JPS5842891A - Insulating pipe joint - Google Patents

Insulating pipe joint

Info

Publication number
JPS5842891A
JPS5842891A JP14009081A JP14009081A JPS5842891A JP S5842891 A JPS5842891 A JP S5842891A JP 14009081 A JP14009081 A JP 14009081A JP 14009081 A JP14009081 A JP 14009081A JP S5842891 A JPS5842891 A JP S5842891A
Authority
JP
Japan
Prior art keywords
tubular member
temperature
glass
thermal expansion
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14009081A
Other languages
Japanese (ja)
Other versions
JPS6364679B2 (en
Inventor
井上 武男
白沢 宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14009081A priority Critical patent/JPS5842891A/en
Publication of JPS5842891A publication Critical patent/JPS5842891A/en
Publication of JPS6364679B2 publication Critical patent/JPS6364679B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Flanged Joints, Insulating Joints, And Other Joints (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は例えば金属製気密容器の壁面を貫通して取付
けたり、あるいは金属管の中間に介在させて、絶縁と気
(水)密性を確保する目的に使用する中心部に貫通孔を
有する絶縁管継手に関するものである。
Detailed Description of the Invention The present invention provides a center for use in securing insulation and air (water) tightness by being installed, for example, through the wall of a metal airtight container or interposed between metal pipes. The present invention relates to an insulated pipe joint having a through hole in the part thereof.

従来冷却媒体としてのフロン、その他の気体p液体等の
搬送用に必要な部品として広く使用されていたが、何れ
も使用条件下における温度変化の範囲が狭いため広範な
温度変化に対する特別な配慮がされておらずとくに高温
時における気(水)書籍性の低下は特KIII着で機械
的強度などを含めて、300℃程度の温度で使用可能な
ものは現状では見当らない。
Conventionally, they have been widely used as parts necessary for transporting chlorofluorocarbons as cooling media and other gases and p-liquids, but because the range of temperature changes under the operating conditions is narrow, special consideration must be given to wide temperature changes. At present, there is no material that can be used at temperatures of about 300° C., including mechanical strength, which has a particularly poor deterioration in air (water) properties at high temperatures.

近時、石油資源の高騰にともない、カナダ、−ペエネゼ
ラ国等の地下に埋蔵されているオイルサ/ド層かもオイ
ル分を採取することが本格的に開発されつつある。この
オイルサンドは地下的5001の地底に厚さ約50mの
層をなして存在するが、このオイルは粘度が高く、常温
で吸み上げて採取することが出来ず、現在、オイルサン
ド層に加熱水蒸気を注入して、オイル分の温度を上昇さ
せ、その粘度を低下させて吸み上げる方法が取られてい
るがより効率よ(より安価に生産するために1地中rc
埋設した鋼管の先端部でオイルサンド層に位置する所に
電極部を設けた採油管2本を約50mの間隔で設置し、
両電極間に約4000vの電圧を印加し1、ジュール熱
によりオイルサンド層の温度を上昇させオイルの粘度を
低下させて採油する方法が本格的に検討されつつある。
Recently, with the rise in the price of petroleum resources, full-scale development is underway to extract oil from the oil deposits buried underground in countries such as Canada and Pennsylvania. This oil sand exists in a layer approximately 50 meters thick underground in 5001, but this oil has a high viscosity and cannot be extracted by sucking it up at room temperature, so currently it is being heated to form an oil sand layer. The method used is to inject water vapor to raise the temperature of the oil content, lower its viscosity, and suck it up, but this method is more efficient (in order to produce it at a lower cost, one underground RC
Two oil sampling pipes with electrodes were installed at an interval of approximately 50 m at the tips of the buried steel pipes located in the oil sand layer.
A method of extracting oil by applying a voltage of about 4000 V between both electrodes 1 and raising the temperature of the oil sand layer using Joule heat to lower the viscosity of the oil is being seriously considered.

ところでオイルサンド層の比抵抗が上部地層の比抵抗よ
り高い(実際には約10倍)ため地層部tcJl設した
鋼管とオイルサンド層に埋設した電極の間に絶縁管継手
を介′在させる必要がある。もし絶縁管継手を介在させ
ないと電流は地層部を流れ目的とするオイルサンド層K
m設した電極間には電流が流れなくなる。上記のことか
ら絶縁管継手に対する要求が急激にだかまった。
By the way, since the resistivity of the oil sand layer is higher than the resistivity of the upper stratum (actually about 10 times), it is necessary to interpose an insulated pipe joint between the steel pipe installed in the stratum tcJl and the electrode buried in the oil sand layer. There is. If no insulated pipe joints are used, the current will flow through the strata and reach the target oil sand layer K.
Current no longer flows between the electrodes. As a result of the above, demand for insulated pipe joints has rapidly increased.

上記目的に使用する絶縁管年季が具備A、−1x、、<
(はならない特性を挙げると次のようKなる。電極を懸
垂保持するので機械的強度、とくに引張り強度が大きい
こと。4000vの電圧に耐え完全な絶縁を保持し得る
。沿面絶縁抵抗を含め耐電圧特性を有すること。電極部
は約300℃の温度になるが、この条件下で気(水)密
性1機械的強度および電気的特性を保持すること。耐冷
熱衝撃特性に富むこと。
The age of the insulation tube used for the above purpose is A, -1x,, <
(The characteristics that must not be met are as follows. Since the electrode is held suspended, the mechanical strength, especially the tensile strength, must be high. It can withstand a voltage of 4000V and maintain complete insulation. Withstand voltage including creepage insulation resistance. The electrode section is exposed to a temperature of approximately 300°C, and under this condition it must maintain air (water) tightness, mechanical strength, and electrical properties.It must have excellent cold and thermal shock resistance.

オイルサンド層に埋設する際、先端に電極を懸垂して、
鋼管に接続して埋設穴に沈められるが、この際穴壁に接
触することがある。この接触により破損しない機械的衝
撃強度を保持すること、および沖央貫通孔が上部の鋼管
および電極部の内径と等しい寸法を有し、流通抵抗が低
いこと、ならびに外径寸法が出来る限り細く埋設穴に事
実に太い径を必要としないこと0等でその他鋼管および
電極部との接続が容易である事等が当然要求される。
When buried in the oil sand layer, an electrode is suspended from the tip.
It is connected to a steel pipe and sunk into a buried hole, but it may come into contact with the hole wall. It is necessary to maintain mechanical impact strength that will not cause damage due to this contact, and that the offshore central through-hole has dimensions equal to the inner diameter of the upper steel pipe and electrode section, resulting in low flow resistance, and that the outer diameter dimension is as thin as possible. Naturally, the hole does not require a large diameter, and it is naturally required that it be easy to connect with the steel pipe and the electrode part.

この種絶縁管継手の場合、2本の導管の関に絶縁物を介
在させ密封々止することが基本構造で、上記の必要な具
備特性を最も大きく支配するのは、絶縁物である。勿論
使用する金具材料および構造とも密接に関係するがこれ
らも絶縁物に支配されることが大きい。
In the case of this type of insulated pipe joint, the basic structure is to interpose an insulator between the two conduits to provide a hermetically sealed seal, and the insulator has the greatest control over the above-mentioned necessary characteristics. Of course, it is closely related to the metal fitting material and structure used, but these are also largely controlled by the insulator.

先ずこの絶縁物について説明する。先ず有機材料である
が、使用条件が300℃の場合、変質あるいけ軟化現象
があるので本質的に、その使用は不可能である。
First, this insulator will be explained. First of all, organic materials are essentially impossible to use if the operating conditions are 300°C, as they undergo deterioration or softening phenomena.

次に無機材料であるが、使用条件が常温の場合にはガラ
ス質および磁器質材料が好ましく使用されているが30
−0℃の温度条件下の使用では、温度変化によりヒビ割
れを発生するなど熱衝撃強度が低く、また機械的衝撃強
度についても本質的に弱いためその使用は全く不可能で
ある。上記の必要な具備特性を総合的に判断して最も優
れており使用の可能性があるものにガラス、マイカ塑造
体よマイカ粉宋の泥酋豐ン原料とし、こ2、の鳳科初禾
lガラス質が軟化して加圧により流動する温度に加熱し
、加熱状態で加圧成形して得られる絶縁物のことである
Next, regarding inorganic materials, glass and porcelain materials are preferably used when the usage conditions are room temperature.
When used under a temperature condition of -0° C., the thermal shock strength is low, such as cracks occurring due to temperature changes, and the mechanical shock strength is also essentially weak, making it completely impossible to use it. After comprehensively evaluating the above-mentioned necessary properties, we selected glass, mica plastics, and mica powder as the raw material for the Song dynasty's clay, which is the most excellent and has the potential for use. An insulator obtained by heating glass to a temperature at which it softens and flows under pressure, and then press-molding it in the heated state.

ガラス、マイカ塑造体を絶縁物とした絶縁管継手で従来
の使用温度が常温に近く温度変化幅の狭い使用条件下に
おける要求特性に対し最も理想的なものに先に本発明者
らが提案したものがある。
The present inventors have previously proposed an insulated pipe joint that uses glass or mica plastic as an insulator, and that is the most ideal for the required characteristics under usage conditions where the conventional usage temperature is close to room temperature and the temperature variation range is narrow. There is something.

以下第1図により説明する。第1@1&41は成形品の
状態を、第1図−は製品の構造を示す縦断面図である、
この絶縁管継手は常温の使用条件下では、無水)密性性
9機械的強度、耐冷熱および機械衝撃強度および電気的
特性につい【十分満足な特性を保持し、かつ貫通孔に凹
凸がな(流通抵抗も低く理想的なものであるが、300
℃の温度に達すると気(水)書籍性が急激に劣化すると
いう致命的な欠陥がある。
This will be explained below with reference to FIG. 1@1 & 41 is a longitudinal cross-sectional view showing the state of the molded product, and Fig. 1- is a longitudinal cross-sectional view showing the structure of the product.
Under normal temperature operating conditions, this insulated pipe fitting maintains sufficiently satisfactory characteristics in terms of water-free tightness, mechanical strength, cold and heat resistance, mechanical shock strength, and electrical properties, and has no unevenness in the through hole. The circulation resistance is low and ideal, but 300
It has a fatal flaw in that its air (water) properties rapidly deteriorate when the temperature reaches ℃.

以下その関係を説明する。この関係は、製造方法と密接
に関係するので、理解を容易にする°ため、先にその製
造方法を第2図に従い説明する。第2図−1は製造時に
おける加圧成形直前の状態を第2図(口・は加圧成形完
了後の状態を示す縦断面図である。
The relationship will be explained below. Since this relationship is closely related to the manufacturing method, the manufacturing method will first be explained with reference to FIG. 2 to facilitate understanding. FIG. 2-1 shows the state immediately before pressure molding during manufacturing (Fig. 2-1 is a vertical sectional view showing the state after pressure molding is completed).

金具には次の2s類を用意する。図中(1)は円筒状の
第1の管状部材で、上部の肩部(1−1)を介して外周
金具18)を接続保持し、内周上部に輪状の保持台(1
−2)を具備している。(粉は第2の管状部材で下部に
外周が第1の管状部材(1)の内周に嵌合する支持部(
2−2)を有している。
Prepare the following 2s types of metal fittings. In the figure, (1) is a cylindrical first tubular member, which connects and holds the outer peripheral metal fitting 18) through the upper shoulder part (1-1), and has a ring-shaped holding base (1
-2). (The powder is attached to the second tubular member, and at the bottom there is a support part whose outer periphery fits into the inner periphery of the first tubular member (1).
2-2).

原料は、転位温度が360℃より高いガラスの粉末と合
成含弗素金マイカの粉末の混合粉末を使用し、この混合
粉末に水分を加えて湿潤状態にし別の成形型(図示せず
)を用い冷間加圧成形により第2の管状部材(2)と壁
部樟)の空間部に挿填出来る形状に成形し乾燥して水分
を除去した予備成形体(6)として使用する成形型ニは
枠(7)それぞれ分割構造の壁部(8)、支持金(9)
、加圧金叫9以上4部品で構成されたものを使用する。
As raw materials, a mixed powder of glass powder with a transition temperature higher than 360°C and synthetic fluorine-containing gold mica powder is used. Moisture is added to this mixed powder to make it wet, and a separate mold (not shown) is used. The mold 2 used as the preformed body (6) is formed by cold pressure molding into a shape that can be inserted into the space between the second tubular member (2) and the wall (wooden wall), and dried to remove moisture. Frame (7), wall of divided structure (8), support metal (9)
, use a pressure gauge made up of 9 or more parts.

成形は成形型の内枠(7)、壁部(8)および支持金(
9)を第2図←IK示すように組立て加圧金叫は組立て
ずに処理温度に、第1および第2の管状部材(1)、1
1)および予備成形体(至))をそれぞれ処理温度に加
熱する。加熱が完了すると先ず第1の管状部材(1)を
支持金+91上に次に第2の管状部材(11を保井会(
,1−2)上に、最後に予備成形体軸)を外周金具(2
)上に載置する。この時の状態が第2図4(I K示し
である。装填が完了すると加圧金(至)を予備成形体(
6)上に載置し、加圧成形機により予備形体棒)を加圧
し、空間部+41. (4−1) K圧入する。一部が
外周金具(3)上に残り絶縁物(5)を構成する。加圧
は原料ガラスの転位温度まで継続する。この時の状態を
第2図−に示す。
Molding is carried out using the inner frame (7), wall (8) and support metal (
9) As shown in Figure 2←IK, the first and second tubular members (1), 1
1) and the preform (to)) are each heated to a processing temperature. When heating is completed, first place the first tubular member (1) on the supporting metal +91, then place the second tubular member (11) on the support plate +91.
, 1-2), and finally attach the preform shaft) to the outer peripheral fitting (2
). The state at this time is shown in FIG.
6) Place the preformed rod on top and pressurize the preformed rod with a pressure molding machine to form the space +41. (4-1) Press-fit K. A portion remains on the outer peripheral fitting (3) and constitutes an insulator (5). Pressure is continued until the transition temperature of the raw glass is reached. The state at this time is shown in Figure 2-.

絶縁物!51の温度がガラス質転位温度に達すると加圧
をやめ成形品を分解して第1図GflK示される成形品
を取り出すおこれに機械加工を施すことKより第1図−
に示される製品が形成される。
Insulator! When the temperature of 51 reaches the glass transition temperature, the pressure is stopped and the molded product is decomposed and the molded product shown in Fig. 1 is taken out and machined.
The product shown in is formed.

予備成形体…)はガラスの組成により異なるが加圧によ
り十分流動し得るよ5 tc 80Q°〜900’CK
加熱される。第1および第2の管状部材は600 ℃’
−m℃に加熱され成形型は予備成形体帽)を構成する原
料ガラスの転位温度より100’D−15面高い温度に
加熱しておく、例えば転位温度が360℃の場合460
C〜510℃に加熱する。
The preform (...) varies depending on the composition of the glass, but it can flow sufficiently under pressure.5 tc 80Q°~900'CK
heated. The first and second tubular members are heated to 600 °C'
-m℃ and the mold is heated to a temperature 100'D-15 planes higher than the transition temperature of the raw glass constituting the preform (for example, 460' if the transition temperature is 360℃)
Heat to 510°C.

次に気、(7k)密性性に最も顕著に影響するのは第1
および第2の管状部材、ならびに絶縁物であるガラス、
マイカ塑造体の熱膨張率(この場合は熱収縮率になるが
一般的な熱膨張率と表示する、。)の関係であるが、常
温において最も高度の気(水)密性性を保持するものに
ついて説明する第2の管状部材(2)K熱膨張率11x
10− の鉄材を絶縁物(6)Kガラスの転位温度以下
の熱膨張率12x10−aのガラス。
Next is qi, (7k) the most significant influence on density is the first.
and a second tubular member, and glass as an insulator;
Regarding the thermal expansion coefficient of mica plastic bodies (in this case, it is the thermal contraction rate, but it is expressed as the general thermal expansion coefficient.), it maintains the highest degree of air (water) tightness at room temperature. Second tubular member (2) K thermal expansion coefficient 11x
10- Insulating iron material (6) Glass with a thermal expansion coefficient of 12x10-a below the transition temperature of K glass.

マイカ塑造体をまた外周金具(3)K熱膨張率18x1
 (r’のステンレスを使用する。ガラス、マイカ塑造
体はガラス質の転位温度より高い温度領域では流動可能
であると同時に極端に大ぎい熱膨張率を有するが成形特
転位温度まで、加圧が継続されているため、転位温度に
達した時点では第2の管状部材(2)と外周金具18)
の空間部(4)Kは空隙がなく絶縁物(6)が充填され
ている。転位温度から常温に到る間の各構成部材の熱収
縮状態は熱膨張率の大ぎいもの根太ぎく収縮するので、
外周金具(3)の収縮が最大で、その内周部にある絶縁
物(6)を圧縮するようkなり、その間に締付圧力が発
生する。同じく絶縁物(5)は内周部にある#!2の管
状部材(Lを、圧縮し、同様の締付圧力が発生する。こ
のため絶縁物(5)の内外周面には空隙が存在し得なく
なるので極めて高度の気(水)密性性を保持するように
なる。
The mica plastic body is also fitted with an outer peripheral metal fitting (3) K thermal expansion coefficient 18x1
(Use R' stainless steel. Glass and mica plastic bodies can flow in a temperature range higher than the transition temperature of glass, and at the same time have an extremely large coefficient of thermal expansion. Therefore, when the transition temperature is reached, the second tubular member (2) and the outer peripheral fitting 18)
The space (4) K has no voids and is filled with an insulator (6). The state of thermal contraction of each component from the transition temperature to room temperature is that the joists with a large coefficient of thermal expansion contract sharply.
The contraction of the outer circumferential fitting (3) is maximum, compressing the insulator (6) on its inner circumference, and a tightening pressure is generated during this time. Similarly, the insulator (5) is located on the inner circumference #! The tubular member (L) of No. 2 is compressed and a similar tightening pressure is generated.Therefore, no voids can exist on the inner and outer peripheral surfaces of the insulator (5), resulting in extremely high air (water) tightness. will hold.

ところで上記の絶縁継手は温度が300℃近く上昇する
と各部分が熱膨張をするが外周金具13)の熱膨張率が
絶縁物(6)の熱膨張率が大きいので、締付圧力が消滅
し、その接触面に空隙部が発生するようになる絶縁物(
6)と館2の管状部材(2)の間にも上記と同じ現象が
現われる。この現象により気(水)密性性は必然的に低
下するもので、これは不可避の致命的な欠陥である。
By the way, each part of the above-mentioned insulated joint undergoes thermal expansion when the temperature rises by nearly 300°C, but since the coefficient of thermal expansion of the outer peripheral fitting 13) is larger than that of the insulator (6), the tightening pressure disappears. Insulators that create voids on their contact surfaces (
6) and the tubular member (2) of the building 2, the same phenomenon as described above appears. This phenomenon inevitably reduces air (water) tightness, which is an unavoidable fatal defect.

この発明は以上のような点Kかんがみてなされたもので
、温度が上昇しても気(水)密性性が低下しない絶縁管
継手を得ることを目的とするものであるO 以下第3図に示すこの発明の一実施例について説明する
。第3図幀は成形完了後の状態を第3図1o1は機械加
工を完了した製品の構造を示す断面図である、第1の管
状部材(1)Kは第1図−に示す従来品と同様、肩部(
1−1)を介して外周金具(8)を保持する構造罠なっ
ており鋼材で構成されている。
This invention was made in consideration of the above point K, and the object is to obtain an insulated pipe joint whose air (water) tightness does not deteriorate even when the temperature rises. An embodiment of the present invention shown in FIG. Figure 3 shows the state after completion of molding. Figure 3 1o1 is a sectional view showing the structure of the product after machining. The first tubular member (1) K is the same as the conventional product shown in Figure 1. Similarly, the shoulder area (
1-1) is a structural trap that holds the outer peripheral fitting (8) and is made of steel.

請2の管状部材(2)は外周金具(8)・内に位置する
部分の先端部約1/2の部分に管状部材(2)の材料よ
り熱膨張率の大きい材料で構成された内周金具113を
有している。実〜施例では第2の管状部材(2)には熱
膨張率11 xl 0−’の鋼材を、外周金具(3)に
は熱膨張率13x10= F)鋼材を内周金具a@ K
 kt 18x10−’ (D x fンレス鋼材を使
用し、内周金具03の肉厚は第2の管状部材(2)と近
似させ、第2の管状部材(2)の内周部に肉薄の管状部
(2−3)を残し、その外周に嵌合して配設し、その上
端部で第2の管状部材(2)と気(水)密約に接合部(
13−1)Kより接合されて゛いる。
The second tubular member (2) has an inner periphery made of a material with a higher coefficient of thermal expansion than the material of the tubular member (2) at about 1/2 of the tip of the outer metal fitting (8). It has a metal fitting 113. In the examples, the second tubular member (2) is made of a steel material with a coefficient of thermal expansion of 11 xl 0-', and the outer peripheral fitting (3) is made of steel material with a thermal expansion coefficient of 13 x 10 = F), and the inner peripheral fitting a@K
kt 18x10-' (D The part (2-3) is left in place, and the part (2-3) is fitted into the outer periphery of the part (2-3), and the upper end part is tightly connected to the second tubular member (2) by air (water).
13-1) Joined from K.

絶縁物(6)は転位温度660℃、転位温度以下の熱膨
張率12x10=のガラス、マイカ塑造体で形成されて
いる。成形は第1図に示す従来品と同様に第2愉w示す
方法で行ない機械加工により第3図1al K示す製品
に仕上げられる。
The insulator (6) is made of glass or mica plastic having a transposition temperature of 660° C. and a coefficient of thermal expansion of 12×10=lower than the transposition temperature. The molding is carried out in the same manner as the conventional product shown in FIG. 1, and the product shown in FIG. 3 is finished by machining.

本発明になる上記実施例で得た絶縁管継手は使用条件が
300℃程度の温度に上昇しても、また温度の上昇下降
の反覆にあっても高度の匁水迷、特性を保持する。以下
その理由について説明する、先ず600℃の温度におい
て気(水)密特性を保持する絶縁管継手を得る場合には
絶縁物を構成するガラス、マイカ塑造体の原料ガラスに
転位温度が醐℃以上のものを使用することは必須の条件
である。
The insulated pipe joint obtained in the above embodiment according to the present invention maintains a high degree of elasticity and characteristics even if the operating conditions rise to a temperature of about 300° C. or even if the temperature is repeatedly raised and lowered. The reason for this will be explained below. First, in order to obtain an insulated pipe joint that maintains air (water) tightness at a temperature of 600°C, the glass constituting the insulator and the raw material glass of the mica plastic body must have a transposition temperature of 3°C or higher. It is an essential condition to use one.

イ匁製品の常温における気(水)密特性は従来品と同様
第2の管状部材穣)が外周金具(3)と対面する部分で
確保されている。温度が上昇し、外周金具1g+が膨張
すると、この部分の気(水)密特性は低下する。一方内
周金具回は外周金具13)より大きい膨張率のステンレ
ス鋼が使用されているので、その外周の膨張量が大きく
外周部の絶縁物(6)を圧縮するようKなり、絶縁物(
5)は外周部にある外周金具(3)の内周面を圧縮する
ようkなる。そのため絶縁物俤)の内周外周の界面に空
隙が発生し得なくなる。云゛いかえると温度が上昇する
に従い、外側に向って締付圧力が発生するようKなり、
高度の気体)密特性が得られる。
The air (water) tightness of the Momme product at room temperature is ensured at the portion where the second tubular member (4) faces the outer metal fitting (3), as in the conventional product. When the temperature rises and the outer peripheral fitting 1g+ expands, the air (water) tightness of this part decreases. On the other hand, since the inner metal fitting is made of stainless steel with a higher expansion coefficient than the outer metal fitting 13), the amount of expansion of the outer circumference is large and compresses the insulator (6) on the outer circumference.
5) compresses the inner peripheral surface of the outer peripheral fitting (3) located at the outer peripheral part. Therefore, no voids can be generated at the interface between the inner and outer peripheries of the insulator. In other words, as the temperature rises, tightening pressure is generated outward,
Highly gas-dense properties can be obtained.

上記のように本発明になるこの絶縁貫継手の場合、温度
が上昇すると常温時における気(水)密性性保持部分と
は別VC温度上昇にともない気(水)密特性が上昇する
機構部分が設けられているので、従来品と異なり温度が
上昇し【も高度の気(水)密特性を保持するものである
。逆に温度が下降すると気(水)密保持部分が交替する
ので、温度の上昇下降の反覆にあっても気(水)密性が
劣化することがなく300℃程度までの全温度領域にお
いて完全に特性が確保される。
As mentioned above, in the case of this insulating joint according to the present invention, when the temperature rises, the mechanical part whose air (water) tightness increases as the VC temperature rises is different from the part that maintains air (water) tightness at room temperature. Unlike conventional products, it maintains a high degree of air (water) tightness even when the temperature rises. On the other hand, when the temperature decreases, the air (water) tightness is replaced, so even if the temperature rises and falls repeatedly, the air (water) tightness does not deteriorate and is completely maintained in the entire temperature range up to about 300℃. characteristics are ensured.

なお、内周金具關は第2の管状部材(2)と接合部(1
3−1)VCより無水)密約に接合されているため高温
になり、第2の管状部材(2)と外周金具18)の対抗
面の特性が低下した際に、第2の管状部材(3)と内周
金具0の界面を経路とした漏洩により気(水)密特性が
低下することは全くない但し使用可能温度領域は前述の
ように原料ガラス質の転位温度に密接に関係し、転位温
度に近い温度になると絶縁物自体の粘度が低下し圧縮力
を受けた場合に自らが変形し給付力が発生しなくなるの
で、気(水)密特性は保持し得なくなる。上記理由によ
り使用最高温度はガラスの転位温度より50″”0−6
0:C低い温良に、なる。
Note that the inner peripheral metal fitting is connected to the second tubular member (2) and the joint (1).
3-1) When the characteristics of the opposing surfaces of the second tubular member (2) and the outer peripheral fitting 18) deteriorate due to high temperatures because they are bonded tightly (from VC to anhydrous), the second tubular member (3) ) and the inner peripheral metal fitting 0 as a route, the air (water) tightness will not deteriorate at all. However, as mentioned above, the usable temperature range is closely related to the dislocation temperature of the raw glass, When the temperature approaches that temperature, the viscosity of the insulating material itself decreases, and when subjected to compressive force, it deforms and no longer generates dispensing force, making it impossible to maintain its air (water) tight properties. For the above reasons, the maximum operating temperature is 50""0-6 below the transition temperature of glass.
0:C becomes low and warm.

なお実施例では、第1.第2の管状部材および外周金具
に鋼材を内周金具にステンレス鋼を使用しているが決し
てこの材料に限定されるものではない。外周金具の熱膨
張率を基準にし、第2の管状部材は、これより小さいも
の内周金具は大館いものであればよ(、第1の管状部材
については何ら制約はない。
In addition, in the example, the first. Although steel is used for the second tubular member and the outer metal fitting, and stainless steel is used for the inner metal fitting, the present invention is not limited to these materials. Based on the coefficient of thermal expansion of the outer metal fitting, the second tubular member may be smaller than this, and the inner metal fitting may be larger (there are no restrictions on the first tubular member).

以上のようKこの発明による絶縁継手は、従来品が保持
していた機械的強度、電気的特性、耐冷熱および機械的
衝撃強度9貫通孔に凹凸がなく、流通抵抗が低いこと等
価れた特性をそのまま保持するとともに従来品の致命的
な欠陥であった温度が上昇すると無水)密特性が低下す
るという現象が完全に除去され、温度の上昇下降の反覆
にあっても常に高度の気(水)密特性を保持するもので
ある。
As described above, the insulating joint according to the present invention has properties equivalent to the mechanical strength, electrical properties, cold and heat resistance, and mechanical impact strength that conventional products have. At the same time, the fatal flaw of conventional products, in which the water-free properties deteriorate as the temperature rises, has been completely eliminated, and even when the temperature rises and falls repeatedly, it always maintains a high degree of water-free properties. ) that maintains dense properties.

そのため温度の高い条件下例えば前記のようにオイルサ
ンドの採油に使用する鋼管と電極部を絶縁するための絶
縁管継手、この場合は使用温度が約600°Cであるが
何等の危惧なく使用が可能になった、その他化学製品の
製造工程における高温ガス。
Therefore, under high temperature conditions, for example, as mentioned above, insulated pipe joints used to insulate the steel pipes and electrode parts used for oil extraction from oil sands, in this case the operating temperature is approximately 600°C, can be used without any fear. High-temperature gases have become possible in the manufacturing process of other chemical products.

高畠液体の搬送用など多(の用途に有効に使用されるよ
うになりその技術的および実用的効果は極めて太きいも
のである。
Takahata:It has come to be effectively used for many purposes such as transporting liquids, and its technical and practical effects are extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の絶縁管継手の構成を示す縦断面図で第
1図(イ)は成形完了後の状態を第1図(ロ)は製品の
構造を示す。第2図は第1図に示す従来の絶縁管継手の
製造方法を示す縦断面図で@2図怜は加圧成形直前の状
態を第2図(ロ)は角田成形完了後の状態を示す。第3
図は本発明になる絶縁管継手の構成を示す縦断面図で、
第3図←−は成形完了後の状態を第3図(ロ)は製品の
構造を示す。 図において、(1)は第1の管状部材、 (1−1)は
肩部、 (1−2)は保持台、((9)は第2の管状部
材、(2−2)は支持部、(8)は外周金具* 141
s (4−1)空間部、(6)は絶縁物、f6)は予備
成形体、())は枠、(8)は壁部、(9)は支持金、
 noは加圧金、113は内周金具、 (13−1)4
−!。 代理人葛野信− 第1図 (4)Cす) 第2図 (1)c口) 第3図 (勺 C口) 手続補正書(自発) 特許庁長官殿 1、事件の表示    特願昭 56−1400903
、補正をする者 5、補正の対象 明細書の[特許請求の範囲Jおよび「発明の詳細な説明
」の各欄。 & 補正の内容 1)明細書の「特許請求の範囲」を別紙のとう抄補正す
る。 2)明細書第7頁第20行の「内枠(?)Jを「うち、
枠(η」と補正する。 3)明細書第7頁第20行の「処理温度」を「処理温度
」と補正する。 4)明細書第10頁第7行の「絶縁継手」を「絶縁管継
手」と補正する。 5)明細書第10頁第9行の「熱膨張率が大きい」を「
熱膨張率より大きい」と補正する。 6)明細書第13頁第2行の「絶縁貫継手」を「絶縁管
継手」と補正する。 7)明細書第14頁第11行の「絶縁継手」を「絶縁管
継手」と補正する。 以上 別紙 特許請求の範餠(補正) (1)第1の筒体部とこの第1の筒体部の一端部に一体
に形成され上記第1の筒体部の外径より大きい内径の第
2の筒体部を有する第1の管状部材と、上記第2の筒体
部内圧挿入された第2の管状部材と、上記第1の筒体部
と対向する上記第2の管状部材の一端部に嵌合され上記
第2の筒体部の熱膨張率より大きい熱膨張率を有し外径
が上記第2の筒体部の内径より小さい第3の管状部材と
、上記第1の管状部材と上記第2および第3の管状部材
間の間隙に充填され上記第1の管状部材と上記第2およ
び第3の管状部材とを気(水)密に固着する絶縁物とを
備えているヒとを特徴とする絶縁管継手。 (2)絶縁物がガラス質およびマイカ粉末からなるガラ
ス・マイカ塑造体であることを特徴とする特許請求の範
囲第1項記載の絶縁管継手。 (3)ガラス・マイカ塑造体のガラス転位温度以下にお
ける熱膨張率が第1の管状部材の第2の筒状部のそれよ
り吃小さいことを特徴とする特許請求の範囲第2項記載
の絶縁管継手。
FIG. 1 is a vertical cross-sectional view showing the structure of a conventional insulated pipe joint, FIG. 1(a) shows the state after completion of molding, and FIG. 1(b) shows the structure of the product. Figure 2 is a vertical cross-sectional view showing the conventional manufacturing method of the insulated pipe joint shown in Figure 1. Figure 2 (rei) shows the state immediately before pressure forming, and Figure 2 (b) shows the state after completion of Kakuda forming. . Third
The figure is a longitudinal sectional view showing the structure of the insulated pipe joint according to the present invention.
Figure 3 ← - shows the state after completion of molding, and Figure 3 (b) shows the structure of the product. In the figure, (1) is the first tubular member, (1-1) is the shoulder, (1-2) is the holding base, ((9) is the second tubular member, and (2-2) is the support part. , (8) is the outer peripheral metal fitting * 141
s (4-1) space, (6) insulator, f6) preform, ()) frame, (8) wall, (9) support,
No is pressurized metal, 113 is inner metal fitting, (13-1) 4
-! . Agent Makoto Kuzuno - Figure 1 (4) C) Figure 2 (1) C) Figure 3 (C) Procedural amendment (spontaneous) Commissioner of the Japan Patent Office 1, Indication of the case Patent application Sho 56 -1400903
, person making the amendment 5, [Claims J and "Detailed Description of the Invention"] columns of the specification to be amended. & Contents of the amendment 1) Amend the "Claims" of the specification by adding a separate excerpt. 2) Change the “inner frame (?) J” on page 7, line 20 of the specification to “outside,”
Correct the frame (η). 3) Correct the "processing temperature" on page 7, line 20 of the specification to "processing temperature." 4) "Insulated joint" on page 10, line 7 of the specification is corrected to "insulated pipe joint." 5) Change “high coefficient of thermal expansion” on page 10, line 9 of the specification to “
It is corrected as "larger than the coefficient of thermal expansion." 6) "Insulation penetration joint" in the second line of page 13 of the specification is amended to "insulation pipe joint". 7) "Insulated joint" on page 14, line 11 of the specification is corrected to "insulated pipe joint." Scope of the Attached Patent Claims (Amendment) (1) A first cylindrical body and a first cylindrical body integrally formed at one end of the first cylindrical body and having an inner diameter larger than the outer diameter of the first cylindrical body. a first tubular member having two cylindrical parts; a second tubular member into which the second cylindrical part is inserted; and one end of the second tubular member facing the first cylindrical part; a third tubular member that is fitted into the second cylindrical body part and has a coefficient of thermal expansion larger than the coefficient of thermal expansion of the second cylindrical body part and has an outer diameter smaller than the inner diameter of the second cylindrical body part; and an insulator filled in the gap between the member and the second and third tubular members to air-tightly fix the first tubular member and the second and third tubular members. Insulated pipe fittings featuring human characteristics. (2) The insulated pipe joint according to claim 1, wherein the insulator is a glass-mica plastic body made of glass and mica powder. (3) The insulation according to claim 2, characterized in that the coefficient of thermal expansion of the glass-mica plastic body below the glass transition temperature is smaller than that of the second cylindrical portion of the first tubular member. pipe fittings.

Claims (3)

【特許請求の範囲】[Claims] (1)第1の筒体部とこの第1の筒体部の一端部に一体
に形成され上記第1の筒体部の外径より大ぎい内径の第
2の筒体部を有する第1の管状部材と、上記第2の筒体
部内に挿入された第2の管状部材と、上記第1の筒体部
と対向する上記第2の管状部材の一端部に嵌合され上記
#!2の筒体部の熱膨張率より大ぎい熱膨張率を有し外
径が上記第2の筒体部の内径より小さい第3の管状部材
と、上記第1の管状部材と上記第2および第3の管状部
材間の間隙に充填され上記第1の管状部材と上記第2お
よび第3の管状部材とを気(水)密に固着する絶縁物と
を備えていることを特徴とする絶縁管継手。
(1) A first cylinder having a first cylinder and a second cylinder which is integrally formed at one end of the first cylinder and has an inner diameter larger than the outer diameter of the first cylinder. a second tubular member inserted into the second cylindrical body; and a second tubular member fitted into one end of the second tubular member facing the first cylindrical body; a third tubular member having a coefficient of thermal expansion greater than the coefficient of thermal expansion of the second cylindrical member and an outer diameter smaller than the inner diameter of the second cylindrical member; An insulation characterized by comprising: an insulator that is filled into the gap between the third tubular members and air (water)-tightly adheres the first tubular member and the second and third tubular members. pipe fittings.
(2)絶縁物がガラス質およびマイカ粉末からなるガラ
ス・マイカ塑造体であることを特徴とする特許請求の範
囲第1項記載の絶縁継手。
(2) The insulating joint according to claim 1, wherein the insulator is a glass-mica plastic body made of glass and mica powder.
(3)ガラス・マイカ塑造体のガラス転位温度以下にお
ける熱膨張率が館1の管状部材の第2の筒状部のそれよ
りも小さいことを特徴とする特許、請求の範囲第2項記
載の絶縁継手。
(3) A patent characterized in that the coefficient of thermal expansion of the glass-mica plastic body below the glass transition temperature is smaller than that of the second cylindrical part of the tubular member of the first part, as set forth in claim 2. Insulated fittings.
JP14009081A 1981-09-04 1981-09-04 Insulating pipe joint Granted JPS5842891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14009081A JPS5842891A (en) 1981-09-04 1981-09-04 Insulating pipe joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14009081A JPS5842891A (en) 1981-09-04 1981-09-04 Insulating pipe joint

Publications (2)

Publication Number Publication Date
JPS5842891A true JPS5842891A (en) 1983-03-12
JPS6364679B2 JPS6364679B2 (en) 1988-12-13

Family

ID=15260714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14009081A Granted JPS5842891A (en) 1981-09-04 1981-09-04 Insulating pipe joint

Country Status (1)

Country Link
JP (1) JPS5842891A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS457251Y1 (en) * 1966-05-10 1970-04-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS457251Y1 (en) * 1966-05-10 1970-04-08

Also Published As

Publication number Publication date
JPS6364679B2 (en) 1988-12-13

Similar Documents

Publication Publication Date Title
US2857931A (en) Insulated pipe and method of making the same
US4793409A (en) Method and apparatus for forming an insulated oil well casing
US4519970A (en) Method for producing insulated pipe joint
JPS5842891A (en) Insulating pipe joint
JPH0118318B2 (en)
CA1191744A (en) Conduct pipe covered with electrically insulating material
JPS6349117B2 (en)
JPH0239101Y2 (en)
JPH02182B2 (en)
US2274954A (en) High tension electric insulator and method of attaching a metal fitting thereto
JPS6320997B2 (en)
JPS6360279B2 (en)
JPS6321072B2 (en)
JPS635555B2 (en)
JPS6249515B2 (en)
JPS5958293A (en) Insulating pipe joint
JPS6316634B2 (en)
JPS6311518B2 (en)
JPS6245396B2 (en)
JPS60133196A (en) Electrode apparatus for electrically heating hydrocarbon underground resources and its production
US2030515A (en) Method of manufacturing noncorrosive armored metal pipe
JPH0253672B2 (en)
JPS6260559B2 (en)
JPS6215798B2 (en)
JPS59141692A (en) Electrical heating electrode apparatus of hydrocarbon underground resources