JPS6240515B2 - - Google Patents

Info

Publication number
JPS6240515B2
JPS6240515B2 JP9650882A JP9650882A JPS6240515B2 JP S6240515 B2 JPS6240515 B2 JP S6240515B2 JP 9650882 A JP9650882 A JP 9650882A JP 9650882 A JP9650882 A JP 9650882A JP S6240515 B2 JPS6240515 B2 JP S6240515B2
Authority
JP
Japan
Prior art keywords
conduit
insulator
oil
electrical
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9650882A
Other languages
Japanese (ja)
Other versions
JPS58213990A (en
Inventor
Ichiro Takahashi
Goro Okamoto
Kazuo Okabashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9650882A priority Critical patent/JPS58213990A/en
Publication of JPS58213990A publication Critical patent/JPS58213990A/en
Publication of JPS6240515B2 publication Critical patent/JPS6240515B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気加熱法により炭化水素系地下資源
を採取する際に用いられる電気絶縁被覆された導
管に関する。 本願明細書において、炭化水素地下資源とはオ
イルサンド又はタールサンドに含まれるビチユー
メン(Bitumen)のことをいい、以下特記しない
限りオイルという。 近年、石油資源の高騰に伴い、カナダ、ベネズ
エラ等の地下に埋蔵されているオイルサンド層か
らオイル分を採取することが本格的に検討されつ
つある。このオイルサンド層は通常地下数百メー
トルの地中に厚さ約50m程度の層をなして存在す
るが、このオイルは粘度が高いため常温で汲み上
げて採取することができず、それゆえ現在ではオ
イルサンド層に加熱水蒸気を注入してオイル分の
温度を上昇させ、その粘度を低下させて汲み上げ
る方法が採用されている。しかしながらこの方法
では効率が悪く高価となるため、より生産性の高
い方法として、先端部に電極部を有する導管(鋼
管又はステンレス管)をその電極部がオイルサン
ド層に位置するように埋設し、そのような採油用
導管2本を約30〜200mの間隔で設置し、両電極
間に数百〜数千ボルトの電圧を印加し、ジユール
熱によりオイルサンド層の温度を上昇させ、オイ
ルの粘度を低下させて採油する方法が本格的に検
討されてきている。 オイルサンド層の比抵抗は上部地層の比抵抗よ
りも数倍高いため、導管の地層部に埋設される部
分を電気絶縁体で被覆し、電流が上部地層を流れ
ないようにしなければならない。もし電気絶縁体
で被覆しないと電流は地層部を流れ、オイルサン
ド層に埋設した電極間には流れなくなる。従つて
このような特殊な条件下での使用に耐え得る電気
絶縁体を被覆した導管を開発する要求が急激に高
まつてきている。 この電気絶縁体が具備していなければならない
特性としては、 (A) 常温はもちろんオイルサンド層のオイル粘度
を低下させうる温度(約300℃)においても数
百〜数千ボルトの耐電圧特性並びに少くとも
106Ω−cm以上の体積固有抵抗値を有するこ
と、 (B) オイルサンド中に含まれている水がオイルサ
ンド層の粘度を低下させうる温度(約300℃)
に加熱されるため約300℃の熱水に耐え得るこ
と、及び (C) 電極を懸垂できる機械的強度並びに導管の先
端に懸垂した電極を埋設穴を通してオイルサン
ド層に埋設する際、穴壁に接触して破損しない
程度の機械的衝撃強度を有すること、 等が要求される。 従来、上述の目的でポリエチレン樹脂、ナイロ
ン、エポキシ樹脂等の使用が試みられているが、
ポリエチレン樹脂では熱に弱く100℃以下で融解
してしまい、ナイロンは熱水に弱く100℃前後で
加水分解を起す。またエポキシ樹脂も150℃前後
で加水分解を起し電気絶縁性が低下する等、実用
性が乏しい状況であつた。 本発明者らは、前記(A)〜(C)のすべての特性を具
備する電気絶縁体を被覆した導管を開発すべく鋭
意研究を重ねた結果、380℃〜450℃に予熱された
金属製導管の外周面に、粒径が10〜100μmの粉
体状のポリエーテルエーテルケトン樹脂を静電塗
装法により付着させて380〜450℃溶融させて導管
表面にその樹脂被覆を形成させた導管が、前記(A)
〜(C)のすべての特性を具備することを見出し、本
発明を完成するに至つた。 本発明に用いるポリエーテルエーテルケトン樹
脂としては、例えば次の化学構造式で表わされ、
英国イムペリアル・ケミカル・インダストリーズ
社によつて開発されている芳香族ポリエーテルエ
ーテルケトン類があげられる: ポリエーテルエーテルケトン樹脂は粉体状であ
り、静電塗装法により付着させて被覆できるとい
う利点を有する。この樹脂の粒径は10〜100μ
m、好ましくは20〜70μmの粉体が用いられる。
粒径が10μmより小さい場合は粉体が凝集し、粉
体を一様に付着させることができない。また粒径
が100μmより大きい場合は、粉体を付着させた
後、加熱溶融させた時に平担な被覆とならず、絶
縁体の内部に気泡を巻き込み、耐熱水性及び電気
特性の優れた絶縁体を得ることはできない。 金属導管としては、例えば耐腐食性に優れ、良
好な電気伝導性を有する鋼管又はステンレススチ
ール管が好適である。導管は380〜450℃に予熱さ
れる。導管を予熱しない場合及び予熱温度が380
℃より低い場合は、ポリエーテルエーテルケトン
の被覆と導管との融着強度が小さく熱水中に放置
したのちは、導管から絶縁被覆が剥離する。予熱
温度が450℃より高い場合は、ポリエーテルエー
テルケトン樹脂の熱劣化が起こり、絶縁被覆の機
械特性、耐熱水性及び電気特性が低下する。 従来法による静電粉体塗装法で付着させたポリ
エーテルエーテルケトン樹脂の粉体は380〜450
℃、好ましくは380〜430℃の温度で加熱溶融させ
る。溶融温度が380℃より低い場合は、ポリエー
テルエーテルケトン樹脂の溶融流動が不十分であ
り一様な被覆とならず、絶縁体の内部に気泡を巻
き込み、耐熱水性及び電気特性の優れた絶縁体を
得ることはできない。溶融温度が450℃より高い
場合は、ポリエーテルエーテルケトン樹脂の熱裂
化が起り、絶縁被膜の機械特性、耐熱水性及び電
気特性が低下する。 次に、本発明の電気絶縁された導管の実施態様
について図を参照して述べる。 第1図は電気絶縁被覆された導管の先端部の部
分断面図である。第1図に示すように電極1を接
続した金属性導管2の外周面上に静電粉体塗装法
によりポリエーテルエーテルケトン樹脂の絶縁体
3が被覆される。 一般に導管2の長さは約200〜約600mが必要で
あるが、通常の鋼管やステンレス管などの1本当
りの長さは5〜50mであるため、オイルサンド層
にその先端を挿入する場合には接合しながら操入
される。 第2図は電気絶縁被覆された導管の接合部の部
分断面図である。第2図に示すように、ポリエー
テルエーテルケトン樹脂の絶縁体3aを被覆され
た導管2aとポリエーテルエーテルケトン樹脂の
絶縁体3bを被覆された導管2bとを接合する場
合、それぞれの導管2a及び2bの端部にテーパ
ネジ5を切り、カツプリング4を用いて接合され
る。その場合、接合部からの漏電を防止するため
に、接合部すなわちカツプリング4の表面と導管
端部にさらにポリエーテルエーテルケトン樹脂の
絶縁体3cを被覆する。 次にポリエーテルエーテルケトン電気絶縁体の
被覆方法及びその性質について実施例及び比較例
をあげてより詳細に説明するが、本発明はそれら
の実施例のみに限定されるものではない。 実施例 1 粒径20〜70μmに調製した前記の構造式を有す
る英国インペリアル・ケミカル・インダストリー
ズ社製の芳香族ポリエーテルエーテルケトン樹脂
の粉末を、400℃に予熱した金属製導管に静電塗
装法により付着させ、400℃で10分間加熱溶融
し、導管外周面に膜厚0.5mmのポリエーテルエー
テルケトン被膜を形成させた。静電塗装と加熱溶
融の操作をさらに3回(合計4回)繰り返し実施
して所望の導管用絶縁体を得た。 得られた絶縁体の25℃における付着強度(Kg/
cm2)と耐電圧値(KV/mm)及びその絶縁体を300
℃の熱水に500時間浸漬後、25℃で測定した付着
強度と耐電圧値を第1表に示す。 実施例 2〜13 金属製導管の予熱温度及びポリエーテルエーテ
ルケトン樹脂の加熱溶融条件を第1表に示すもの
に代えた他は実施例1と同様にして実験を行い、
導管外周面に電気絶縁体を形成させ、得られた電
気絶縁体の特性を第1表に示す。 比較例 1〜4 金属製導管の予熱温度を第1表に示すものに代
えた他は実施例1と同様にして実験を行い、導管
外周面に電気絶縁体を形成させた。得られた電気
絶縁体の特性を第1表に示す。 比較例 5〜7 第2表を示す粒径のポリエーテルエーテルケト
ン樹脂粉末を用いた他は実施例1と同様にして実
験を行い、導管外周面に電気絶縁体を形成させ
た。得られた電気絶縁体の特性を第2表にす。
The present invention relates to electrically insulating coated conduits used when extracting underground hydrocarbon resources by electrical heating. In the present specification, underground hydrocarbon resources refer to bitumen contained in oil sands or tar sands, and are hereinafter referred to as oil unless otherwise specified. In recent years, with the rise in the price of oil resources, serious consideration is being given to extracting oil from oil sand layers buried underground in countries such as Canada and Venezuela. This oil sand layer normally exists several hundred meters underground as a layer approximately 50 meters thick, but due to the high viscosity of this oil, it is impossible to extract it by pumping it up at room temperature. The method used is to inject heated steam into the oil sand layer to raise the temperature of the oil, lower its viscosity, and then pump it. However, this method is inefficient and expensive, so a more productive method is to bury a conduit (steel pipe or stainless steel pipe) with an electrode at the tip so that the electrode is located in the oil sand layer. Two such oil extraction conduits are installed approximately 30 to 200 meters apart, and a voltage of several hundred to several thousand volts is applied between the two electrodes to raise the temperature of the oil sand layer by Joule heat, which increases the viscosity of the oil. A method of extracting oil by lowering the amount of oil is being seriously considered. Because the resistivity of the oil sand layer is several times higher than that of the upper stratum, the portion of the conduit buried in the stratum must be covered with an electrical insulator to prevent current from flowing through the upper stratum. If it is not coated with an electrical insulator, current will flow through the geological formations and will not flow between the electrodes buried in the oil sands layer. Accordingly, there is a rapidly increasing need to develop conduits coated with electrical insulators that can withstand use under these special conditions. The characteristics that this electrical insulator must have are (A) voltage resistance of several hundred to several thousand volts, not only at room temperature but also at temperatures that can reduce the viscosity of oil in the oil sand layer (approximately 300°C); at least
( B ) A temperature at which the water contained in the oil sand can reduce the viscosity of the oil sand layer (approximately 300°C).
(C) Mechanical strength that allows the electrode to be suspended; It is required to have sufficient mechanical impact strength to prevent damage from contact. Conventionally, attempts have been made to use polyethylene resin, nylon, epoxy resin, etc. for the above purpose;
Polyethylene resin is sensitive to heat and melts at temperatures below 100°C, while nylon is sensitive to hot water and undergoes hydrolysis at around 100°C. Furthermore, epoxy resins also undergo hydrolysis at around 150°C, resulting in decreased electrical insulation properties, making them impractical. The present inventors have conducted intensive research to develop a conduit coated with an electrical insulator that has all of the characteristics (A) to (C) above, and have found that Powdered polyetheretherketone resin with a particle size of 10 to 100 μm is applied to the outer circumferential surface of the conduit using an electrostatic coating method and melted at 380 to 450°C to form a resin coating on the conduit surface. , above (A)
The present inventors have discovered that it has all the characteristics of ~(C), and have completed the present invention. For example, the polyetheretherketone resin used in the present invention is represented by the following chemical structural formula,
Aromatic polyetheretherketones developed by Imperial Chemical Industries Ltd. in the UK include: Polyetheretherketone resin is in powder form and has the advantage that it can be applied and coated by electrostatic coating. The particle size of this resin is 10~100μ
m, preferably from 20 to 70 μm.
If the particle size is smaller than 10 μm, the powder will aggregate and it will not be possible to adhere the powder uniformly. In addition, if the particle size is larger than 100 μm, when the powder is applied and then heated and melted, it will not form a flat coating and air bubbles will be trapped inside the insulator, resulting in an insulator with excellent hot water resistance and electrical properties. cannot be obtained. As the metal conduit, for example, a steel pipe or a stainless steel pipe having excellent corrosion resistance and good electrical conductivity is suitable. The conduit is preheated to 380-450°C. When the conduit is not preheated and the preheating temperature is 380
If the temperature is lower than 0.degree. C., the strength of the fusion between the polyetheretherketone coating and the conduit is small, and the insulating coating will peel off from the conduit after being left in hot water. If the preheating temperature is higher than 450°C, thermal deterioration of the polyetheretherketone resin occurs, and the mechanical properties, hot water resistance, and electrical properties of the insulation coating deteriorate. Polyether ether ketone resin powder applied by conventional electrostatic powder coating method has a particle size of 380 to 450
It is melted by heating at a temperature of 380-430°C, preferably 380-430°C. If the melting temperature is lower than 380°C, the melt flow of the polyetheretherketone resin is insufficient and the coating is not uniform, causing air bubbles to be drawn inside the insulator, resulting in an insulator with excellent hot water resistance and electrical properties. cannot be obtained. If the melting temperature is higher than 450° C., thermal cracking of the polyetheretherketone resin occurs, and the mechanical properties, hot water resistance and electrical properties of the insulating coating deteriorate. Next, embodiments of the electrically insulated conduit of the present invention will be described with reference to the drawings. FIG. 1 is a partial cross-sectional view of the distal end of an electrically insulating coated conduit. As shown in FIG. 1, an insulator 3 made of polyetheretherketone resin is coated on the outer peripheral surface of a metal conduit 2 to which an electrode 1 is connected by electrostatic powder coating. Generally, the length of the conduit 2 is required to be about 200 to about 600 m, but since the length of one ordinary steel pipe or stainless steel pipe is 5 to 50 m, when inserting the tip into the oil sand layer It is operated while being joined. FIG. 2 is a partial cross-sectional view of a joint of an electrically insulating coated conduit. As shown in FIG. 2, when joining a conduit 2a coated with a polyetheretherketone resin insulator 3a and a conduit 2b coated with a polyetheretherketone resin insulator 3b, each conduit 2a and A taper screw 5 is cut at the end of 2b, and a coupling ring 4 is used to join the parts. In that case, in order to prevent electrical leakage from the joint, the joint, that is, the surface of the coupling 4 and the end of the conduit are further coated with an insulator 3c of polyether ether ketone resin. Next, the method of coating the polyetheretherketone electrical insulator and its properties will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 Powder of an aromatic polyetheretherketone resin manufactured by British Imperial Chemical Industries Ltd. having the above structural formula and having a particle size of 20 to 70 μm was electrostatically applied to a metal conduit preheated to 400°C. The polyether ether ketone coating was applied to the outer surface of the conduit by heating and melting at 400° C. for 10 minutes to form a polyether ether ketone film with a thickness of 0.5 mm. The electrostatic coating and heating and melting operations were repeated three more times (four times in total) to obtain a desired conduit insulator. Adhesive strength of the obtained insulator at 25℃ (Kg/
cm 2 ), withstand voltage value (KV/mm) and its insulator 300
Table 1 shows the adhesion strength and withstand voltage values measured at 25°C after being immersed in hot water at 25°C for 500 hours. Examples 2 to 13 Experiments were conducted in the same manner as in Example 1, except that the preheating temperature of the metal conduit and the heating and melting conditions of the polyether ether ketone resin were changed to those shown in Table 1.
An electrical insulator was formed on the outer peripheral surface of the conduit, and the properties of the obtained electrical insulator are shown in Table 1. Comparative Examples 1 to 4 Experiments were conducted in the same manner as in Example 1, except that the preheating temperature of the metal conduit was changed to that shown in Table 1, and an electrical insulator was formed on the outer peripheral surface of the conduit. The properties of the obtained electrical insulator are shown in Table 1. Comparative Examples 5 to 7 Experiments were conducted in the same manner as in Example 1 except that polyetheretherketone resin powder having the particle size shown in Table 2 was used to form an electrical insulator on the outer peripheral surface of the conduit. The properties of the obtained electrical insulator are shown in Table 2.

【表】【table】

【表】 第1表及び第2表に記載した結果から明らかな
ように、本発明の電気絶縁被覆された導管は、そ
の絶縁体が電気的性質、機械的性質及び耐熱水性
に優れており、電気加熱法により炭化水素系地下
資源を採取するために用いる導管として好適なも
のである。
[Table] As is clear from the results shown in Tables 1 and 2, in the electrically insulating coated conduit of the present invention, the insulator has excellent electrical properties, mechanical properties, and hot water resistance. It is suitable as a conduit used for extracting hydrocarbon underground resources by electric heating method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電気絶縁被覆された導管
の先端部の部分断面図、第2図は第1図の導管の
接合部の部分断面図である。図中、 2,2a及び2b……導管、3,3a及び3c
……電気絶縁層。
FIG. 1 is a partial sectional view of the distal end of an electrically insulating coated conduit according to the present invention, and FIG. 2 is a partial sectional view of the joint of the conduit of FIG. In the figure, 2, 2a and 2b...conduit, 3, 3a and 3c
...Electrical insulation layer.

Claims (1)

【特許請求の範囲】[Claims] 1 380〜450℃に予熱された金属製導管の外周面
に、粒径が10〜100μmの粉体状ポリエーテルエ
ーテルケトン樹脂を静電塗装法により付着させて
380〜450℃で融着させた、炭化水素系地下資源電
気加熱用電極装置の導管。
1 Powdered polyether ether ketone resin with a particle size of 10 to 100 μm is adhered to the outer circumferential surface of a metal conduit that has been preheated to 380 to 450 °C using an electrostatic coating method.
A conduit for an electrode device for electric heating of hydrocarbon-based underground resources, fused at 380-450℃.
JP9650882A 1982-06-04 1982-06-04 Conduit of electrode apparatus for electrically heating underground hydrocarbon Granted JPS58213990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9650882A JPS58213990A (en) 1982-06-04 1982-06-04 Conduit of electrode apparatus for electrically heating underground hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9650882A JPS58213990A (en) 1982-06-04 1982-06-04 Conduit of electrode apparatus for electrically heating underground hydrocarbon

Publications (2)

Publication Number Publication Date
JPS58213990A JPS58213990A (en) 1983-12-13
JPS6240515B2 true JPS6240515B2 (en) 1987-08-28

Family

ID=14167058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9650882A Granted JPS58213990A (en) 1982-06-04 1982-06-04 Conduit of electrode apparatus for electrically heating underground hydrocarbon

Country Status (1)

Country Link
JP (1) JPS58213990A (en)

Also Published As

Publication number Publication date
JPS58213990A (en) 1983-12-13

Similar Documents

Publication Publication Date Title
CA1274172A (en) Method and apparatus for forming an insulated oil well casing
US9765606B2 (en) Subterranean heating with dual-walled coiled tubing
US4577664A (en) Conduit tube of an electrode device for electrically heating underground hydrocarbon resources
JPS6316560B2 (en)
JPS6240515B2 (en)
JPH0136237B2 (en)
JPS6210702B2 (en)
JPS635555B2 (en)
US4613167A (en) Insulating pipe joint
JPH02182B2 (en)
JPS6320997B2 (en)
US4794049A (en) Electrode supporting conduit tube for electrical heating or underground hydrocarbon resources
JPH0125198B2 (en)
JPS5864714A (en) Conduit insulator for electrode unit of electrically heating hydrocarbon underground resources
JPS59145896A (en) Electrode support conduit for electrical heating of underground hydrocarbon resources
JPS6245396B2 (en)
JPH0433958B2 (en)
JPH0241128B2 (en)
JPS6245956B2 (en)
JPS6016697A (en) Electric heating electrode apparatus of underground hydrocarbon resources
JPS59161590A (en) Conduit of electrode device for electrically heating hydrocarbon underground resource
JPS6016696A (en) Electric heating electrode apparatus of underground hydrocarbon resources and production thereof
JPS59145897A (en) Production of electrode support conduit for electrical heating of underground hydrocarbon resources
Okahashi et al. Development of Insulator Components for Electrical Heating of Oil Sands
JPS6260559B2 (en)