repulsion force of the film is large and it is not possible to wrap the film layers closely, resulting in gaps between the film layers and between the film and glass fiber layers. During heating and pressure molding, air bubbles are incorporated into the insulator, making it impossible to obtain an insulator with excellent hot water resistance and electrical properties. As the glass fiber, glass fiber containing 90% or more of silica is used. If the silica content of the glass fiber is less than 90%, the surface of the glass fiber will be dissolved by hot water at 300°C, reducing the volume resistivity and mechanical strength of the electrical insulator. As the metal conduit, a steel pipe or a stainless steel pipe having excellent corrosion resistance and good electrical conductivity is suitable. The length of the conduit is determined depending on the depth of the underground oil sand layer.
Usually about 200 to 600 m is required. Next, the manufacturing process of the electrode support conduit will be described. First, a polyetheretherketone resin film and glass fiber containing 90% or more of silica are alternately wrapped around a metal conduit, and then the outer circumferential surface is applied with a pressure of 10 to 200 kg/cm 2 using a mold. An insulating coating can be formed by pressing and heating to a temperature of 350 to 450°C to melt the polyetheretherketone resin and integrate it with the glass fiber. When the heating melting temperature is lower than 350℃, the melt viscosity of the polyetheretherketone resin is high, and the polyetheretherketone resin is not impregnated to the inside of the glass fiber, resulting in an insulating coating with excellent hot water resistance and electrical properties. I can't. If the heating melting temperature is higher than 450° C., thermal deterioration of the polyetheretherketone resin occurs, and an insulating coating with excellent hot water resistance, mechanical properties, and electrical properties cannot be obtained. If a polyether ether ketone resin film is directly wrapped around the outer peripheral surface of a metal conduit and heated and melted at 350 to 450°C to form a polyether ether ketone resin film, it is possible to Since the expansion coefficients of the ether ether ketone resin coating and the metal conduit are significantly different, a large internal stress is generated at the fusion surface of the metal conduit and the coating, resulting in a decrease in adhesion. In this way, when a film of only polyether ether ketone resin is formed on the outer circumferential surface of a metal conduit, when a hydrothermal cycle of 25°C and 300°C is repeated in water, the polyether ether ketone resin film forms on the metal pipe. It peels off from the surface and cannot be put to practical use. However, polyetheretherketone resin films and glass fibers containing 90% or more of silica are alternately wrapped around the outer circumferential surface of a metal conduit, and the outer circumferential surface is held in a mold and heated and pressed at a predetermined temperature and pressure. The molded insulating coating according to the present invention has a small difference in expansion coefficient from that of the metal conduit, and has high strength, so it can withstand hydrothermal cycles of 25°C and 300°C in water, and is suitable for oil sand layer heating electrodes. It is suitable as an insulator for the conduit of the device. Next, embodiments of the electrically insulating coated electrode support conduit of the present invention will be described with reference to the drawings. FIG. 1 shows the lower end of an electrode support conduit 1 coated with electrical insulation, and a metal conduit 3 to which an electrode 2 is coupled and supported.
An insulating coating 4 formed by the method described above is provided on the outer peripheral surface of the holder. In addition, the length of the metal conduit 3 is generally about 200 to 600 m.
However, since the length of each ordinary steel pipe or stainless steel pipe is 5 to 50 m, when inserting the lower end into the oil sand layer,
Insert individual conduits while sequentially joining them. FIG. 2 shows a joint of a metal conduit coated with electrical insulation, and shows a metal conduit 3a provided with an insulation coating 4a and an insulation coating 4b.
When joining the metal conduits 3b provided with the metal conduits 3a and 3b, taper screws 5 are cut at the ends of each of the metal conduits 3a and 3b, and a coupling ring 6 is used to join the metal conduits 3a and 3b. In that case, to prevent electrical leakage from the joint,
That is, an insulating coating 4c is further provided over the surface of the coupling ring 6 and the end of the metal conduit. Next, the coating method and properties of the insulating coating 4, 4a, 4b, or 4c will be explained in more detail with reference to data of examples and comparative examples, but the present invention is not limited only to these examples. . Example 1 A tape made of polyether ether ketone resin film with a thickness of 0.05 mm and a width of 30 mm was wrapped in two halves.
2 times, wrapped around the outer circumferential surface of the metal conduit, and then
A glass fiber tape having a silica content of 90% or more and having a size of 0.20 mm and a width of 30 mm was wound once in a half-overlap manner. This process of winding the polyetheretherketone resin film tape and the glass fiber tape was repeated four more times, for a total of five times, and then a layer of 0.05
A polyetheretherketone resin film with a width of 30mm and a width of 30mm was wound twice to form a composite layer of polyetheretherketone resin and glass fiber with a thickness of 3.2mm on the outer peripheral surface of the metal conduit. Next, the metal conduit wound with this composite layer was placed in a mold divided into four parts and held down, and a pressure of 50 kg/cm 2 was applied in an electric furnace at 380°C.
A composite insulation coating made of polyetheretherketone resin and glass fiber containing 90% or more of silica was formed on the conduit. Adhesive strength (Kg/cm 2 ) and withstand voltage (kV/mm) at 25°C of the insulating coating obtained in this way, and the insulation coating was placed in water and heated to 300°C, and then immersed in hot water at 300°C for 10 hours. After holding, the process of cooling to 25℃ is 1
The adhesion strength and withstand voltage values measured at 25°C after 5 cycles of hot water cycles are shown in the Example 1 column of Table 1. Examples 2 to 8 Experiments were conducted in the same manner as in Example 1 except that the composition and molding conditions of the composite insulating layer were changed to those shown in Table 1, and an electrically insulating coating was formed on the outer peripheral surface of the metal conduit. The properties of the obtained insulation coatings are shown in Table 1 as Examples 2 to 8. Comparative Examples 1 to 4 Experiments were conducted in the same manner as in Example 1 except that the composition or molding conditions of the composite insulating layer were changed, and an insulating coating was formed on the outer peripheral surface of the metal conduit under conditions outside the scope of the present invention. The properties of the obtained insulation coating are shown in Table 1 for Comparative Example 1.
Shown as ~4. Comparative Example 5 A polyether ether ketone resin film tape with a thickness of 0.05 mm and a width of 30 mm was wound 30 times around the outer circumferential surface of a metal conduit, the outer circumferential surface was pressed with a mold, and the tape was heated at 380°C and 50 kg/cm. It was molded under the heating and pressurizing conditions of 2 to form an insulating coating of only polyether ether ketone resin on the outer peripheral surface of the metal conduit, and the properties of the obtained insulating coating are shown in Table 1 as Comparative Example 5. Comparative Examples 6 to 9 Experiments were conducted in the same manner as in Example 1, except that a glass fiber tape with a silica concentration of less than 90% was used instead of a glass fiber tape with a silica content of 90% or more.
The properties of the obtained insulation coatings are shown in Table 2 for Comparative Examples 6 to 9.
Shown as

【表】【table】

【表】 第1表及び第2表に記載した結果から明らかな
ように、この発明によつて電気絶縁被覆を形成し
た電極支持導管は、その絶縁被覆が電気的性質、
機械的性質及び耐熱水性に優れており、電気加熱
法により炭化水素系地下資源を採取するために用
いる電極支持導管として好適なものが得られる効
果がある。
[Table] As is clear from the results shown in Tables 1 and 2, the electrode support conduit having an electrically insulating coating formed according to the present invention has electrical properties,
It has excellent mechanical properties and hot water resistance, and has the advantage of being suitable as an electrode support conduit used for extracting hydrocarbon underground resources by electric heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電気絶縁被覆された電極
支持導管の下端部の部分縦断面図、第2図は第1
図の電極支持導管の接合部の縦断面図である。 1……電極支持導管、2……電極、3,3a,
3b……金属導管、4,4a,4bおよび4c…
…絶縁被覆、5……テーパネジ、6……カツプリ
ング。
FIG. 1 is a partial vertical sectional view of the lower end of an electrode support conduit coated with electrical insulation according to the present invention, and FIG.
FIG. 3 is a longitudinal cross-sectional view of the junction of the electrode support conduit shown in the figure; 1... Electrode support conduit, 2... Electrode, 3, 3a,
3b...metal conduit, 4, 4a, 4b and 4c...
…Insulation coating, 5…Tapered screw, 6…Coupling.

Claims (1)

【特許請求の範囲】 1 金属導管の外周面に、ポリエーテルエーテル
ケトン樹脂フイルムとシリカ成分が90%以上を含
むガラス繊維を交互に複数回巻きつけ、その外周
を金型で押さえて350〜450℃、10〜200Kg/cm2
条件で加熱加圧成形することにより絶縁被覆を形
成することを特徴とする炭化水素地下資源電気加
熱用電極支持導管の製造方法。 2 ポリエーテルエーテルケトン樹脂フイルムの
厚さが0.01〜0.20mmの範囲にある特許請求の範囲
第1項記載の炭化水素地下資源電気加熱用電極支
持導管の製造方法。
[Claims] 1. Polyetheretherketone resin film and glass fiber containing 90% or more of silica are alternately wrapped around the outer circumferential surface of a metal conduit several times, and the outer circumference is pressed with a mold to form a 350 to 450 A method for manufacturing an electrode supporting conduit for electric heating of hydrocarbon underground resources, characterized in that an insulating coating is formed by heating and press forming at a temperature of 10 to 200 Kg/ cm2 . 2. The method for manufacturing an electrode support conduit for electric heating of hydrocarbon underground resources according to claim 1, wherein the polyetheretherketone resin film has a thickness in the range of 0.01 to 0.20 mm.
JP16262282A 1982-09-17 1982-09-17 Manufacture of electrode support conduit for electrically heating underground resource of hydrocarbon Granted JPS5952092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16262282A JPS5952092A (en) 1982-09-17 1982-09-17 Manufacture of electrode support conduit for electrically heating underground resource of hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16262282A JPS5952092A (en) 1982-09-17 1982-09-17 Manufacture of electrode support conduit for electrically heating underground resource of hydrocarbon

Publications (2)

Publication Number Publication Date
JPS5952092A JPS5952092A (en) 1984-03-26
JPS6245396B2 true JPS6245396B2 (en) 1987-09-26

Family

ID=15758102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16262282A Granted JPS5952092A (en) 1982-09-17 1982-09-17 Manufacture of electrode support conduit for electrically heating underground resource of hydrocarbon

Country Status (1)

Country Link
JP (1) JPS5952092A (en)

Also Published As

Publication number Publication date
JPS5952092A (en) 1984-03-26

Similar Documents

Publication Publication Date Title
JPS6316560B2 (en)
JPS6245396B2 (en)
CA1191744A (en) Conduct pipe covered with electrically insulating material
JPS6320997B2 (en)
US4794049A (en) Electrode supporting conduit tube for electrical heating or underground hydrocarbon resources
CN113725804B (en) Cable, cable flexible joint, insulation recovery method, mold and detection method thereof
JPH0433958B2 (en)
JPH02182B2 (en)
JPS635555B2 (en)
JPH0118318B2 (en)
JPS59145896A (en) Electrode support conduit for electrical heating of underground hydrocarbon resources
JPS6240515B2 (en)
JPS6311518B2 (en)
JPS5939373A (en) Manufacture of conduit of electrode apparatus for electrically heating underground hydrocarbon resources
JPH0241128B2 (en)
JPS6245956B2 (en)
JPS59145897A (en) Production of electrode support conduit for electrical heating of underground hydrocarbon resources
JPS6283583A (en) Method of connecting double pipe type electric direct heating pipeline
JPS6016696A (en) Electric heating electrode apparatus of underground hydrocarbon resources and production thereof
JPS5864714A (en) Conduit insulator for electrode unit of electrically heating hydrocarbon underground resources
Okahashi et al. Development of Insulator Components for Electrical Heating of Oil Sands
JPS5842891A (en) Insulating pipe joint
JPS59161590A (en) Conduit of electrode device for electrically heating hydrocarbon underground resource
JPS59141692A (en) Electrical heating electrode apparatus of hydrocarbon underground resources
JPS5899590A (en) Insulating joint for oil extraction pipe