JPS59145897A - Production of electrode support conduit for electrical heating of underground hydrocarbon resources - Google Patents
Production of electrode support conduit for electrical heating of underground hydrocarbon resourcesInfo
- Publication number
- JPS59145897A JPS59145897A JP2092183A JP2092183A JPS59145897A JP S59145897 A JPS59145897 A JP S59145897A JP 2092183 A JP2092183 A JP 2092183A JP 2092183 A JP2092183 A JP 2092183A JP S59145897 A JPS59145897 A JP S59145897A
- Authority
- JP
- Japan
- Prior art keywords
- conduit
- metal
- powder
- electrode
- metal conduit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は、炭化水素地下資源電気加熱用電極支持導管
の製造方法に関するものであり、さらに詳しくいうと、
電気加熱法によって炭化水素地下資源を採取する際に用
いらねるもので、外面に電気絶縁被覆が施され内面に耐
腐食保護層を形成した電極支持導管の製造方法に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electrode support conduit for electric heating of hydrocarbon underground resources, and more specifically,
This invention relates to a method for manufacturing an electrode support conduit, which is used when extracting underground hydrocarbon resources by electric heating, and has an electrically insulating coating on the outside and a corrosion-resistant protective layer on the inside.
ここで、炭化水素地下資源とは、オイルサンドまたはタ
ールサンドに含まれるビチューメン(Bit、umen
)のことをいい、以下、代表的にオイルサンドと記す
。Here, hydrocarbon underground resources refer to bitumen contained in oil sands or tar sands.
), and is hereafter typically referred to as oil sand.
近年5石油資源の高騰に伴い、カナダ、ベネズエラ等の
地下に埋蔵されているオイルサンド層からオイル分を採
取することが本格的に進められている。このオイルサン
ド層は、通常、地下数百メートルの地中に厚さSθメー
トル程度の層をなして存在するが、このオイルサンドは
高粘度であるため、常温で汲み上げて採取することがで
きない。In recent years, as the price of petroleum resources has soared, efforts are being made in earnest to extract oil from underground oil sand layers in countries such as Canada and Venezuela. This oil sand layer usually exists several hundred meters underground as a layer with a thickness of about Sθ meters, but because this oil sand has a high viscosity, it cannot be extracted by pumping it up at room temperature.
そのため、何らかの手段でオイルサンドを加熱して粘度
を低下させ、オイル分を採取する方法が採用さねている
。Therefore, methods of heating the oil sand by some means to lower its viscosity and extracting the oil content have not been adopted.
その一つとして、オイルサンド層に加熱水蒸気を注入し
てオイル分の温度を上昇させる方法がある。しかし、こ
の方法は効率が低く、シたがってコスト高になるという
問題があった。One method is to increase the temperature of the oil by injecting heated steam into the oil sand layer. However, this method has the problem of low efficiency and therefore high cost.
こねに対し、より生産性の高い方法として、下端に電極
部を支持した鋼管またはステンレス鋼管でなるl対の導
管を、電極部がオイルサンド層に位置し、かつ、互いV
c30−20θメートルの間隔をおいて地中に埋設し、
両電極部間に交流電圧数百〜数千ボルトを印加し、オイ
ルサンド層に流jろ電流によって発生するジュール熱に
よりオイルサンド層の温度を上昇させ、オイル分の粘度
を低下させて採油することが提案された。As a more productive method for kneading, a pair of conduits made of steel or stainless steel tubes with electrodes supported at their lower ends are connected, the electrodes are located in the oil sand layer, and the electrodes are located in the oil sand layer.
Buried underground at intervals of c30-20θ meters,
An AC voltage of several hundred to several thousand volts is applied between both electrodes, and the Joule heat generated by the current flowing through the oil sand layer raises the temperature of the oil sand layer, lowering the viscosity of the oil and extracting oil. It was suggested that.
この後者の採油方法において、オイルサンド層の比抵抗
は上部地層の比抵抗よりも数倍筒<、地中に埋設した導
管の全長にわたって電圧を印加すると不要な大電流が流
れるため、電力の経済性からオイルサンド層のみに電流
が流ねるように、表面が絶縁された導管が必要となる。In this latter oil extraction method, the resistivity of the oil sand layer is several times higher than that of the upper stratum, and if a voltage is applied over the entire length of the conduit buried underground, an unnecessary large current will flow, resulting in economical power consumption. Due to its nature, a conduit with an insulated surface is required so that current can flow only through the oil sand layer.
一方、電極部への通電によってオイルサンド層の粘度が
低くなったとき、一方の導管内にオイルサンドを採取す
るための高圧力水蒸気を圧入し、他方の導管を経てオイ
ルサンドを採取する手段が採られるが、この水蒸気およ
びオイルサンドによる腐食を防止するための保護層を導
管内面に施す必要がある。さらKは、オイルサンド層の
電気抵抗を低下してジュール熱の発生な促進するために
、導管を通じてオイルサンド層に食塩水を注入するが、
この食塩水W対する腐食耐性を導管内面にもたせること
も必要である。On the other hand, when the viscosity of the oil sand layer decreases due to energization of the electrode section, there is a method of injecting high-pressure steam to collect oil sand into one conduit and collecting the oil sand through the other conduit. However, it is necessary to apply a protective layer to the inner surface of the conduit to prevent corrosion due to water vapor and oil sand. Furthermore, K injects salt water into the oil sand layer through a conduit in order to reduce the electrical resistance of the oil sand layer and promote the generation of Joule heat.
It is also necessary to provide the inner surface of the conduit with corrosion resistance against this saline solution W.
かかる導管内面に設けられる耐腐食保護層が具備してい
なげればならない特性をまとめると。The characteristics that must be possessed by the corrosion-resistant protective layer provided on the inner surface of such a conduit are summarized.
(δ、) 電気加熱時にオイルサンド層の粘度を一定以
下に低下させうる約300 ℃の温度に耐えうること。(δ,) Must be able to withstand temperatures of approximately 300°C that can reduce the viscosity of the oil sand layer below a certain level during electrical heating.
(b) オイルサンド採取時に、導管に注入する約、
? 00℃の水蒸気および採取されるオイルサンドによ
る腐食に耐え5ること。(b) About injected into the conduit during oil sand extraction,
? Resistant to corrosion by water vapor at 00°C and oil sands extracted.
(c) 食塩水による腐食に耐えうろこと。(c) Scales that can withstand corrosion from salt water.
となる。becomes.
[、たがって、この発明の目的は、前記(a) 、 (
b) 。[,Therefore, the purpose of the present invention is to achieve the above (a), (
b).
(c)のすべての特性を具備する耐腐食保護層を金属導
管の内面に形成する炭化水素地下資源電気加熱用電極支
持導管の製造方法を提供することである。It is an object of the present invention to provide a method for manufacturing an electrode support conduit for electric heating of hydrocarbon underground resources, which forms a corrosion-resistant protective layer on the inner surface of the metal conduit, which has all of the characteristics of (c).
また、この発明の目的は、金属導管の内部に負極の電圧
が印加される金属芯線でなる放電電極を配置し、金属導
管を正極として耐腐食性にすぐれた粉体を金属導管の内
面に静電粉体塗装する電極支持導管の製造方法を提供す
ることである。Another object of the present invention is to arrange a discharge electrode made of a metal core wire to which a negative electrode voltage is applied inside a metal conduit, use the metal conduit as a positive electrode, and statically apply powder with excellent corrosion resistance to the inner surface of the metal conduit. An object of the present invention is to provide a method for manufacturing an electrode support conduit coated with electrolytic powder.
さらに、この発明の目的は、長尺の金属導管、あるいは
直径の小さい金属導管の内面に、均一な耐腐食保護層を
形成しつる電極支持導管の製造方法を提供するにある。A further object of the present invention is to provide a method for manufacturing a vertical electrode support conduit that forms a uniform corrosion-resistant protective layer on the inner surface of a long metal conduit or a small diameter metal conduit.
以下、この発明について詳しく説明する。This invention will be explained in detail below.
まず、この発明に用いられる静電粉体塗装用粉体として
は、ポリエーテルエーテルケトン樹脂、さらには、この
ポリエーテルエーテルケトン樹脂に、耐熱水性の良好な
シリカガラス短繊維または石英粉あるいはアルミナ粉な
どを混合した粉体を挙げることができる。なお、ポリエ
ーテルエーテルケトン樹脂としては、下記の化学構造式
で表わさね、英国のインペリアル・ケミカル・インダス
トリーズ社によって開発された芳香族ポリエーテルエー
テルケトン類が好適である。First, the powder for electrostatic powder coating used in this invention is polyetheretherketone resin, and furthermore, this polyetheretherketone resin is combined with short silica glass fibers, quartz powder, or alumina powder that has good hot water resistance. Examples include powders mixed with As the polyetheretherketone resin, aromatic polyetheretherketones represented by the chemical structural formula below and developed by Imperial Chemical Industries Ltd. in the UK are suitable.
次に、金属導管内に配置される負極の放電電極としては
、できるだけ直径の小さい金属芯線な用い、金属導管内
に不平等電界を形成することにより、粉体に1M、荷を
与えるコロナ放電を生じ易くすることができる。このと
き、金属導管内を減圧すハば、さらにコロナ放電が生じ
易くなる。かかるコロナ放電によって、金属導管内のガ
ス分子がイオン化し、正イオンと負イオンが形成さねた
状態において、金属導管内に適宜の流速で粉体を流すと
、放電電極近傍で形成された負コロナによって粉体が負
に帯電し、放電電極に対して正電位にある金属導管の内
面に粉体が付着する。Next, as the negative discharge electrode placed inside the metal conduit, a metal core wire with the smallest possible diameter is used, and by forming an unequal electric field inside the metal conduit, a corona discharge that applies a charge of 1M to the powder is generated. It can be made easier to occur. At this time, if the pressure inside the metal conduit is reduced, corona discharge is more likely to occur. Due to this corona discharge, the gas molecules in the metal conduit are ionized, and in a state where positive ions and negative ions are not formed, when powder is flowed through the metal conduit at an appropriate flow rate, the negative ions formed near the discharge electrode are The powder is negatively charged by the corona and adheres to the inner surface of the metal conduit, which is at a positive potential with respect to the discharge electrode.
こうして内面に粉体が付着した金属導管を加熱炉によっ
て熱処理することにより、金属導管の内方法により粉体
を金属導管の内面に付着させれば、加熱炉を用いた後処
理は不要となる。この場合、金属導管の内面に付着した
粉体の絶縁抵抗は、金属導管が高温であるため低下する
。したがってこの粉体は金属導管内の粉体の堆積層で電
荷を失い易くなり、正電極である金属導体の内面から放
電電極側への逆電離、すなわち正コロナが生じにくくな
り、粉体の堆積層の厚さを大きくすることができる。前
記の逆電離は、粉体の堆積層の体積抵抗率がほぼ/θ″
Ω・σ以下であわば、防止できる。If the metal conduit having the powder adhered to its inner surface is heat-treated in a heating furnace, and the powder is adhered to the inner surface of the metal conduit by the internal method of the metal conduit, post-treatment using a heating furnace becomes unnecessary. In this case, the insulation resistance of the powder adhering to the inner surface of the metal conduit is reduced because the metal conduit is at a high temperature. Therefore, this powder tends to lose charge in the powder accumulation layer inside the metal conduit, and reverse ionization from the inner surface of the metal conductor (positive electrode) to the discharge electrode side, that is, positive corona, is less likely to occur, causing the powder to accumulate. The layer thickness can be increased. The above-mentioned reverse ionization causes the volume resistivity of the deposited layer of powder to be approximately /θ″
It can be prevented if it is less than Ω・σ.
また、金属導管の温度を上げるのに代えて、金属導管内
を適当な湿度に保持することによっても、この逆電離を
防止することができる。Further, instead of raising the temperature of the metal conduit, this back ionization can also be prevented by maintaining the inside of the metal conduit at an appropriate humidity.
以上は、金属芯線でなる放電電極を負極とした場合につ
いて述べたが、粉体の種類によっては粉体の帯電の仕方
が異なるので、放電電極を正電極とした方が好ましい場
合もある。The above has described the case where the discharge electrode made of a metal core wire is used as the negative electrode, but since the way the powder is charged differs depending on the type of powder, it may be preferable to use the discharge electrode as the positive electrode.
以上に述べた方法に基くさらに具体的な一実施例を、第
7図によって説明する。ここでは、粉体として5粒径が
10μm〜100μmのポリエーテルエーテルケトン樹
脂を用いる。まず、金属導管/を囲んで配置した誘導加
熱コイルλによって一内面に耐腐食保護層3を形成させ
るべき金属導管/を夕θθ℃に加熱する。金属導管/の
軸線上には、金属芯線でなる放電電極ダが絶縁物でなる
フランジSにより支持、配置されており、直流電源&に
より放電電極りを負電位、金属導管/を正電位7に保つ
。この状態で、ポリエーテルエーテルケトン樹脂の粉体
を導入口ざから金属導管l内に流入させる。この粉体は
金属導管/内を適宜の流速で連続的に流r、吐出しロタ
から金属導管7外へ流出する。金属導管/への粉体の導
入キャリアガスとしては、空気の代りに窒素を用いた。A more specific embodiment based on the method described above will be explained with reference to FIG. Here, a polyether ether ketone resin having a particle size of 10 μm to 100 μm is used as the powder. First, the metal conduit on which the corrosion-resistant protective layer 3 is to be formed on one inner surface is heated to θθ° C. by an induction heating coil λ placed around the metal conduit. On the axis of the metal conduit, a discharge electrode made of a metal core wire is supported and arranged by a flange S made of an insulator. keep. In this state, polyetheretherketone resin powder is flowed into the metal conduit l through the inlet. This powder continuously flows through the metal conduit at an appropriate flow rate and flows out of the metal conduit 7 from the discharge rotor. Nitrogen was used instead of air as the carrier gas for introducing the powder into the metal conduit.
窒素ガスをキャリアガスとしたことにより、ポリエーテ
ルエーテルケトン樹脂の酸化による劣化を防ぐあるいは
これらの混合物であってもよい。By using nitrogen gas as a carrier gas, deterioration of the polyether ether ketone resin due to oxidation can be prevented, or a mixture thereof may be used.
かくして、厚さが0.0 ! −(2k mの範囲の耐
腐食保護層3を内面に形成した金属導管lを、3θO℃
の熱水中にioo時間浸漬する試験を行なった結果、腐
食防止効果は良好で、耐腐食保護層3に剥離やクラック
の発生は認められず、かつ、食塩水にも十分に耐えうる
ことがわかった。Thus, the thickness is 0.0! - (A metal conduit l with a corrosion-resistant protective layer 3 formed on the inner surface in a range of 2 km is heated at 3θO℃
As a result of a test in which it was immersed in hot water for an ioo hour, the corrosion-preventing effect was good, no peeling or cracking was observed in the corrosion-resistant protective layer 3, and it was found that it could sufficiently withstand salt water. Understood.
さらに、上記において、ポリエーテルエーテルケトン樹
脂に、シリカガラス短繊維または石′英粉 。Furthermore, in the above, short silica glass fibers or quartz powder is added to the polyetheretherketone resin.
あるいはアルミナ粉をそれぞれ混入して複合化した粉体
によって、耐腐食保護層を形成したものについても、試
験の結果、同様の効果を認めろことができた。Alternatively, a similar effect was found in tests in which a corrosion-resistant protective layer was formed using composite powders mixed with alumina powder.
他方、ポリエーテルエーテルケトン樹脂に代えて、エポ
キシ樹脂、塩化ビニル樹脂の粉体な用い。On the other hand, instead of polyetheretherketone resin, epoxy resin or vinyl chloride resin powder is used.
この発明の方法で形成した耐腐食保護層は、30d′C
の熱水中でクラックが生じ、実用に供し得ないことが確
められた。The corrosion-resistant protective layer formed by the method of this invention is 30d'C
It was confirmed that cracks occurred in hot water, making it impossible to put it to practical use.
第2図は、この発明の方法に用いる放電電極の他の実施
例を示し、金属のパイプでなる放電電極lθの側壁に複
数の突起した吹出し穴/lを設け放電電極IOの中空部
にポリエーテルエーテルケトン樹脂の粉体な流す。金属
導管(図示せず)内はあらかじめ減圧しておき、吹出し
穴l/から吹出す粉体は、吹出し穴//先端に発生する
コロナ放電によって帯電する。このような、突出した吹
出し穴11を有する放電電極10を用いわば、吹出し穴
/lの先端の電界を高くすることができるので、低電圧
でコロナ放電を発生しつる効果がある。FIG. 2 shows another embodiment of the discharge electrode used in the method of the present invention, in which a plurality of protruding blow-off holes /l are provided on the side wall of the discharge electrode lθ made of a metal pipe, and a polygon is formed in the hollow part of the discharge electrode IO. Ether ether ketone resin powder flow. The pressure inside the metal conduit (not shown) is reduced in advance, and the powder blown out from the blow-off hole l/ is charged by corona discharge generated at the tip of the blow-off hole. By using the discharge electrode 10 having such a protruding blow-off hole 11, the electric field at the tip of the blow-off hole/l can be increased, so that there is an effect of generating corona discharge at a low voltage.
かくして、内面に耐腐食性保護層が形成された金属導管
は、その外面に適宜の電気絶縁被覆が施され、電極支持
導管として供用される。Thus, the metal conduit having the corrosion-resistant protective layer formed on its inner surface is coated with an appropriate electrically insulating coating on its outer surface, and is used as an electrode support conduit.
以上のように、この発明は、炭化水素地下資源の電気加
熱妊供する電極支持導管の内面に形成される耐腐食保護
層が具備すべき前記(a) 、 (b) +’ (C)
の緒特性を充足し、かつ、長尺の導管、細い導管であっ
ても、容易に所望のものを製造し5る効果がある。As described above, the present invention provides the above-mentioned (a), (b) +' (C) which the corrosion-resistant protective layer formed on the inner surface of the electrode supporting conduit for electrically heating underground hydrocarbon resources should have.
The present invention has the effect that it satisfies the characteristics of pipes and can easily manufacture desired pipes, even if they are long or thin.
第1図はこの発明の一実施例を説明するための装置の縦
断面図、第2図はこの発明に用し・る放電電極の他の実
施例の縦断面図である。
ノ・・金属導管、2・−誘導加熱コイル、3・・耐腐食
保護層、弘・・放電電極、S・・フランジ、ル・・直流
電源、g・・導入口、9・・吐出し口、io・・放電電
極、l/・−吹出し穴。
代理人 葛 野 信 −FIG. 1 is a longitudinal cross-sectional view of an apparatus for explaining one embodiment of the present invention, and FIG. 2 is a longitudinal cross-sectional view of another embodiment of a discharge electrode used in the present invention. No. Metal conduit, 2. Induction heating coil, 3. Anti-corrosion protective layer, Hiroshi... Discharge electrode, S. Flange, L. DC power supply, g. Inlet, 9. Discharge port. , io...Discharge electrode, l/...-Blowout hole. Agent Shin Kuzuno −
Claims (1)
電電極を配置(7、この放電電極と前記金属導管との間
に直流電圧を印加することによって前記放電電極の近傍
にコロナ放電な発生させ、キャリアガスとともに前記金
属導管の内部に導入さゎなポリエーテルエーテルケトン
樹脂でなる粉体に前記コロナ放電(テよって電荷を生じ
させ、前記金属導管の電位と前記放電電極の電位との電
位差により前記金属導管の内面に前記粉体による耐腐食
保護層を形成することを特徴とする炭化水素地下資源電
気加熱用電極支持導管の製造方法。 (,2)金属導管をあらかじめ加熱する特許請求の範囲
第1項記載の炭化水素地下資源電気加熱用電極支持導管
の製造方法。 (3)粉体が、ポリエーテルエーテルケトンm脂に、シ
リカガラス短繊維9石英粉、アルミナ粉から選んだ少く
とも1つを混合したものである特許請求の範囲第7項記
載の炭化水素地下資源電気加熱用電極支持導管の製造方
法。 乃 (り) キャリアガスが、値活性ガスである特許請求
の範囲第1項記載の炭化水素地下資源電気加熱用電極支
持導管の製造方法。 (51放電電極が、金属芯線でなる特許請求の範囲第7
項記載の炭化水素地下資源電気加熱用電極支持導管の製
造方法。 (A)放電電極が表面に複数の突起した吹出し口を有す
る金属パイプでなり、前記金属パイプ内に粉体を導入し
、前記放電電極の内部と金属導管の内部との圧力差によ
って前記粉体が前記吹出し穴から前記金属導管内に吹出
した際、前記金属導管と前記吹出し穴の先端との間にコ
ロナ放電を生せしめる特許請求の範囲第7項記載の炭化
水素地下資源電気加熱用電極支持導管の製造方法。[Scope of Claims] (1) A discharge electrode is disposed inside the metal conduit along the axis of the metal conduit (7, by applying a DC voltage between the discharge electrode and the metal conduit, the discharge electrode is A corona discharge is generated in the vicinity of the electrode, and the powder made of polyetheretherketone resin, which is introduced into the metal conduit together with a carrier gas, is charged with the corona discharge, and the electric potential of the metal conduit is changed. A method for producing an electrode support conduit for electric heating of hydrocarbon underground resources, characterized in that a corrosion-resistant protective layer is formed by the powder on the inner surface of the metal conduit due to a potential difference with the potential of the discharge electrode. (2) Metal A method for producing an electrode supporting conduit for electric heating of hydrocarbon underground resources according to claim 1, which comprises heating the conduit in advance. (3) The powder is polyether ether ketone resin, silica glass short fiber 9 quartz powder. The method for producing an electrode supporting conduit for electric heating of hydrocarbon underground resources according to claim 7, wherein the carrier gas is a mixture of at least one selected from alumina powder and alumina powder. A method for producing an electrode supporting conduit for electric heating of hydrocarbon underground resources according to claim 1. (Claim 7 in which the discharge electrode 51 is a metal core wire)
A method for producing an electrode supporting conduit for electric heating of hydrocarbon underground resources as described in 2. (A) The discharge electrode is a metal pipe having a plurality of protruding outlets on the surface, and powder is introduced into the metal pipe, and the powder is removed by the pressure difference between the inside of the discharge electrode and the inside of the metal conduit. The electrode support for electric heating of hydrocarbon underground resources according to claim 7, which generates corona discharge between the metal conduit and the tip of the blow-off hole when the metal conduit is blown from the blow-off hole into the metal conduit. Method of manufacturing conduit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2092183A JPS59145897A (en) | 1983-02-09 | 1983-02-09 | Production of electrode support conduit for electrical heating of underground hydrocarbon resources |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2092183A JPS59145897A (en) | 1983-02-09 | 1983-02-09 | Production of electrode support conduit for electrical heating of underground hydrocarbon resources |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59145897A true JPS59145897A (en) | 1984-08-21 |
Family
ID=12040683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2092183A Pending JPS59145897A (en) | 1983-02-09 | 1983-02-09 | Production of electrode support conduit for electrical heating of underground hydrocarbon resources |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59145897A (en) |
-
1983
- 1983-02-09 JP JP2092183A patent/JPS59145897A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6112808A (en) | Method and apparatus for subterranean thermal conditioning | |
US5182792A (en) | Process of electric pipeline heating utilizing heating elements inserted in pipelines | |
US5784530A (en) | Iterated electrodes for oil wells | |
EP3126625B1 (en) | Insulated conductors formed using a final reduction step after heat treating | |
US8960291B2 (en) | Method for forming a hydrocarbon resource RF radiator | |
US4783585A (en) | Downhole electric steam or hot water generator for oil wells | |
US4577664A (en) | Conduit tube of an electrode device for electrically heating underground hydrocarbon resources | |
JPS59145897A (en) | Production of electrode support conduit for electrical heating of underground hydrocarbon resources | |
JPS6316560B2 (en) | ||
US4794049A (en) | Electrode supporting conduit tube for electrical heating or underground hydrocarbon resources | |
CA1191744A (en) | Conduct pipe covered with electrically insulating material | |
RU2655682C1 (en) | Method for protecting submersible equipment of oil producing well from electrochemical corrosion | |
JPS5939373A (en) | Manufacture of conduit of electrode apparatus for electrically heating underground hydrocarbon resources | |
JPS59199993A (en) | Electrode apparatus for electrically heating hydrocarbon underground resources | |
WO1998058156A1 (en) | Method and apparatus for subterranean magnetic induction heating | |
JPS5952091A (en) | Conduit of electrode device for electrically heating underground resource of hydrocarbon | |
JPS5937685A (en) | Conduit of hydrocarbon underground resources electrically heating electrode device | |
JPS6245396B2 (en) | ||
JPS5864714A (en) | Conduit insulator for electrode unit of electrically heating hydrocarbon underground resources | |
JPS6240515B2 (en) | ||
JPS59150898A (en) | Electrode support conduit for electrical heating of underground hydrocarbon resources | |
RU33376U1 (en) | The system of electrical heating for the cleaning of oil installations from paraffin deposits | |
RU161761U1 (en) | ELECTRIC CABLE FOR INSTALLATION OF SUBMERSIBLE ELECTRIC PUMPS | |
JPS5918893A (en) | Electric heater apparatus of hydrocarbon underground resources | |
JPH0433958B2 (en) |