JPS60133196A - Electrode apparatus for electrically heating hydrocarbon underground resources and its production - Google Patents

Electrode apparatus for electrically heating hydrocarbon underground resources and its production

Info

Publication number
JPS60133196A
JPS60133196A JP24090083A JP24090083A JPS60133196A JP S60133196 A JPS60133196 A JP S60133196A JP 24090083 A JP24090083 A JP 24090083A JP 24090083 A JP24090083 A JP 24090083A JP S60133196 A JPS60133196 A JP S60133196A
Authority
JP
Japan
Prior art keywords
metal
fitting
insulator
insulating
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24090083A
Other languages
Japanese (ja)
Inventor
白沢 宗
井上 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24090083A priority Critical patent/JPS60133196A/en
Publication of JPS60133196A publication Critical patent/JPS60133196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、炭化水素系地下對源の電気加熱用電極装置
およびその製造方法に関するものであり、さ、らに詳し
くいうと、地中に存在する高粘度低流動性の炭化水素を
井戸から採取するに際して、当蚊炭化水素の流動性を高
めるために、地下に存在する炭化水素含有層に通電し、
加熱するために使用する電気加熱用電極装置およびその
製造方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an electrode device for electrically heating hydrocarbon-based underground sources and a method for manufacturing the same. When extracting hydrocarbons with high viscosity and low fluidity from wells, electricity is applied to the hydrocarbon-containing layer that exists underground in order to increase the fluidity of the hydrocarbons.
The present invention relates to an electric heating electrode device used for heating and a manufacturing method thereof.

〔従来技術〕[Prior art]

地中に存在する高粘度、低流動性の炭化水素の代表的な
ものに、一般にオイルサンド、あるいはタールサンドと
呼ばれるものに含まれるビチューメン、ならびにオイル
シェールと呼ばれるのに含まれるケロゲン等がある。
Typical hydrocarbons with high viscosity and low fluidity that exist underground include bitumen contained in what is generally called oil sand or tar sand, and kerogen contained in what is called oil shale.

従来、経済的効果を配慮し、専ら研究対象になっている
のはオイルサンドである。地下に存在する油層の加熱方
法として現実に研究が進められているのは、地下の油層
に達する鋼製のケーシングを地中に埋設し、熱水あるい
は高温高圧の水蒸気を注入する方法と、油層部に適当な
間隔を保持してコケの雷、極を埋設し、電極間に通電し
てジュール熱により加熱する方法である。前者の方法は
装置的には容易であるという長所ある反面、効率が悪い
という短所がある。後者の方法は、効率的にはきわめて
良好であるということが理論的あるいは実験的に認めら
れているが、装置的にきわめて難しいとい5′短所があ
る。
Traditionally, oil sands have been the focus of research in consideration of economic effects. The two methods currently being researched to heat underground oil reservoirs are burying a steel casing underground that reaches the underground oil reservoir and injecting hot water or high-temperature, high-pressure steam into the reservoir. In this method, moss lightning poles are buried at appropriate intervals in the moss, and electricity is passed between the electrodes to heat them using Joule heat. The former method has the advantage of being easy in terms of equipment, but has the disadvantage of being inefficient. The latter method has been theoretically or experimentally recognized to be very efficient, but it has the disadvantage that it is extremely difficult to use equipment.

この発明は、後者の電気加熱方法に使用する電極装置に
関するものである。周知の電気加熱方法は、電気加熱の
みでは地中のオイルサンドを採取することは不可能であ
って゛、地中に埋設される!対のケーシングの下端にそ
れぞれ管状の電極な゛支持し、通電によりオイルの粘性
を低下させた後、一方のケーシングを痛じて高温高圧の
水蒸気を注入し、他方のケーシングを通じてオイルを採
取する方法がとられる。
This invention relates to an electrode device used in the latter electric heating method. With the well-known electric heating method, it is impossible to extract underground oil sands using only electric heating, and the oil sands are buried underground! A method in which a tubular electrode is supported at the lower end of each pair of casings, the viscosity of the oil is reduced by applying electricity, and then high temperature and high pressure steam is injected into one casing, and oil is collected through the other casing. is taken.

ここで、理解を容易にするために、オイルサンドの存在
状態、採取方法を含め、電極装置に要求される特性につ
いて説明す6″oオイルサンドは、カナダ、アメリカ合
衆国、ベネゼラ等に埋蔵が確認されている。オイルサン
ド吊のオイルは、砂の表面および砂と砂との間隙雀塩水
とともに存在しているが、きわめて粘度が高く、自然に
存在する峡谷、川岸などでm−露出しているほかは大部
分が地下200〜roomの深さに数/θmの厚さの層
をなして存在している。オイルサンドを掘り出し、地上
でオイルを分離するのは経済性、及び環境保護の面から
制約を受けるため、地中よりオイルのみを取り出す必要
がある。また地中の浅い層からのオイル訂採取it地面
が陥没する危険があるため、地下300m以下の層から
葆取するのが望ましいとされている。
Here, to make it easier to understand, we will explain the characteristics required of the electrode device, including the state of existence of oil sands and the method of collection. 6"o oil sands have been confirmed to exist in reserves in Canada, the United States, Venezuela, etc. Oil in oil sands exists on the surface of the sand and in the interstices between the sands along with salt water, but it has an extremely high viscosity and is often exposed in naturally occurring canyons, riverbanks, etc. Most of the oil exists in a layer several/θm thick at a depth of 200 to 200 rooms underground.It is economical and environmentally friendly to excavate the oil sand and separate the oil above ground. Due to restrictions, it is necessary to extract only oil from underground.Furthermore, there is a risk that the ground will collapse if oil is extracted from a shallow layer underground, so it is preferable to extract oil from a layer less than 300 meters underground. has been done.

以上のような通電によりオイルサンド層を加熱する電極
装置において、最も大きな問題はオイルサンド層の電気
抵抗がオイルサンド層上部の地層、すなわち、オイルサ
ンド上層より高いという□ことである。場所1条件によ
りそれぞれ異なるため一律に表示し難いが、因にその平
均値を示すと、オイルサンド層が10θQmであり、上
部の地層はioΩmである。そのため鋼管で造られたl
対のケーシングにそれぞれ連結した電極をオイルサンド
層に埋設して通電すると、電流の殆どが上部の地層部で
消費されるようになる。この現象を避けるためには、地
層部にあるケーシング表面に絶縁被覆層を設けるか、あ
るいは、電極をケーシングから絶縁した状態にする必要
がある。この発明は後者の装置に関するものであるが、
以下、従来のこの種の装置について説明する。
In the electrode device that heats the oil sand layer by applying electricity as described above, the biggest problem is that the electrical resistance of the oil sand layer is higher than that of the stratum above the oil sand layer, that is, the upper layer of the oil sand layer. Although it is difficult to uniformly display the values because they differ depending on the conditions of each location, the average values are 10θQm for the oil sand layer and ioΩm for the upper stratum. Therefore, l made of steel pipes
When electrodes connected to the pair of casings are buried in the oil sand layer and energized, most of the current is consumed in the upper stratum. In order to avoid this phenomenon, it is necessary to provide an insulating coating layer on the surface of the casing in the strata, or to insulate the electrode from the casing. Although this invention relates to the latter device,
A conventional device of this type will be described below.

にそれぞれ接合された電極3,13に電流を送るケーブ
ルf、/Fが接続されており、かかる構成でなるものを
電極装置とよぶ。また、Sは電源装置、6はオイルサン
ド層、7は電極3./3の間の電流、gは地表、りはオ
イルサンド上層、IOはオイルサンド下層を示している
。かような構成により、オイルサンド層乙に埋設した電
極3.13に地上の電源装置Sよりケーブルp、/Fを
通じて電圧が印加されると、オイルサンド層6中の電気
抵抗に応じて電流7が流れてジュール熱が発生し、オイ
ルサンド層6が加熱される。このとき電流7の7部はオ
イルサンド上層?およびオイルサンド下層10へも流れ
るが、ケーシング/、//と電極3,73間に絶縁部コ
、/2が介在するために、電流7の洩れは小さく抑えら
れる。オイルサンド層6が所定の温度に加熱されると通
電を止め、電極装置の一方のケーシング/の上部から熱
水あるいは高温高圧水蒸気をオイルサンド層6中罠圧入
すると、他方の電極装置のケーシング//よりオイルと
共に流出する。熱水あるいは高温高圧水蒸気の流出をよ
くするために、准臣3.i3には細孔があけられるのが
普通である。
Cables f and /F for sending current are connected to the electrodes 3 and 13, respectively, which are connected to the electrodes 3 and 13, respectively, and a device having such a configuration is called an electrode device. Further, S is a power supply device, 6 is an oil sand layer, 7 is an electrode 3. /3, g is the ground surface, RI is the upper layer of oil sands, and IO is the lower layer of oil sands. With such a configuration, when a voltage is applied from the ground power supply S to the electrode 3.13 buried in the oil sand layer B through the cables p and /F, the current 7 increases depending on the electrical resistance in the oil sand layer 6. flows, Joule heat is generated, and the oil sand layer 6 is heated. At this time, is the 7th part of the current 7 the upper layer of the oil sand? The electric current 7 also flows to the lower oil sand layer 10, but the leakage of the current 7 is suppressed to a small level because the insulating parts /2 are interposed between the casing /, // and the electrodes 3, 73. When the oil sand layer 6 is heated to a predetermined temperature, electricity is turned off, and hot water or high-temperature, high-pressure steam is injected into the oil sand layer 6 from the top of one casing of the electrode device. / Outflows with oil. In order to improve the outflow of hot water or high-temperature, high-pressure steam, 3. i3 usually has pores.

電極装置には通常、電極3,13にオイルサンド層6と
の接触抵抗を低くするために食塩水がノ(イブ(図示し
ていない)を通じて送り込まれ、食塩水とケーシングi
、itとを分離するため、電極3,13上方に仕切板φ
ダ(第6図に図示)が設けられ、さらに仕切板vpの上
部には絶縁性液体が充満されている。
In order to reduce the contact resistance between the electrodes 3 and 13 and the oil sand layer 6, salt water is normally fed into the electrode device through a nozzle (not shown), and the salt water and the casing i
, it, there is a partition plate φ above the electrodes 3 and 13.
(shown in FIG. 6), and the upper part of the partition plate vp is filled with an insulating liquid.

このような電極装置は埋設時に破壊せず、埋設当初は土
圧に耐える充分な強度を有し、通電時は温度上昇カミあ
り、特に、電極近傍は電流密度が高いために特に著しい
が、それでもなお変形や破壊を生ぜず、内部に充満され
る液体の静圧に耐え、かつ、熱水あるいは高温高圧水蒸
気注入時に破壊せず漏洩しないことが要求される。ちな
みに、地下5ooaの個所に埋設された場合、内部に充
満される液体の比重を/とすれば5Q製の圧力がかかり
、So製の圧力を有する水蒸気の温度は、265℃に達
する。
Such electrode devices do not break when buried, and have sufficient strength to withstand earth pressure when initially buried, but when energized, the temperature rises, which is particularly noticeable near the electrodes due to the high current density. In addition, it is required that it does not deform or break, that it can withstand the static pressure of the liquid that fills the inside, and that it does not break or leak when hot water or high-temperature, high-pressure steam is injected. By the way, if it is buried 5ooa underground, if the specific gravity of the liquid filled inside is /, then the pressure of 5Q will be applied, and the temperature of the water vapor with the pressure of So will reach 265°C.

なお、この絶縁部、2./2の上部はケーシング/、/
/に、ま揚、下部は電極3.73に接続されているので
、絶縁部λ、lコには常に懸垂荷重が加わることになり
、しかも、その条件は2り0〜300℃の高温状態下で
あるために、これを満たす特性が要求される。次にこの
絶縁部、2,7.2設置されるものであるから、設置工
程で孔壁と接触したり、衝突することは現実的には避は
難い条件になる。したがって、全体の重量が重いために
、僅かな接触も絶縁部コ、12には大きな機械的衝撃に
なり、この衝撃に耐え破損しない特性も要求される。
Note that this insulating part, 2. The upper part of /2 is the casing/,/
Since the upper and lower parts of / are connected to the electrode 3.73, a suspension load is always applied to the insulation parts λ and 1, and the conditions are 2: high temperature conditions of 0 to 300°C. Since it is below, characteristics that satisfy this are required. Since this insulating part 2, 7.2 is installed next, it is practically impossible to avoid contacting or colliding with the hole wall during the installation process. Therefore, since the overall weight is heavy, even a slight contact causes a large mechanical impact on the insulating parts 12, and the insulation parts 12 are required to have characteristics that can withstand this impact and not be damaged.

本発明者らは、有用な電気加熱用電極装置を得るべく、
まず、有用な絶縁管継手の研究を行った。
The present inventors, in order to obtain a useful electric heating electrode device,
First, we conducted research on useful insulated pipe joints.

特性目標として次の項目を挙げた。すなわち、電極を懸
垂保持するので機械的強度が大きいこと。
The following items were listed as characteristic goals. In other words, since the electrodes are held suspended, the mechanical strength is high.

両電極間にqooo〜5ooovの電圧が印加されるの
で、この電圧に耐える高い耐電圧特性を保持すること。
Since a voltage of qoooo to 5ooov is applied between both electrodes, high withstand voltage characteristics must be maintained to withstand this voltage.

電極間の通電により温度が上昇し、約300℃の温度に
なるが、この温度条件下においても前記機械および電気
的特性を保持すること。耐冷熱衝撃特性に富むこと。埋
設時に穴壁との接触が必然的に発生するので機械的衝撃
強度が大きいこと。
Although the temperature rises due to the current flowing between the electrodes and reaches a temperature of about 300° C., the mechanical and electrical properties should be maintained even under this temperature condition. Must have excellent cold and thermal shock resistance. Since contact with the hole wall inevitably occurs during burial, the mechanical impact strength must be high.

中央貫通孔が上部のケーシング/、//および電極3,
13の内径と等しく流通抵抗が低いこと。
A casing with a central through hole at the top /, // and an electrode 3,
The flow resistance should be low, as is the inner diameter of No. 13.

なお上記条件下において高度の水(油)密特性を保持す
ること。および経年変化がなく長期信頼性を有すること
。ならびに上下のケーシング/、//および電極3,1
3と容易に接続できること。等である。
Furthermore, it must maintain a high degree of water (oil) tightness under the above conditions. and have long-term reliability without deterioration over time. and upper and lower casings /, // and electrodes 3, 1
Can be easily connected to 3. etc.

上記目標の特性を具備した絶縁管継手を得ることに成功
し、先に提案(特願昭、t ? −2,79/f号)し
た。
We succeeded in obtaining an insulated pipe joint with the above-mentioned target characteristics and proposed it earlier (Japanese Patent Application No. 2,79/f).

この絶縁管継手の構成を第2図により説明する。The structure of this insulated pipe joint will be explained with reference to FIG.

すなわち、それぞれ鋼材で造られた中央に貫通孔を有す
る内部金具2/および外部金具2コと、その間隙部に介
在する絶縁物2ダにより構成されている。内部金具コl
には下端部に外周環2/−/が形成されている。外部金
具22は上部金具JJ−/と下部金具ココーコでなり、
上部金具ココ−7には上端部に内部金具21の外周環2
/−/と対面する内周環22−3が形成されている。こ
の内周環コ2−3を内部金具21の壁部2/−コの外周
を貫入させた後、その下端部を下部金具22−コの壁部
22−11の外周部に螺合もしくは溶接により接合λS
する。なお、壁部2コーダの内周径は内部金具2/の貫
通孔径より大きくなっている。
That is, it is composed of an inner metal fitting 2 and an outer metal fitting 2 each made of steel and having a through hole in the center, and an insulator 2 interposed in the gap between them. Internal metal fittings
An outer circumferential ring 2/-/ is formed at the lower end. The external metal fitting 22 consists of an upper metal fitting JJ-/ and a lower metal fitting Cococo.
The outer ring 2 of the internal fitting 21 is attached to the upper end of the upper fitting Coco-7.
An inner circumferential ring 22-3 facing /-/ is formed. After this inner ring 2-3 penetrates the outer periphery of the wall 2/- of the internal fitting 21, its lower end is screwed or welded to the outer periphery of the wall 22-11 of the lower fitting 22-. Junction λS
do. Note that the inner peripheral diameter of the wall portion 2 corder is larger than the through-hole diameter of the internal fitting 2/.

絶縁物2弘は内部金具21と外部金具2コの間隙部を充
填するとともに、これに連続して、内部金具コlの壁部
2/−コの外周面および外部金具ココの壁部ココ−弘の
内周面に形成されている。
The insulating material 2 fills the gap between the internal fitting 21 and the external fitting 2, and continuously fills the outer peripheral surface of the wall 2/- of the internal fitting 2 and the wall of the external fitting 2. It is formed on the inner peripheral surface of Hiro.

次に絶縁物コ≠の材質であるが、ガラス−マイカ塑造体
が使用されている。このガラス−マイカ塑造体とは、ガ
ラス質の粉末とマイカ粉末との混合物を原料とし、この
原料粉末をガラス質が軟化して加圧により流動可能な温
度に加熱し、加熱状態で加圧成形して造られる絶縁物の
ことである。
Next, regarding the material of the insulator, a glass-mica plastic body is used. This glass-mica plastic body is made from a mixture of vitreous powder and mica powder, heated to a temperature where the vitreous material softens and can flow under pressure, and then pressure-molded in the heated state. It is an insulator made by

以上の構成になる従来の絶縁管継手は、内部金具27に
は外周環21−7が、外部金具22には内周環ココ−3
が設けられており、両者とも絶縁物コダの内外周面に金
具部が存在しているので温度の上昇下降に合っても緩み
を生ずる現象は全くない。そのため、常温乃至300℃
の温度領域ヲ′−おいて水(油)密性性は勿論のこと機
械的強度が低下するということも無い。また、内部金具
21の外周環λ/−/と外部金具2.2の内周環ココ−
3が対面しているので、懸垂荷重強度についてもきわめ
て大きな強度を保持するものである。最後に、ケーシン
グ/、///および電極3./3との接続については螺
子による螺子接合あるいは溶接々合が可能であり、螺子
接合の場合には第2図に示すように、内部金具2/、外
部金具2コの内面に各螺子23−/、コJ−2が螺設さ
れる。
In the conventional insulated pipe joint with the above configuration, the inner fitting 27 has an outer ring 21-7, and the outer fitting 22 has an inner ring 21-7.
Both have metal fittings on the inner and outer circumferential surfaces of the insulator core, so there is no phenomenon of loosening even when the temperature rises or falls. Therefore, from room temperature to 300℃
In this temperature range, not only the water (oil) tightness but also the mechanical strength does not deteriorate. In addition, the outer circumferential ring λ/-/ of the internal fitting 21 and the inner circumferential ring Coco of the external fitting 2.2
3 facing each other, it maintains extremely high strength against suspension loads. Finally, casing /, /// and electrode 3. /3 can be connected by screws or by welding. In the case of screw connection, as shown in Fig. 2, each screw 23- /, and J-2 are screwed.

上記説明で明らかなように、かかる従来の絶縁管継手は
、電極装置用の絶縁管継手として必要な特性をほとんど
具備するものである。しかし、沿面絶縁特性に不可避の
欠陥があった。
As is clear from the above description, such a conventional insulated pipe joint has almost all the characteristics necessary as an insulated pipe joint for an electrode device. However, there was an unavoidable flaw in creepage insulation properties.

そもそも、この電極装置には前記のように電極とオイル
サンド層の接触抵抗を低くするために食塩水がパイプを
通じて送り込まれる。そのため絶縁管継手の外周部にも
食塩水が介在するようになるため、外周部に長い沿面絶
縁部を構成し高い沿面絶縁特性を確保する必要がある。
In the first place, saline water is fed into this electrode device through a pipe in order to lower the contact resistance between the electrode and the oil sand layer as described above. For this reason, the saline solution also exists on the outer periphery of the insulated pipe joint, so it is necessary to form a long creeping insulation part on the outer periphery to ensure high creeping insulation properties.

内周面については、食塩水とケーシングi、iiとを分
離するために電極3,13の上部に第6図に示す仕切板
914+が設けられ、さらに仕切板ppの上部には絶縁
性液体が充満されるので、内局面には沿面絶縁特性につ
いて問題になる欠陥は存在しない。
Regarding the inner peripheral surface, a partition plate 914+ shown in FIG. 6 is provided above the electrodes 3 and 13 to separate the saline solution from the casings i and ii, and an insulating liquid is provided above the partition plate pp. Since it is filled, there are no defects on the inner surface that would pose a problem regarding creepage insulation properties.

さて、この絶縁管継手の外周沿面絶縁特性は内部金具コ
lの壁部、2/−2の外周面に形成される絶縁物の長さ
により決まるが、その形成し得る長さには自ずと限界が
あり、その内径寸法の約%が限度である。理由は、主と
して成形性の問題で、この壁を突破するには膨大な成形
設備を必要とし、価格面を併せ考濾すると上記のように
なり、結局、十分な外周浴面絶縁特性を有するものが得
られなかったのである。
Now, the creeping insulation properties of the outer circumference of this insulated pipe joint are determined by the length of the insulator formed on the outer circumferential surface of the wall of the internal fitting col, 2/2, but there is naturally a limit to the length that can be formed. The limit is about % of the inner diameter. The reason is mainly due to the problem of moldability. Breaking through this barrier requires a huge amount of molding equipment, and when considering the cost as well, the result is as described above. was not obtained.

〔発明の概要〕[Summary of the invention]

本発明者らは、各種特性についてきわめてすぐれた特性
を具備する上記従来の絶縁管継手を活用し、外面の浴面
絶縁特性を他の手段で確保して全要求特性を具備する電
極装置を実現するに至った。
The present inventors utilized the above-mentioned conventional insulating pipe joint, which has extremely excellent properties in terms of various properties, and secured the insulation properties of the outer bath surface by other means, thereby realizing an electrode device that has all the required properties. I ended up doing it.

その構成は、大略、−個の絶縁管継手の内部金具を対向
させその間に金属管の外周面に絶縁層を形成した絶縁管
を接合して介在させ、上記絶縁層と、絶縁管継手、の内
部金具与tの外周面にある絶縁層の間に、両者を連結す
る別の連結絶縁層を形成してなり、もって、外周面の沿
面絶縁特性を確保しうる電気加熱用電極装置およびその
製造方法を提供するもので−ある。
Generally, the structure is such that the internal metal fittings of the insulated pipe fittings are faced to each other, and an insulated pipe with an insulating layer formed on the outer peripheral surface of the metal pipe is joined and interposed between them, and the insulating layer and the insulated pipe fitting are interposed between them. Electrode device for electric heating, which is formed by forming another connecting insulating layer between the insulating layers on the outer circumferential surface of an internal metal fitting t, thereby ensuring creeping insulation properties of the outer circumferential surface, and its manufacture. It provides a method.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例について説明するが、それに
先行して金属管の外周面に形成する絶縁層の材質につい
て考察する。
An embodiment of the present invention will be described below, but prior to that, the material of the insulating layer formed on the outer peripheral surface of the metal tube will be discussed.

上記の装置を具現する際にまず問題になるのは、外周面
に強固に被着された絶縁層を有する絶縁管を得ることで
ある。使用条件が常温乃至100′C程度の温度領域の
場合には、耐食特性等を含め有機質の絶縁層を形成する
ことにより容易に目的品を得ることができるが、この電
極装置のように使用状件が30θ℃程度になると事態は
大差く変化する。まず、700℃の耐熱特性を保持する
材料を選択する必要がAツる。有機材料中に上記特性を
有する材料をめると、ポリ弗化エチレン(テフロン)あ
るいはポリ、ニーデル、エーテル、ケトン(ピーク)等
がある。これらの材料は基体である鋼管材料と熱膨張率
が一桁異なりきわめて大きいので、温度が上昇するとポ
リ弗化エチレンのように柔軟性を有する材料は大きく変
形し、柔軟性を有しないポリ、エーテル、エーテル、ケ
トン等は破損現象に発と、膨張、収縮量の差の絶対量が
大きくなる。これは必然的な物理的現象であり、これを
避けることは本質的に不可能である。この電極装置の場
合、直径が、200−230m長さがl〜λm程度のも
のが必要であるため有機材料による絶縁層の構成は全く
考えられない。
The first problem in implementing the above-mentioned device is to obtain an insulating tube having an insulating layer firmly adhered to its outer circumferential surface. If the usage conditions are in the temperature range from room temperature to about 100'C, the desired product can be easily obtained by forming an organic insulating layer that has corrosion resistance, etc., but the usage conditions such as this electrode device When the temperature reaches about 30θ℃, the situation changes dramatically. First, it is necessary to select a material that maintains heat resistance at 700°C. Examples of materials having the above-mentioned characteristics among organic materials include polyfluorinated ethylene (Teflon), poly, needle, ether, and ketone (Peak). The coefficient of thermal expansion of these materials is extremely large, differing by an order of magnitude from the steel pipe material that is the base material, so when the temperature rises, flexible materials such as polyfluoroethylene deform significantly, and non-flexible poly and ether , ether, ketone, etc., the absolute amount of the difference in the amount of expansion and contraction becomes large due to the breakage phenomenon. This is an inevitable physical phenomenon, and it is essentially impossible to avoid it. In the case of this electrode device, it is necessary to have a diameter of 200 to 230 meters and a length of about 1 to λm, so it is completely unthinkable to construct an insulating layer using an organic material.

常温〜、300℃の温度領域において、鋼管の外周面に
剥離、破損などの現象を生じない、絶縁層を有する絶縁
管となると、常温〜、yoo℃の温度( 領域における絶縁物の熱膨張率が鋼管のそれを近似であ
ることが必須条件になる。この熱膨張率についての必須
条件を満すとともに、常温〜Jl!77170Gの温度
領域において電気的および機械的特性を保持し、耐冷熱
衝撃特性に富み、優れた耐食特性を具備し、長期信頼性
を有する絶縁物材料ということになるとその選択襞間は
極端に限定される。
In the temperature range of room temperature to 300 degrees Celsius, an insulating tube with an insulating layer that does not cause phenomena such as peeling or damage on the outer peripheral surface of the steel pipe has a thermal expansion coefficient of the insulator in the temperature range of room temperature to 300 degrees Celsius. The essential condition is that it approximates that of a steel pipe.In addition to satisfying this essential condition regarding the coefficient of thermal expansion, it maintains electrical and mechanical properties in the temperature range from room temperature to Jl! When it comes to insulating materials that are rich in properties, have excellent corrosion resistance properties, and have long-term reliability, the selection range is extremely limited.

本発明者らは、鋼管の表面にガラス質の絶縁被覆層を形
成した絶縁管を使用することを考えた。
The present inventors considered using an insulating tube in which a glassy insulating coating layer was formed on the surface of the steel tube.

この場合問題になるのは絶縁被覆層を形成するガラス質
の特性である。耐食特性、熱膨張率および鋼管との密着
特性に焦点を絞り、多くの実験を重ねた結果、遂に上記
の特性を満足する絶縁管を得ることに成功した。
In this case, the problem is the characteristics of the glass forming the insulating coating layer. After many experiments focusing on corrosion resistance, coefficient of thermal expansion, and adhesion to steel pipes, we finally succeeded in obtaining an insulated pipe that satisfies the above properties.

次に重要なことは、絶縁管の鋼管の表面に形成したガラ
ス質の絶縁被覆層と絶縁管継手の金属管の外周面に形成
されているガラス−マイカ塑造体よりなる絶縁層とを絶
縁を保持して連結する連結絶縁物の構成を如何にするか
である。このことを考慮し、絶縁管の構造を究明した。
The next important thing is to insulate the vitreous insulating coating layer formed on the surface of the steel pipe of the insulated pipe and the insulating layer made of glass-mica plastic formed on the outer peripheral surface of the metal pipe of the insulated pipe joint. The problem is how to configure the connecting insulators to hold and connect them. Taking this into consideration, we investigated the structure of the insulating tube.

絶縁管と絶縁管継手の内部金具21との連結を溶接4合
とすることにし、その構造を決定した。
It was decided that the insulating tube and the internal metal fitting 21 of the insulating pipe joint would be connected by four welding joints, and the structure thereof was determined.

第3図は絶縁管の一実施例を示し、鋼管ス6の内径寸法
は第2図に示した絶縁管継手の貫通孔径、すなわち内部
金具21の壁21−2の内径と同等圧なっており、また
両端部2A−/の外径は壁部2/−2の外径と同等にな
っている。その他の部分の外径は被覆絶縁物コアを施し
たときに絶縁管継手の外周絶縁物コク−/の外径と同等
になる寸法を有している。被覆絶縁物λりは鋼管、7乙
の外周面と端部、26−/の側面に連結して設けである
FIG. 3 shows an example of an insulated pipe, and the inner diameter of the steel pipe 6 has a pressure equivalent to the through-hole diameter of the insulated pipe joint shown in FIG. 2, that is, the inner diameter of the wall 21-2 of the internal fitting 21. , and the outer diameter of both end portions 2A-/ is equal to the outer diameter of the wall portion 2/-2. The outer diameter of the other portions has dimensions equivalent to the outer diameter of the outer circumferential insulating body of the insulated pipe joint when the coated insulating core is applied. The covering insulator λ is connected to the outer circumferential surface and end of steel pipe 7, and the side surface of 26-/.

得る。obtain.

次に絶縁管の両端に絶縁管継手を接合し、絶縁管の被覆
絶縁物27と絶縁管継手の外周絶縁物コρ−/の間に連
結絶縁物を構成し、一連の沿面絶縁層を形成する方法と
ついて説明する。
Next, insulated pipe joints are joined to both ends of the insulated pipe, and a connecting insulator is formed between the covering insulator 27 of the insulated pipe and the outer circumferential insulator ρ-/ of the insulated pipe joint, and a series of creeping insulation layers are formed. We will explain how to do this.

第弘図(a)に示すように、絶縁管継手lθ/の内部金
具21の壁部2/−2の内周径を貫通孔と同一寸法に仕
上げ、先端部の外周絶縁物2’l−/の一部を削除2g
し、壁部、2/−,2を露出させる。
As shown in Fig. 2 (a), the inner diameter of the wall 2/-2 of the internal fitting 21 of the insulated pipe joint lθ/ is finished to the same size as the through hole, and the outer peripheral insulator 2'l-2 at the tip is finished. Delete part of /2g
and expose the wall portion, 2/-, 2.

次に絶縁管iooの両端に上記の壁部、2/−2を接面
させ、この接面部29を溶接により接合する。
Next, the above wall portions 2/-2 are brought into contact with both ends of the insulating tube ioo, and the contact surfaces 29 are joined by welding.

なお、この溶接には周辺部の温度上昇が少ない点で電子
ビーム溶接が理想的である。
Note that electron beam welding is ideal for this welding because it causes less temperature rise in the peripheral area.

このようにして、第4図(a)に示すように絶縁管io
oの両端に絶縁管継手10/が接合した一体構造体10
コを得る。この接合部29に第参図(b)K示すように
両端の絶縁物コク−1とコクに密着して絶縁性を保持す
るように連結絶縁物3oを結合形成することにより、外
周絶縁物2’l−/、連結絶縁物30および被覆絶縁物
、27は一連の外周上記の連結絶縁物3oは次の諸条件
を具備する必要がある。隣接する絶縁物2’l−/およ
びコクと完全な絶縁特性を保持するために接触面に空隙
る壁部2/および金属管コロとよく一致することが必須
条件であり、温度の上昇下降の反復にあっても間隙を生
ずるような現象を示さないこと。その他、耐食性を有す
るとともに必要な機械的強度も保持する必要がある。
In this way, as shown in FIG. 4(a), the insulation tube io
An integrated structure 10 in which insulating pipe joints 10/ are connected to both ends of o.
get ko. As shown in Fig. 3(b) K, connecting insulators 3o are bonded to the insulators 3o at both ends so as to maintain insulation by closely contacting the insulators 1 and 2 at the joints 29. 'l-/, the connecting insulator 30 and the covering insulator 27 are a series of outer peripheries The above connecting insulator 3o must meet the following conditions. In order to maintain perfect insulating properties with the adjacent insulator 2'l-/, it is essential that the wall 2/ and the metal tube roller, which have a gap at the contact surface, match well, and the temperature rises and falls. No phenomena such as gaps may occur even when repeated. In addition, it is necessary to have corrosion resistance and also maintain necessary mechanical strength.

絶縁管継手の絶縁物に使用しているガラス−マイカ塑造
体は材料的にはきわめて好適な材料であるが、如何にし
てこれを形成するかが問題になる。
The glass-mica plastic body used as the insulator of insulated pipe joints is an extremely suitable material, but the problem is how to form it.

本発明者らは多くの研究と実験を重ねた結果、連結絶縁
物3θを適切に形成することに成功した。
As a result of much research and experimentation, the present inventors succeeded in forming the connecting insulator 3θ appropriately.

以下その形成方法を説明する。まず、その形成には専用
の成形用金型を使用する。第5図(a)は成形用金型お
よび成形方法の一実施例を示し、成形用金型は、上面と
下面が接面する下金31と下金32で成形部を構成し、
接面部の中央に絶縁管継手10/と絶縁管100を接合
した接合体102を嵌合して装填し得る横方向の貫通孔
33を有し、中心部に連結絶縁物3Qを構成する際原料
の流動を容易にするために環状の空間部3ダが設けられ
ている。
The method for forming it will be explained below. First, a special molding die is used for its formation. FIG. 5(a) shows an embodiment of a molding die and a molding method, in which the molding die has a molding part composed of a lower metal 31 and a lower metal 32 whose upper and lower surfaces are in contact with each other,
In the center of the contact surface part, there is a horizontal through hole 33 into which the joined body 102 of the insulating pipe joint 10/ and the insulating tube 100 can be fitted and loaded, and the center part has a lateral through hole 33 in which the connecting body 3Q can be constructed. An annular space 3da is provided to facilitate the flow of the fluid.

また下金、?/の上部には空間部3弘に通ずる充填孔3
Sが設けてあり、下型3コには底部に溜部36が設けて
あり、この溜部36と空間部、?すの間に流通孔3りが
あり両者を連通している。原料充填金3tはその下面は
下金31の上面と接面し、中央に原料充填室J9を有し
、その底部に下金37の充填孔3Sに連通する流出孔V
0が設けである。
Shimokin again? At the top of / there is a filling hole 3 that leads to the space 3 Hiro.
S is provided, and the three lower molds are provided with a reservoir 36 at the bottom, and this reservoir 36 and the space, ? There are 3 communication holes between the two to communicate with each other. The lower surface of the raw material filling metal 3t is in contact with the upper surface of the lower metal 31, has a raw material filling chamber J9 in the center, and has an outflow hole V communicating with the filling hole 3S of the lower metal 37 at the bottom thereof.
0 is the default.

加圧金F/は原料充填室3?の内壁に嵌合する。Pressurized metal F/ is raw material filling chamber 3? Fits into the inner wall of the

台金F、2はその上面が下金Jコの下面と接面して成形
用金型を支承している。なお、下金31、下金32およ
び原料充填金3gは成、形完了後の分解の容易性を考慮
し、縦方向にコ分割したものを使用する。ただし加圧成
形時に金型の各部分が相対変位することを防ぐための処
置を必要とすることはいうまでもない。
The upper surfaces of the base metals F and 2 are in contact with the lower surface of the lower metal J to support the molding die. Note that the bottom metal 31, the bottom metal 32, and the raw material filling metal 3g are divided vertically into pieces in consideration of ease of disassembly after completion of forming and shaping. However, it goes without saying that measures must be taken to prevent relative displacement of each part of the mold during pressure molding.

次に連結絶縁物30の原料について説明する。Next, the raw material of the connecting insulator 30 will be explained.

ガラスとマイカは絶縁管継手10/の製造に使用したも
のと同じものを使用する。混合比率は後に詳記するが、
絶縁管継手/θlを絶縁物2ダのものよりガラス粉末を
多くし、ガラス粉末SOV%とマイカ粉末SOv%を混
合したものを使用する。
The glass and mica used are the same as those used for manufacturing the insulated pipe joint 10/. The mixing ratio will be detailed later, but
The insulated pipe joint/θl contains more glass powder than the one with 2 da insulators, and uses a mixture of glass powder SOV% and mica powder SOv%.

上記混合粉末に約jw%の水分を加え湿潤状態にして水
分を除去した予備酸、形体ダ3として使用する。
Approximately jw% of water is added to the above mixed powder to make it wet and the water is removed, and the pre-acid is used as Form DA 3.

成形は、台金ψコと、下金32を組立て、その上に下金
31と原料充填金3gを組立てたものを載置し、加圧金
F/は組立てずにaSO℃に、接合体10コは環状炉を
使用して接合部29の周辺をJ!r0′G3、また予備
成形体弘3を750℃にそれぞれ加熱する。加熱が完了
したのち接合体10コを貫通孔33内に装填し、接合部
29が充填孔35の真下に位置するように保持する。次
に予備成形体弘3を原料充填室3り内に装填する。
For forming, assemble the base metal ψ and the lower metal 32, place the assembled lower metal 31 and 3g of raw material filler metal on top of it, and place the joined body in aSO℃ without assembling the pressure metal F/. For 10 pieces, use a circular furnace to J! around the joint 29. r0'G3 and preform Hiroshi 3 are heated to 750°C. After heating is completed, the 10 joined bodies are loaded into the through hole 33 and held so that the joined part 29 is located directly below the filling hole 35. Next, the preformed body 3 is loaded into the raw material filling chamber 3.

このときの状態が第S図(a)である。次に加圧金F/
を予備成形体uJ上上載載置加圧成形懺(図示せず)に
より加圧金ダlを加圧する。加圧を受けた予備成形体弘
3は流動して流出孔ρQと充填孔33を通過し、空間部
3.弘の上部に達し、接合体ioaの左右に分岐して空
間部3ダすなわち絶縁管継手10/の外周絶縁物2ダ一
/と絶縁管10θの被覆絶縁物J?が構成する空間部を
流動し、最下部で先頭部が合体し、次に流動孔3りを通
過して溜上昇し、ガラスーアイカ塑造体よりなる連結絶
縁物3Oが成形される。このときの状態が第5図(b)
に示しである。成形された連結絶縁物3oの温度が、?
 00℃になると成形用金型を分解して成形品を取り出
す。このとき充填孔35および流通孔37の部分は折れ
ることがあるが、連結絶縁物、yoK折損による被害を
及ぼすことはほとんどない。
The state at this time is shown in FIG. S (a). Next, pressurized metal F/
The preform uJ is placed on top of the pressurized metal plate l using a pressurized molding plate (not shown). The pressurized preform Hiroshi 3 flows and passes through the outflow hole ρQ and the filling hole 33, and the space 3. It reaches the upper part of the tube and branches to the left and right of the joint IOA to form a space 3, that is, an outer circumferential insulator 2 of the insulating pipe joint 10/ and a covering insulator J? of the insulating tube 10θ. flows through the space constituted by the glass, the leading parts join together at the lowest part, and then pass through the flow holes 3 and rise up to form a connected insulator 3O made of a glass-ika plastic body. The state at this time is shown in Figure 5(b).
This is shown below. What is the temperature of the formed connecting insulator 3o?
When the temperature reaches 00°C, the mold is disassembled and the molded product is taken out. At this time, the portions of the filling hole 35 and the flow hole 37 may break, but there is almost no damage caused by breakage of the connecting insulator or yoK.

残余の接合部コタについても上記工程により連結絶縁物
3θを成形する。
Connecting insulators 3θ are also formed for the remaining joint portions by the above process.

このようにして形成された連結絶縁物3θは、隣接する
絶縁物2弘−iおよび被覆絶縁、27との接触面に空隙
がなく完全な絶縁性を保持する。以下に上記のごとく完
全な絶縁性を保持する連結絶縁物3Oの成形方法の特長
を説明する。
The thus formed connecting insulator 3θ has no voids at the contact surface with the adjacent insulator 2hiro-i and the covering insulation 27, and maintains perfect insulation. The features of the method for forming the connecting insulator 3O that maintains perfect insulation as described above will be explained below.

まず、連結絶縁物、?0の原料混合比率をガラス粉末!
(7弘%、マイカ粉末SOV%とし、絶縁管継手の絶縁
物ufの混合比率における粉末35■よりガラス粉末の
含有率を高くしている。この原料の場合、ガラス粉末の
混合比率が増加するほど熱膨張率(この場合は熱収縮率
)が小さくなる。
First, the connecting insulator? Glass powder with raw material mixing ratio of 0!
(The mica powder SOV% is 7%, and the glass powder content is higher than the powder 35% in the mixing ratio of the insulator uf for insulated pipe joints.In the case of this raw material, the glass powder mixing ratio increases. The smaller the coefficient of thermal expansion (in this case, the coefficient of thermal contraction) becomes.

連結絶縁物3θが成形された瞬間における連結絶縁物3
θの温度が高いので、熱収縮率の小さい原料を使用して
全収縮量を少くし、隣接する絶縁物2’l−/、、2?
どの間に空隙が発生しないように配慮したものである。
Connecting insulator 3 at the moment when connecting insulator 3θ is formed
Since the temperature of θ is high, a raw material with a low thermal shrinkage rate is used to reduce the total amount of shrinkage, and the adjacent insulators 2'l-/, 2?
Care has been taken to ensure that no voids occur between the two.

かくすることにより完全な接触を保持する一連の絶縁物
層が形成される。
This creates a series of insulating layers that maintain perfect contact.

次に、成形時の予備成形体ダ3、接合体10.2および
成形用金型の加熱温度の関係であるが、まず成形用金型
を456℃に加熱するのはガラス質余り高くすると貫通
孔33に接合体102を装填したときに絶縁物2弘−/
および27の温度が上昇し過ぎるので望ましくない。ま
た、接合体/θλの加熱温度であるが、これはガラス−
マイカ塑造体の原料ガラスおよび被覆絶縁物27のガラ
ス質の転位温度と密接に関係する。転位温度を超えた高
温にすると、ガラス質の粘度の低下に伴い変形する危険
性がある。逆に低温に過ぎると、流動してきた高温の予
備成形体ダ3に接したときに亀裂を発生するようになる
。転位温度より僅かに低い温度に加熱しておくと上記現
象は全く見られず、かつ、高温の予備成形体り3に接し
加圧力を受けても亀裂を発生することが全くない。した
がって転位温度より低い温度を設定することが望ましく
、上記実施例ではガラスの転位温度より低い3左θ℃を
設定した。さらに予備成形体v3の加熱温度であるが、
加圧力を受けて予備成形体が流動し各部分の密度が叫し
い連結絶縁物3oを成形し得る粘性を具備する温度に加
熱することは必須条件であるが、絶縁物、2t/、−7
および27に及ぼす熱形した。
Next, regarding the relationship between the heating temperatures of the preformed body 3, the joined body 10.2, and the molding mold during molding, first of all, heating the molding mold to 456°C is because the glass is too high and will not penetrate. When the bonded body 102 is loaded into the hole 33, the insulator 2-/
This is not desirable because the temperature of 27 and 27 rises too much. Also, the heating temperature of the bonded body/θλ is
It is closely related to the glass transition temperature of the raw material glass of the mica plastic body and the vitreous insulator 27. If the temperature exceeds the transposition temperature, there is a risk of deformation as the viscosity of the glass decreases. On the other hand, if the temperature is too low, cracks will occur when it comes into contact with the flowing preform 3 at a high temperature. When heated to a temperature slightly lower than the transposition temperature, the above-mentioned phenomenon is not observed at all, and even if the preform 3 is brought into contact with the high temperature and subjected to pressure, no cracks will occur at all. Therefore, it is desirable to set the temperature lower than the transition temperature, and in the above example, the temperature was set at 3° C., which is lower than the transition temperature of glass. Furthermore, the heating temperature of the preform v3 is
It is an essential condition to heat the preform to a temperature at which it has a viscosity that allows the preform to flow under pressure and to form a connecting insulator 3o with high density in each part.
and heat-formed to 27.

最後に成形用金型の構造であるが、底部に流通孔37を
有する溜部J6を設けたことが大きな特長である。成形
時、加圧金tI/で加圧を受けた予備成形体ψJは、流
出孔VOと充填孔3sを通過して、下金31と下金3.
2が、接合体/θユとの間に構成する空間部3りの上部
に達し、ここで左右上分岐して流動し、接合体102の
下部で衝突合体し、その合体部は一体となって流通孔3
7を通過して溜部36を充填し、流動が停止する。その
あとさらに加圧金弘lによる加圧により流動が停止した
予備成形体13の密度が上昇し、ガラス−マイカ塑造体
よりなる連結絶縁物3oが成形される。以上のように充
填孔35を通過した予備成形体v3は、左右に分岐して
流動し7接合体10.!の下部で衝突して合体するが、
その先頭部は成形用金型壁と接合体l/)2の表面に接
して流動しているので温度が低下している。そのため衝
突して形成された接合面は完全な融着状態を保持し得な
い。成形用金型に溜部36が無い場合には上記の完全な
融着状態を保持しない接合面が接合体iosの下部に現
出するので亀裂の原因となり、機械的および電気的特性
が低下する要因が含まれるが、この発明に使用する成形
用金型には溜部、76とこれに通ずる流通孔1.?7が
設けであるので上記の完全な融着状態を保持しない接合
部は流通孔、7りを通過して溜部j61c押し出され、
接合体102の下部の接合部に完全な融着状態を保持す
る接合面が形成される。
Finally, regarding the structure of the mold, a major feature is that a reservoir J6 having a flow hole 37 is provided at the bottom. During molding, the preformed body ψJ pressurized by the pressurizing metal tI/ passes through the outflow hole VO and the filling hole 3s, and passes through the lower metal 31 and the lower metal 3.
2 reaches the upper part of the space 3 formed between the joined body/θ Yu, where it branches left and right upper and flows, collides and coalesces at the bottom of the joined body 102, and the combined part becomes a single body. Flow hole 3
7 and fills the reservoir 36, and the flow is stopped. Thereafter, the density of the preformed body 13 whose flow has been stopped is increased by further pressurization by the pressurized metal, and a connected insulator 3o made of a glass-mica plastic body is formed. The preform v3 that has passed through the filling hole 35 as described above branches left and right and flows into the 7-joined body 10. ! They collide and coalesce at the bottom of the
The temperature of the leading end of the fluid is decreasing because it is flowing in contact with the mold wall and the surface of the joined body l/)2. Therefore, the joint surfaces formed by the collision cannot maintain a completely fused state. If the molding die does not have the reservoir 36, a joint surface that does not maintain the above-mentioned completely fused state will appear at the bottom of the joined body ios, causing cracks and deteriorating mechanical and electrical properties. The mold used in the present invention includes a reservoir section 76 and a communication hole communicating therewith. ? Since 7 is a provision, the joint that does not maintain the above-mentioned completely fused state passes through the communication hole 7 and is pushed out to the reservoir j61c,
A bonding surface that maintains a completely fused state is formed at the lower bonding portion of the bonded body 102.

以上の絶縁管を備えた電気加熱用電極装置を第個駕使用
し、各外部金具22にケーシングlおよび電観3が螺子
−3−2により結合されており相対する絶縁管継手io
tの内部金具21には絶縁管100の金属管コロが溶接
により接合されている。この構成によりケーシングlと
電極3は完全なへ鬼\絶縁が確保されている。次にこの
電極装置に要求される外周面における沿面絶縁特性は、
絶縁管継手10/の外周絶縁物2’l−/と絶縁管10
0の被覆絶縁物27の間隙部に連結絶縁物3Qが結合形
成されており、一体の絶縁層により絶縁管継手10/の
内部金具21および絶縁管100の金属管コロを被覆し
て絶縁を確保しているので完全に所望の特性を得ること
ができる。
The electrical heating electrode device equipped with the above-mentioned insulating tubes is used individually, and the casing l and the electric head 3 are connected to each external fitting 22 by screws 3-2, and the opposing insulating tube joints io
The metal tube roller of the insulating tube 100 is joined to the internal fitting 21 of t by welding. This configuration ensures complete insulation between the casing l and the electrode 3. Next, the creeping insulation properties on the outer peripheral surface required for this electrode device are:
Outer circumferential insulation 2'l-/ of insulated pipe joint 10/ and insulated pipe 10
A connecting insulator 3Q is bonded and formed in the gap of the covering insulator 27 of No. 0, and the integral insulating layer covers the internal fitting 21 of the insulating pipe joint 10/ and the metal tube roller of the insulating tube 100 to ensure insulation. So you can get exactly the desired characteristics.

第6図に示した実施例では絶縁管継手I2個と絶縁管7
個の構成になっているが、必要に応じその接続数を多く
して沿面絶縁特性を一層高くすることができる。また、
この実施例では絶縁管継手10/とケーシングlおよび
電極3との接合には螺子接合を使用しているが、これら
の接合手段に限定されるものではなく、組立の難易、経
済的効果を基に選択すればよい。
In the embodiment shown in FIG.
However, if necessary, the number of connections can be increased to further improve creeping insulation characteristics. Also,
In this embodiment, a screw connection is used to connect the insulating pipe joint 10 to the casing l and the electrode 3, but the connection method is not limited to these, and other methods may be used based on ease of assembly and economical effects. You can select .

なお、連結絶縁物3Oを成形する成形用金型に接合体/
θコの接合部を巻回する空間部3qが設けであるが、こ
れは予備成形体φ3の流動を容易にするためのものであ
り、接合体の構造などにより流動が容易な場合には特に
空間部を設ける必要はない。
In addition, the bonded body/
A space 3q is provided for winding the joint part of θ, but this is to facilitate the flow of the preform φ3, especially when the flow is easy due to the structure of the joint. There is no need to provide a space.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明は、外周面の沿面絶縁特性以外
の必要特性である電気絶縁特性2機械的衝撃強度および
懸垂荷重強度等は絶縁管継手により確保され、沿面絶縁
特性は絶縁管および連結絶縁物により確保されており、
従来の電極装置の致命的な欠陥であった沿面絶縁特性の
低〜・点を完全に解消することができ、地下資源回収に
供して著しい効果を有するものである。
As described above, in this invention, the electrical insulation properties 2, mechanical impact strength and suspension load strength, which are necessary properties other than the creeping insulation properties of the outer circumferential surface, are ensured by the insulated pipe joints, and the creepage insulation properties are ensured by the insulated pipes and the connections. It is secured by an insulator,
It is possible to completely eliminate the fatal defect of conventional electrode devices, which was poor creepage insulation properties, and has a remarkable effect in recovering underground resources.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のものの使用状態を模型的に示す概略断面
図、第一図は従来の絶縁管継手の一部縦断面図、第3図
〜第6図はこの発明の一実施例を示し、第3図は絶縁管
の縦断面図、第7図は互いに接合された絶縁管継手と絶
縁管の縦断面図で同図(a)は接合時の状態を、同図(
b)は連結絶縁物構成後の状態を示し、第S図は連結絶
縁物の形成方法を示す縦断面図で同図(a)は加圧成形
直前の状態を、同図(b)は加圧成形完了後の状態を示
し、第6図は装置の要部を示す縦断面図である。 図中、/ +’ / /はケーシング、コ、/2は絶縁
部、3,13は電極、21は内部金具1.2/−/は外
周環、22は外部金具、2コ−/は上部金具、コ2−2
は下部金具、2−一3は内周環、23は螺子、2φは絶
縁物、2.’l−’/は外周絶縁物、2Sは結合部、2
6は金層管、コアは被覆絶縁物、2tは削除部、2qは
接合部、30は連結絶縁物、31は止金、32は下金、
33は貫通孔1.?4tは空間部、3Sは充填孔、J6
は溜部、3゛7は流通孔、3gは原料充填金、39は原
料充填室、ILLoは流出孔、ψlは加圧金、弘コは合
金、弘3は予備成形体、弘≠は仕切板、100は絶縁管
、10/は絶縁管継手、/’02は接合体である。 なお、各図中、同一符号は同−又は相当部分を示す。 殆1図 焔2図 焔3図 姑5図 ((1) 幣5図 (b) 1 手続補正書(自発) 昭和59’号 6リ 7日 特許庁長官殿 1、事件の表示 昭和zt年特許願第コダot−oo 号およびその製造
方法 3、補正をする者 事件との関係 特許出願人 住 所 東京都千代田区丸の内二丁目2番3号名 称 
(601)三菱電機株式会社 代表者 片由仁へ部 4、代理人 住 所 東京都千代田区丸の内二丁目4番1号丸の内ビ
ルディング4階 66 補正の内容 明細書をつぎのとおり訂正する。
Fig. 1 is a schematic sectional view schematically showing the state of use of a conventional insulated pipe joint, Fig. 1 is a partial vertical sectional view of a conventional insulated pipe joint, and Figs. 3 to 6 show an embodiment of the present invention. , Fig. 3 is a longitudinal cross-sectional view of the insulated pipe, and Fig. 7 is a longitudinal cross-sectional view of the insulated pipe joint and the insulated pipe that are joined to each other.
b) shows the state after forming the connecting insulator, and Fig. S is a longitudinal cross-sectional view showing the method of forming the connecting insulator. FIG. 6 is a vertical sectional view showing the main parts of the apparatus, showing the state after the press forming is completed. In the figure, / +' / / is the casing, /2 is the insulating part, 3 and 13 are the electrodes, 21 is the internal fitting 1.2/-/ is the outer ring, 22 is the external fitting, and 2 -/ is the upper part. Metal fittings, Ko2-2
2-13 is the lower metal fitting, 2-13 is the inner ring, 23 is the screw, 2φ is the insulator, 2. 'l-'/ is the outer insulator, 2S is the joint, 2
6 is a gold layer tube, the core is a covering insulator, 2t is a deleted part, 2q is a joint part, 30 is a connecting insulator, 31 is a stopper, 32 is a bottom metal,
33 is the through hole 1. ? 4t is a space, 3S is a filling hole, J6
is the reservoir, 3゛7 is the flow hole, 3g is the raw material filling metal, 39 is the raw material filling chamber, ILlo is the outflow hole, ψl is the pressurized metal, Hiroko is the alloy, Hiro3 is the preformed body, Hiro≠ is the partition In the plate, 100 is an insulated pipe, 10/ is an insulated pipe joint, and /'02 is a joined body. In each figure, the same reference numerals indicate the same or corresponding parts. Almost 1 figure, 2 figures, 3 figures, 5 figures ((1), 5 figures, (b) 1 Procedural amendment (spontaneous), No. 6, 1983, 7th, Mr. Commissioner of the Patent Office, 1, Indication of the case, 1989 patent Application No. Koda ot-oo and its manufacturing method 3, and its relationship to the amended case Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name
(601) To Mitsubishi Electric Co., Ltd. Representative: Katayuni Department 4, Agent address: 66, 4th floor, Marunouchi Building, 2-4-1 Marunouchi, Chiyoda-ku, Tokyo The detailed statement of amendments has been amended as follows.

Claims (2)

【特許請求の範囲】[Claims] (1)外周環が形成された金属管でなる円筒状の内部金
具と、前記外周環に対面する内周環が形成された上部金
具とこの上部金具に結合された下部金具でなり前記内部
金具の外径より大きい内径を有する金属管でなる外部金
具と、この外部金具の内周面と前記内部金具の外周面お
よび前記外部金具と前記内部金具との間隙に連続して形
成されガラス−マイカ塑造体でなる絶縁物とを備えた円
筒状のl対の絶縁管継手と、 両端部を除き外周面にガラス質の被覆絶縁物が被着され
前記l対の絶縁管継手間に溶接接合された金属管でなる
船縁管と、 前記溶接接合した部位の外周にわたって形成されガラス
−マイカ塑造体でなる連結絶縁物と、前記l対の絶縁管
継手の外端部にそれぞれ結合された電極およびケーシン
グと、 を備えてなる炭化水素系地下資源の電気加熱用電極装置
(1) A cylindrical internal fitting made of a metal tube on which an outer ring is formed, an upper fitting on which an inner ring facing the outer ring is formed, and a lower fitting connected to the upper fitting. an outer metal fitting made of a metal tube having an inner diameter larger than an outer diameter of the glass-mica L pairs of cylindrical insulating pipe joints each having an insulating material made of a plastic body, and a vitreous insulating coating coated on the outer circumferential surface except for both ends, the joints being welded between the L pairs of insulating pipe joints. a rim tube made of a metal tube, a connecting insulator made of a glass-mica plastic body formed over the outer periphery of the welded joint, and an electrode and a casing each coupled to the outer end of the l pair of insulated pipe joints. An electrode device for electrically heating hydrocarbon-based underground resources, comprising: and.
(2)外周環が形成された金属管でなる円筒状の内部金
具と、前記外周環に対面する内周環が形成された上部金
具とこの上部金具に結合された下部金具でなり前記内部
金具の外径より大きい内径を有する金属管でなる外部金
具と、この外部金具の内周面と前記内部金具の外周面お
よび前記外部金具と前記内部金具との間隙に連続して形
成されガラス−マイカ塑造体でなる絶縁物とを備えた円
筒状の絶縁管継手を作成する第1の工程と、両端部を除
き外周面にガラス質の被稜絶縁物が被着された金属管で
なる絶縁管の端部を前記内部金具の端部に溶接接合して
接合体を作成する第2の工程と、 前記接合体を装填する横方向の貫通孔と前記接合体の溶
接部位を囲む円環状の空間に連設した充填孔および溜部
が形成され分割可能の下金と、前記充填孔に通じる原料
充填室が設けられ前記下金の上面に直結される止金およ
び加圧金とでなる成形用金型を準備する第3の工程と、 ガラス−マイカ塑造体でなる予備成形体を作成する第V
の工程と、 前記成形用金型と前記接合体および前記予備成形体をそ
れぞれ各所定の温度に加熱する第Sの工程と、 加熱状態で前記接合体を前記貫通孔に前記予備成形体を
前記原料充填室にそれぞれ装填し、前記加圧金により前
記予備成形体を加圧、流動させ前記溶接接合した部位の
外周に、円環状の連結IP縁物を形成する第6の工程と
、 冷却後、前記成形用金型を1分解して前記接合体を取出
す第7の工程と、 でなる炭化水素系地下貴源の電気加熱用電極装置の製造
方法。
(2) A cylindrical internal fitting made of a metal tube on which an outer ring is formed, an upper fitting on which an inner ring facing the outer ring is formed, and a lower fitting connected to the upper fitting. an outer metal fitting made of a metal tube having an inner diameter larger than an outer diameter of the glass-mica A first step of creating a cylindrical insulated pipe joint with an insulator made of plastic, and an insulated pipe made of a metal pipe with a glassy ridge insulator coated on the outer peripheral surface except for both ends. a second step of welding and joining the end of the joint to the end of the internal metal fitting to create a joined body; and an annular space surrounding a horizontal through-hole into which the joined body is loaded and a welding part of the joined body. A molding tool comprising a separable lower metal having a filling hole and a reservoir connected to the bottom metal, and a stopper and a pressurizing metal having a raw material filling chamber communicating with the filling hole and directly connected to the upper surface of the lower metal. A third step of preparing a mold, and a V step of creating a preform made of a glass-mica plastic body.
an Sth step of heating the molding die, the joined body, and the preformed body to respective predetermined temperatures; and a step S of heating the molded body, the joined body, and the preformed body to respective predetermined temperatures, and placing the preformed body in the through hole in the heated state. a sixth step of loading each raw material into a filling chamber and pressurizing and fluidizing the preformed body using the pressurizing metal to form an annular connected IP edge around the outer periphery of the welded and joined portion; and after cooling; , a seventh step of disassembling the molding die to take out the joined body;
JP24090083A 1983-12-22 1983-12-22 Electrode apparatus for electrically heating hydrocarbon underground resources and its production Pending JPS60133196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24090083A JPS60133196A (en) 1983-12-22 1983-12-22 Electrode apparatus for electrically heating hydrocarbon underground resources and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24090083A JPS60133196A (en) 1983-12-22 1983-12-22 Electrode apparatus for electrically heating hydrocarbon underground resources and its production

Publications (1)

Publication Number Publication Date
JPS60133196A true JPS60133196A (en) 1985-07-16

Family

ID=17066347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24090083A Pending JPS60133196A (en) 1983-12-22 1983-12-22 Electrode apparatus for electrically heating hydrocarbon underground resources and its production

Country Status (1)

Country Link
JP (1) JPS60133196A (en)

Similar Documents

Publication Publication Date Title
US4477106A (en) Concentric insulated tubing string
US4665305A (en) Corrosion resistant metal pipe with electrode for oil wells
JPS60133196A (en) Electrode apparatus for electrically heating hydrocarbon underground resources and its production
JPS6245395B2 (en)
JPS6016696A (en) Electric heating electrode apparatus of underground hydrocarbon resources and production thereof
JPS6311518B2 (en)
CN202907223U (en) Integrated cold and hot line joint for carbon fiber electric floor heating
CN113250665B (en) Underground preheating starting method for super heavy oil reservoir developed by double-horizontal-well SAGD
JPS6316560B2 (en)
CA1184583A (en) Insulating pipe joint
JPH02182B2 (en)
JPH0135159B2 (en)
CN111364962B (en) Electric heating method and device for enhancing oil production of SAGD well
JPS59141692A (en) Electrical heating electrode apparatus of hydrocarbon underground resources
JPS5816439B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
CN110086062A (en) A kind of connection method of the cable being applicable in deep-well type earthing pole and feed body
JPS59199993A (en) Electrode apparatus for electrically heating hydrocarbon underground resources
CN205938274U (en) Insulated joint suitable for oil gas long distance pipeline
JPS6260559B2 (en)
JPS6320997B2 (en)
CN214897741U (en) Testing cable for high-pressure injection and production well of oil field
CN218441201U (en) Prefabricated insulating tube three way connection
CN201190869Y (en) Integral insulating joint
CN210899705U (en) Heating cable for underground oil layer
JPS6015107B2 (en) Electrode device for electrical heating of hydrocarbon underground resources