JPS6245000B2 - - Google Patents

Info

Publication number
JPS6245000B2
JPS6245000B2 JP54051087A JP5108779A JPS6245000B2 JP S6245000 B2 JPS6245000 B2 JP S6245000B2 JP 54051087 A JP54051087 A JP 54051087A JP 5108779 A JP5108779 A JP 5108779A JP S6245000 B2 JPS6245000 B2 JP S6245000B2
Authority
JP
Japan
Prior art keywords
sludge
septic tank
human waste
liquid
flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54051087A
Other languages
Japanese (ja)
Other versions
JPS55142600A (en
Inventor
Katsuyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP5108779A priority Critical patent/JPS55142600A/en
Publication of JPS55142600A publication Critical patent/JPS55142600A/en
Publication of JPS6245000B2 publication Critical patent/JPS6245000B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はし尿浄化槽汚泥の新規かつ合理的な処
理方法に関する。近年、浄化槽汚泥は、浄化槽の
設置基数が急増している折から、その排出量は膨
大で、現在、既設し尿処理場の運転管理に大きな
悪影響をあたえている。 従来、浄化槽汚泥は、海洋投棄を除けば、一般
にし尿処理場で、汲取し尿と混合処理している例
が多く、しかも、浄化槽汚泥は、汲取し尿に比べ
有機物濃度が低いため、とくに汲取し尿を消化処
理している処理場における機能障害が目立つてき
ている。 すなわち、浄化槽汚泥が大量に混入した際に起
こる消化障害として、次の4つの項目が問題にな
つている。 し尿に比べてBODや有機物濃度が低いた
め、消化槽への有機物負荷が低下し、消化効率
が低下する。 浄化槽汚泥は、浄化槽の中で、生物処理を受
けているため、分解に関与する微生物に対し
て、栄養塩類や、基質のバランスがくずれて、
消化作用に悪影響を与える。 アルカリ度など、消化槽内の緩衝作用に働く
物質が著るしく少ないため、消化障害を起しや
すい。 浄化槽汚泥中には、不活性の固形物や砂が多
く含まれ、これにより、消化槽内のスカムや沈
砂の堆積が多くなる。 以上のような障害が確認されたため、最近で
は、浄化槽汚泥と汲取し尿と混合せず、別途に浄
化槽汚泥専用の処理施設を設置する例が多くなつ
ている(これを浄化槽汚泥の別途処理と呼ぶ)
が、別途処理は当然、付加的な設置面積、高額な
建設費を要し、このため、別途処理の普及は進展
していない。 本発明は、このような現状に鑑み、より合理的
な浄化槽汚泥の処理方法を提供することを目的と
するものであり、他の目的は汲取し尿の処理をも
同時に合理化できる方法を提供するにある。 すなわち、本発明は、浄化槽汚泥の別途処理を
必要とせず、しかも合併処理の悪影響を完全に解
決でき、さらに、汲取し尿の処理そのものも合理
化することを目的とするものである。 本発明は、し尿浄化槽汚泥を生し尿の嫌気性消
化脱離液または好気性消化処理液と混合し、該混
合液を活性汚泥処理したのち、その処理液および
余剰汚泥にカチオン性高分子凝集剤を主体とする
凝集剤を添加して固液分離を行うことを特徴とす
るものである。 次に、本発明の一実施例を第1図を参照しなが
ら説明する。第1図のようにくみとりし尿1は、
浄化槽汚泥と混和されずに嫌気性消化槽2に流入
する。浄化槽汚泥3は消化脱離液4に混入される
か、活性汚泥処理槽5内に直接投入される。しか
して、この両者の混合状態の液は好ましくは、河
川水や地下水や海水で希釈することなく、また消
泡の目的でやむを得ず希釈水を添加する場合はな
るべく少量の希釈水に留めた状態で、活性汚泥処
理を受ける。活性汚泥処理槽5からの流出液は最
終沈殿池6に流入し、濃縮汚泥7は活性汚泥処理
槽5にリサイクルされる。次に活性汚泥処理工程
の余剰汚泥8を系外に抜き出すことなく、最終沈
殿池6の越流水に混合するか、または、余剰汚泥
8を最終沈殿池6の越流部から活性汚泥処理液と
ともにスラリー状で流出させたのち、このスラリ
ー液に、カチオン性高分子凝集剤9を添加して、
直接、脱水機10によつて、脱水ケーキ11と脱
水分離液12を得る構成にする。この方法によつ
て、従来余剰汚泥の脱水用としてのみ利用されて
いたカチオン性高分子凝集剤を液の清澄化にも利
用できるのである。この脱水分離液12は10倍程
度に希釈すれば、そのまま放流可能な水質となる
場合が多いが、脱水機のSS回収率が低い場合
は、さらに、脱水分離液12に、硫酸ばん土など
の無機凝集剤13または、有機凝集剤との併用に
よつて凝集沈殿14あるいは浮上分離されたの
ち、適当に希釈されて放流されるが、後記の如
く、著るしく、無機凝集剤の所要量が節減できる
ことが発見された。なお、希釈用水が利用できな
い処理場の場合は、凝集分離液を活性炭、オゾ
ン、電解、超ろ過膜、などの単位操作を付加すれ
ば、無希釈状態で放流可能の水質が得られる。 以上のような本発明工程を採用することによつ
て、次のような大きな効果が得られることが認め
られた。 浄化槽汚泥を、従来法の消化槽流入前の汲取
し尿に混入させず、消化処理液に対して、添加
するので消化槽の機能障害が全く発生しない。 活性汚泥工程を無希釈ないし、無希釈に近い
状態で操作できるので、流量が従来法の1/10〜
1/20になるため活性汚泥最終沈殿池流出液と余
剰汚泥との混合液を直接脱水機によつて脱水す
ることが現実的となる。しかも従来のように活
性汚泥の余剰汚泥を系外に抜き出し、別途に脱
水処理するという方法を採用せずに余剰汚泥と
活性汚泥処理工程流出液との混合スラリーに、
カチオン性高分子凝集剤を添加し、脱水処理を
行うと、活性汚泥工程流出液中のコロイド状
BOD,COD、色度成分、有機性窒素成分が、
カチオン性高分子凝集剤によつて凝集された余
剰汚泥に非常に効果的に吸着除去し脱水ケーキ
中に移行されるという本発明者によつて見出さ
れた現象を利用するので、後続する脱水分離液
の凝集沈殿工程における硫酸ばん土など凝集剤
の所要量が従来法の1/20以下に激減することが
確認された。 したがつて、難脱水性の無機水酸化物スラジ
の発生量も激減し、汚泥処理工程の合理的な運
転が可能になり、また当然無機凝集剤のコスト
も安くなる。 一般に、嫌気性消化脱離液中のSS,BODは
2000〜3000mg/程度と生し尿や浄化槽汚泥に
比べ少ないので、当然余剰汚泥の発生量も少な
く、この余剰汚泥を脱水するに要するカチオン
性高分子凝集剤添加量では液の清澄化の目的に
は少なすぎるため生物処理流出液中の色度成分
などの余剰汚泥への吸着量が少なくなり、液の
清澄化が不充分であることが実験の結果判明し
たので、この点を消化脱離液に浄化槽汚泥を混
入させることによつて、生物処理工程からの余
剰汚泥発生量を増加させ、脱水機への流入汚泥
濃度を増加させるという新しい方法を採用する
ことによつて解決した。したがつて、浄化槽汚
泥を、し尿消化脱離液処理の合理化に利用する
ことによつて浄化槽汚泥を処理することが可能
となり、一石二鳥の効果が得られる。 既設し尿処理場の大幅な改造および、増設を
することなく、浄化槽汚泥の合理的処理が可能
となる。 次に、本発明の実施結果を従来法と比較して説
明する。 し尿処理量20Kl/日に対し、浄化槽汚泥の持込
量が12Kl/日に達している既設し尿処理場Aで
は、第2図のようなフローで処理を行なつていた
が、建設当初の計画では、浄化槽汚泥の処理は計
画外であつたので嫌気性消化槽の前述の如き、機
能障害が顕著に発生し、とくに消化脱離液の水質
が下表のように悪化していたのが現状である。
The present invention relates to a novel and rational method for treating human waste septic tank sludge. In recent years, as the number of installed septic tanks has rapidly increased, the amount of septic tank sludge discharged is enormous, and it is currently having a major negative impact on the operation and management of existing human waste treatment plants. Conventionally, septic tank sludge, except for dumping into the ocean, is generally mixed with pumped human waste in many cases at human waste treatment plants.Furthermore, septic tank sludge has a lower concentration of organic matter than pumped human waste, so pumped human waste is especially treated as septic tank sludge. Malfunctions in processing plants that carry out digestion are becoming more and more noticeable. In other words, the following four items have become a problem as digestive disorders that occur when a large amount of septic tank sludge is mixed in. Since it has a lower BOD and organic matter concentration than human waste, the organic matter load on the digester is reduced, reducing digestion efficiency. Septic tank sludge undergoes biological treatment in the septic tank, which causes an imbalance of nutrients and substrates to the microorganisms involved in decomposition.
Adversely affects digestion. Digestive disorders are more likely to occur because there is significantly less alkalinity and other substances that act as a buffer in the digestive tank. Septic tank sludge contains a large amount of inert solids and sand, which increases the accumulation of scum and sediment in the digester tank. As the above-mentioned problems have been identified, recently there have been many cases in which septic tank sludge is not mixed with pumped human waste, and a separate treatment facility is installed exclusively for septic tank sludge (this is called separate treatment of septic tank sludge). )
However, separate treatment naturally requires additional installation space and high construction costs, and for this reason, separate treatment has not become widespread. In view of the current situation, the present invention aims to provide a more rational method for treating septic tank sludge, and another purpose is to provide a method that can also streamline the treatment of pumped human waste. be. That is, the present invention does not require separate treatment of septic tank sludge, can completely resolve the adverse effects of combined treatment, and furthermore aims to streamline the treatment of collected human waste itself. The present invention involves mixing human waste septic tank sludge with human waste anaerobic digestion desorption liquid or aerobic digestion treatment liquid, treating the mixed liquid with activated sludge treatment, and then adding a cationic polymer flocculant to the treated liquid and surplus sludge. It is characterized by the addition of a flocculant mainly consisting of , to perform solid-liquid separation. Next, one embodiment of the present invention will be described with reference to FIG. As shown in Figure 1, the human waste 1 is
It flows into the anaerobic digestion tank 2 without being mixed with the septic tank sludge. The septic tank sludge 3 is mixed into the digestion and desorption liquid 4 or directly thrown into the activated sludge treatment tank 5. Therefore, it is preferable not to dilute the mixture of the two with river water, groundwater, or seawater, and if dilution water is unavoidably added for the purpose of defoaming, it should be kept in a small amount of dilution water as much as possible. , undergo activated sludge treatment. The effluent from the activated sludge treatment tank 5 flows into the final settling tank 6, and the thickened sludge 7 is recycled to the activated sludge treatment tank 5. Next, the surplus sludge 8 from the activated sludge treatment process is mixed with the overflow water of the final settling tank 6 without being extracted out of the system, or the surplus sludge 8 is mixed with the activated sludge treatment liquid from the overflow part of the final settling tank 6. After flowing out in slurry form, a cationic polymer flocculant 9 is added to this slurry liquid,
The structure is such that a dehydrated cake 11 and a dehydrated separated liquid 12 are obtained directly by the dehydrator 10. With this method, the cationic polymer flocculant, which has conventionally been used only for dewatering excess sludge, can also be used for clarifying the liquid. If this dehydrated separated liquid 12 is diluted to about 10 times, the quality of water can be discharged as is in many cases, but if the SS recovery rate of the dehydrator is low, the dehydrated separated liquid 12 may be further diluted with sulfuric acid, etc. After being coagulated and precipitated 14 or floated and separated using an inorganic flocculant 13 or an organic flocculant, it is appropriately diluted and discharged, but as described later, the required amount of the inorganic flocculant is significantly reduced. It has been discovered that savings can be made. In addition, in the case of a treatment plant where water for dilution is not available, by adding unit operations such as activated carbon, ozone, electrolysis, ultrafiltration membrane, etc. to the coagulated and separated liquid, water quality that can be discharged without dilution can be obtained. It has been found that by employing the process of the present invention as described above, the following great effects can be obtained. Since the septic tank sludge is added to the digested liquid without being mixed with the collected human waste before entering the digester in the conventional method, no malfunction of the digester will occur. The activated sludge process can be operated without or close to dilution, so the flow rate is 1/10 to 1/10 that of conventional methods.
1/20, it becomes practical to directly dewater the mixed liquid of activated sludge final settling tank effluent and excess sludge using a dehydrator. Moreover, instead of using the conventional method of extracting surplus activated sludge from the system and separately dewatering it, we can create a mixed slurry of surplus sludge and activated sludge treatment process effluent.
When a cationic polymer flocculant is added and dewatered, colloidal
BOD, COD, chromaticity component, organic nitrogen component,
Since it utilizes the phenomenon discovered by the present inventor that excess sludge coagulated by a cationic polymer flocculant is very effectively adsorbed and removed and transferred to the dewatered cake, subsequent dewatering is possible. It was confirmed that the required amount of flocculants such as sulfuric acid salt during the coagulation and precipitation process of the separated liquid was drastically reduced to less than 1/20 of that of the conventional method. Therefore, the amount of inorganic hydroxide sludge that is difficult to dewater is drastically reduced, making it possible to operate the sludge treatment process rationally, and of course reducing the cost of the inorganic flocculant. Generally, SS and BOD in the anaerobic digestion solution are
Since the amount is about 2000 to 3000mg/, which is less than human waste or septic tank sludge, the amount of surplus sludge generated is naturally small, and the amount of cationic polymer flocculant added to dehydrate this surplus sludge is not enough for the purpose of clarifying the liquid. As a result of experiments, it was found that because the amount of water was too small, the amount of chromatic components in the biological treatment effluent absorbed into the excess sludge was small, and the clarification of the liquid was insufficient. The problem was solved by adopting a new method of increasing the amount of surplus sludge generated from the biological treatment process by mixing septic tank sludge, thereby increasing the concentration of sludge flowing into the dehydrator. Therefore, by using septic tank sludge for rationalizing the treatment of human waste digestion and desorbed liquid, it becomes possible to treat septic tank sludge, and the effect of killing two birds with one stone can be obtained. It becomes possible to rationally process septic tank sludge without significantly modifying or expanding the existing human waste treatment plant. Next, the implementation results of the present invention will be explained in comparison with the conventional method. At the existing human waste treatment plant A, where the amount of human waste processed is 20 Kl/day, and the amount of septic tank sludge brought in is 12 Kl/day, treatment was carried out according to the flow shown in Figure 2, but the original plan of construction was However, since the treatment of septic tank sludge was not planned, the anaerobic digestion tank was significantly impaired in function as mentioned above, and the water quality of the digested liquid was particularly poor as shown in the table below. It is.

【表】 本し尿処理場では、この消化脱離液を河川水で
15倍に希釈して、活性汚泥処理(曝気槽滞留時間
8Hr)したのち、活性汚泥終沈溢流水の色度、
SS,BODの除去を目的として、硫酸ばん土によ
つて凝集沈殿を行なつていたが、硫酸ばん土注入
率が400〜500mg/と多量に注入しないと良好に
凝集しないため、汚泥発生量が多く、しかも脱水
性が悪いため汚泥の処理処分に頭を痛めていた。
活性汚泥の余剰汚泥とシツクナーで濃縮された凝
集沈殿汚泥は混合されて、カチオンポリマーを2
%(対SS)添加して、スクリユーデカンター型
遠心脱水機で脱水されていたが、凝集沈殿スラツ
ジの混入のため、脱水性が悪く脱水ケーキ含水率
は85〜86%と高い値であつた。 次に、この処理場のフローを第1図の本発明の
ように、改造した結果を説明する。 改造した点とその結果は次のとおりである。 浄化槽汚泥の混入地点を消化脱離液の貯留槽
にした。したがつて消化層の機能障害は全くな
くなつた。 希釈水(河川水)の添加をやめ、無希釈で活
性汚泥処理を行なつた結果、活性汚泥処理槽流
入液のBODは5000〜6000mg/となり従来法
より高くなつたが曝気時間が120時間と非常に
長くすることができしかも水温を高く維持でき
たので、活性汚泥処理水の水質の悪化はなく、
むしろ、最終沈殿池の水面積負荷が1/15になつ
た結果、SS除去率は向上した。(従来法の終沈
越流水SS70〜150mg/に対し改造後のSSは30
〜60mg/であつた。 活性汚泥の余剰汚泥を最終沈殿池溢流水に混
和したのち(SSとして10000mg/前後にな
る)カチオンポリマーを対SSあたり、1.5%添
加し、ロールプレス型脱水機で脱水した。 この結果、含水率78〜79%の脱水ケーキと清
澄な脱水分離液が得られた。従来法の活性汚泥
終沈越流水水質と、上記の脱水分離液の15倍希
釈水を比較すると、下表のように本発明の脱水
分離液のほうが良好であつた。両者とも後続す
る凝集沈殿の原水に相当するので比較可能であ
ることに注意されたい。
[Table] At this human waste treatment plant, this digestive and desorbed liquid is treated with river water.
Diluted 15 times and activated sludge treatment (aeration tank residence time)
After 8 hours), the chromaticity of the activated sludge final settling overflow water,
For the purpose of removing SS and BOD, flocculation was carried out using sulfuric acid clay, but the amount of sludge produced was reduced because the flocculation did not occur properly unless the sulfuric acid clay injection rate was 400 to 500mg/a large amount. There was a lot of sludge, and the dewatering properties were poor, making it difficult to process and dispose of the sludge.
Excess sludge from activated sludge and flocculated sedimentation sludge concentrated in a thickener are mixed to form two cationic polymers.
% (vs. SS) was added and dehydrated using a screw decanter type centrifugal dehydrator, but due to the contamination of coagulated sedimentation sludge, dehydration performance was poor and the water content of the dehydrated cake was as high as 85-86%. . Next, the results of modifying the flow of this treatment plant as in the present invention shown in FIG. 1 will be explained. The modifications and results are as follows. The point where the septic tank sludge was mixed was made into a storage tank for the digestion and desorption fluid. Therefore, the dysfunction of the digestive layer completely disappeared. As a result of stopping the addition of dilution water (river water) and performing activated sludge treatment without dilution, the BOD of the activated sludge treatment tank influent was 5000 to 6000 mg/, higher than the conventional method, but the aeration time was 120 hours. Because we were able to extend the water over a very long time and maintain a high water temperature, there was no deterioration in the quality of the activated sludge treated water.
In fact, the SS removal rate improved as the water area load in the final sedimentation tank was reduced to 1/15. (The final settling overflow water SS of the conventional method is 70 to 150mg/, whereas the SS after modification is 30mg/
It was ~60mg/. After the excess sludge of the activated sludge was mixed with the overflow water of the final settling tank (approximately 10,000 mg/SS), cationic polymer was added at 1.5% per SS and dewatered using a roll press type dehydrator. As a result, a dehydrated cake with a moisture content of 78 to 79% and a clear dehydrated separated liquid were obtained. When the quality of the activated sludge final sedimentation overflow water of the conventional method was compared with the 15-fold diluted water of the above dehydrated separated liquid, the dehydrated separated liquid of the present invention was better as shown in the table below. It should be noted that both correspond to the raw water for subsequent coagulation and precipitation, so they can be compared.

【表】 上表の如く、本発明によれば、希釈水の使用
量を従来法と同一にし、つまり脱水分離液を15
倍に希釈すれば、従来法の15倍希釈活性汚泥処
理水より、はるかに良好な水質が得られこのま
までも放流可能な処理水となることが判明し
た。 次に脱水分離液を硫酸ばん土で凝集沈殿処理
した結果は、従来法が、15倍希釈活性汚泥処理
水に対して、硫酸ばん土400〜500mg/の必要
であつたが(無希釈活性汚泥処理水の場合に換
算すると6000〜7500mg/に相当する)、一方
本発明の如く、脱水分離液を対象として凝集沈
殿を行うと、希釈水で希釈しない状態の脱水分
離液の場合、硫酸ばん土100〜150mg/で良好
な凝集をし、脱水分離液の15倍希釈水に対して
は15〜20mg/と極く少量で凝集沈殿処理が可
能で、従来法の硫酸ばん土所要量に対し1/20以
下の注入率で充分であることが判明した。この
結果、水酸化アルミを主体とする凝集沈殿スラ
ツジの発生量も、従来法の1/20に減少したた
め、脱水ケーキ発生量および含水率も低下し
た。なお、脱水機の流入スラリーに添加する凝
集剤は、カチオンポリマー単独に限らず、2種
類以上のポリマーの併用、無機凝集剤との併用
を行なつても良いことは当然であり、また、脱
水分離液中の残留カチオンポリマーを除去する
ため、凝集沈殿工程の凝集剤として、アニオン
ポリマーと無機凝集剤を併用すること、あるい
は、脱水分離液をチユーブ接触酸化法などの生
物膜法によつて生物処理し、残留カチオンポリ
マーを生物学的に分解したのち、凝集沈殿処理
することも本発明の特許請求の範囲を迂回でき
るものではないことも当然である。
[Table] As shown in the above table, according to the present invention, the amount of dilution water used is the same as that of the conventional method, that is, the dehydrated separated liquid is
It was found that by diluting the activated sludge treated water to a factor of 15, the quality of the water was much better than that of activated sludge treated water diluted 15 times using the conventional method, and the treated water could be discharged as is. Next, the dehydrated separated liquid was coagulated and precipitated with sulfuric acid salt. (equivalent to 6,000 to 7,500 mg/in the case of treated water).On the other hand, when coagulation precipitation is performed on the dehydrated separated liquid as in the present invention, in the case of the dehydrated separated liquid that is not diluted with dilution water, sulfuric acid Good flocculation is achieved at 100 to 150 mg/diluted water, and coagulation and precipitation treatment is possible with a very small amount of 15 to 20 mg/diluted water for 15 times dilution of the dehydrated separated liquid. An injection rate of less than /20 was found to be sufficient. As a result, the amount of coagulated and precipitated sludge mainly composed of aluminum hydroxide was reduced to 1/20 of the conventional method, and the amount of dehydrated cake and water content were also reduced. It should be noted that the flocculant added to the slurry flowing into the dehydrator is not limited to a cationic polymer alone, but may also be a combination of two or more types of polymers or an inorganic flocculant. In order to remove the residual cationic polymer in the separated liquid, it is possible to use an anionic polymer and an inorganic flocculant together as a flocculant in the coagulation-sedimentation process, or to oxidize the dehydrated separated liquid to a biofilm method such as a tube catalytic oxidation method. Naturally, it is not possible to circumvent the scope of the claims of the present invention by carrying out a coagulation-sedimentation treatment after the treatment and biologically degrading the residual cationic polymer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を、第2図は従来例
を示す系統説明図である。 1…汲取りし尿、2…嫌気性消化槽、3…浄化
槽汚泥、4…消化脱離液、5…活性汚泥処理槽、
6…最終沈殿池、7…濃縮汚泥、8…余剰汚泥、
9…カチオン性高分子凝集剤、10…脱水機、1
1…脱水ケーキ、12…脱水分離液、13…無機
凝集剤、14…凝集沈殿、15…希釈水。
FIG. 1 is a system explanatory diagram showing an embodiment of the present invention, and FIG. 2 is a system explanatory diagram showing a conventional example. 1... Extracted human waste, 2... Anaerobic digestion tank, 3... Septic tank sludge, 4... Digestion and desorption liquid, 5... Activated sludge treatment tank,
6...Final settling tank, 7...Thickened sludge, 8...Excess sludge,
9... Cationic polymer flocculant, 10... Dehydrator, 1
DESCRIPTION OF SYMBOLS 1... Dehydrated cake, 12... Dehydrated separated liquid, 13... Inorganic flocculant, 14... Coagulation precipitate, 15... Dilution water.

Claims (1)

【特許請求の範囲】 1 し尿浄化槽汚泥を生し尿の消化処理液と混合
し、該混合液を活性汚泥処理したのち、その処理
液および余剰汚泥に少くともカチオン性高分子凝
集剤を含む凝集剤を添加して固液分離を行うこと
を特徴とするし尿浄化槽汚泥の処理方法。 2 上記消化処理液が嫌気性消化脱離液または好
気性消化液である特許請求の範囲第1項記載のし
尿浄化槽汚泥の処理方法。 3 上記凝集剤としてカチオン性高分子凝集剤を
単独に使用する特許請求の範囲第1項または第2
項記載のし尿浄化槽汚泥の処理方法。 4 上記凝集剤としてカチオン性高分子凝集剤と
他の高分子凝集剤およびまたは無機凝集剤を併用
する特許請求の範囲第1項または第2項記載のし
尿浄化槽汚泥の処理方法。 5 上記固液分離が機械的脱水するものである特
許請求の範囲第1項、第2項、第3項または第4
項記載のし尿浄化槽汚泥の処理方法。 6 上記固液分離が機械的脱水後その脱水分離液
を凝集固液分離するものである特許請求の範囲第
1項、第2項、第3項または第4項記載のし尿浄
化槽汚泥の処理方法。 7 上記固液分離が機械的脱水後その脱水分離液
を生物処理したのち凝集固液分離するものである
特許請求の範囲第1項、第2項、第3項または第
4項記載のし尿浄化槽汚泥の処理方法。
[Scope of Claims] 1. After mixing human waste septic tank sludge with a human waste digestion solution and treating the mixed solution with activated sludge treatment, a flocculant containing at least a cationic polymer flocculant is added to the treated solution and excess sludge. 1. A method for treating human waste septic tank sludge, characterized in that solid-liquid separation is performed by adding. 2. The method for treating human waste septic tank sludge according to claim 1, wherein the digestion treatment liquid is an anaerobic digestion desorption liquid or an aerobic digestion liquid. 3. Claim 1 or 2 in which a cationic polymer flocculant is used alone as the flocculant.
Method for treating human waste septic tank sludge as described in section. 4. The method for treating human waste septic tank sludge according to claim 1 or 2, wherein a cationic polymer flocculant, another polymer flocculant, and/or an inorganic flocculant are used in combination as the flocculant. 5 Claims 1, 2, 3, or 4, wherein the solid-liquid separation is mechanical dehydration.
Method for treating human waste septic tank sludge as described in section. 6. The method for treating human waste septic tank sludge as set forth in claim 1, 2, 3, or 4, wherein the solid-liquid separation is performed by mechanically dewatering and then coagulating solid-liquid separation of the dehydrated separated liquid. . 7. The human waste septic tank according to claim 1, 2, 3, or 4, wherein the solid-liquid separation is performed by performing mechanical dehydration, biologically treating the dehydrated separated liquid, and then coagulating solid-liquid separation. How to treat sludge.
JP5108779A 1979-04-25 1979-04-25 Treating method of excretion purifying tank sludge Granted JPS55142600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5108779A JPS55142600A (en) 1979-04-25 1979-04-25 Treating method of excretion purifying tank sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5108779A JPS55142600A (en) 1979-04-25 1979-04-25 Treating method of excretion purifying tank sludge

Publications (2)

Publication Number Publication Date
JPS55142600A JPS55142600A (en) 1980-11-07
JPS6245000B2 true JPS6245000B2 (en) 1987-09-24

Family

ID=12877028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5108779A Granted JPS55142600A (en) 1979-04-25 1979-04-25 Treating method of excretion purifying tank sludge

Country Status (1)

Country Link
JP (1) JPS55142600A (en)

Also Published As

Publication number Publication date
JPS55142600A (en) 1980-11-07

Similar Documents

Publication Publication Date Title
CN109437454B (en) Enhanced physicochemical treatment method and device for refined high-salt high-ammonia special oily sewage
CN101343129B (en) Pretreatment technique for decolorization of wastewater at middle plate of paper-making pulping
JPH0667520B2 (en) Human waste system treatment equipment
JPH0698360B2 (en) Method and apparatus for treating night soil wastewater
JP4007639B2 (en) Sewage return water treatment method and equipment
JPS6320600B2 (en)
JP3700938B2 (en) Method and apparatus for treating combined sewage in rainy weather
KR101880619B1 (en) Method for treating wastewater from biogas plant using food waste
JPS6245000B2 (en)
JP2002316191A (en) Method and apparatus for treating organic foul water
JPH0649197B2 (en) Organic wastewater treatment method
WO2023087371A1 (en) Maleic anhydride wastewater treatment method and system
JPH0352700A (en) Treatment of sewage of night soil system
JPH10249376A (en) Treatment of organic waste water such as sewage
JPH1028995A (en) Treatment of waste water
JP5063975B2 (en) Organic wastewater treatment method and treatment apparatus
KR910004128B1 (en) Concentrated organic waste water treating method
JPH02139099A (en) Treatment of organic sewage
CN111574014A (en) Aeration purification method for sludge water discharged from purification plant
JPH0741275B2 (en) Sludge treatment method and equipment for organic wastewater
JPS64119B2 (en)
JP2873968B2 (en) Wastewater treatment method
JPH0155920B2 (en)
JPH05192694A (en) Sewage treatment method
JPS637840B2 (en)