JPS6244692A - Decay heat removing device for nuclear reactor - Google Patents

Decay heat removing device for nuclear reactor

Info

Publication number
JPS6244692A
JPS6244692A JP60183057A JP18305785A JPS6244692A JP S6244692 A JPS6244692 A JP S6244692A JP 60183057 A JP60183057 A JP 60183057A JP 18305785 A JP18305785 A JP 18305785A JP S6244692 A JPS6244692 A JP S6244692A
Authority
JP
Japan
Prior art keywords
reactor
steam
pool
water
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60183057A
Other languages
Japanese (ja)
Inventor
正弘 山下
崇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60183057A priority Critical patent/JPS6244692A/en
Publication of JPS6244692A publication Critical patent/JPS6244692A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は原子力発電所の全交流電源喪失時の安全対策設
備であZ1原子炉の崩壊熱除去装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a decay heat removal device for a Z1 nuclear reactor, which is a safety measure equipment in the event of a total loss of AC power at a nuclear power plant.

[発明の技術的背景とその問題点] 原子力発電所に於いて原子炉の定格運転時に全交流電源
喪失事象が発生すると、交流電源を、鳴動源とするすべ
ての動的機器が停止し、原子力発電所≦二とっては、最
も影響の大きな事態の一つとなる。このような場合であ
っても原子力発電所の安全性がただち(−損われること
がないよう(−原子炉の蒸気を駆動源とするタービン駆
動の原子炉隔離時冷却系(以下RCICと略記する。)
が設けられている。このRCICは原子炉蒸気を地動源
としているため、仮に全交流電源が喪失しても、その他
の電動駆動のシステムとは異なり、その機能を発揮でき
る設計となっている。そして、その構成C二おいて、タ
ービン駆動のポンプ1−より短期間では復水貯蔵ml−
貯えられた水源からさらに長期間ではサプレッションプ
ールから原子炉に炉水を注入し、全交流電源喪失時にも
原子炉の水位を維持できるよう1ニなっている。しかし
、全交流電源喪失が長期化すると、RCICの制御に使
用している直流電源が数時間で枯渇しRCICの運転を
継続することが困難となり、原子炉水位が低下するため
、最悪の場合には炉心溶融事故C二至ってしまう。また
、仮に何らかの方法により、この直流電源の枯渇の問題
が解決したとしても、さらCユ長時間全交流電源喪失が
継続したことを想定すると、原子炉の崩壊熱C二よって
発生した蒸気は逃がし安全弁より原子炉格納容器のサプ
レッション・プールに移行し、ここで凝縮冷却されるこ
と;−より、逆1−崩壊熱をサプレッション・プール水
に伝達する。これζ二より原子炉格納容器内の温度・圧
力が上昇し、この状態が長期化すると最終的C二は、原
子炉格納容器の破損温度、破損圧力に至り、原子炉格納
容器1   力゛破損する恐れ力゛6る・原子炉格納容
器力′破損した場合、サプレッション・プール水が急激
に減圧沸騰し、水位が低下するため、RCIeポンプは
必要吸込水頭(必要NPSH)が確保できなくなり、停
止してしまうことC:なる。こうなると、原子炉の水位
も崩壊熱Cユより減少し、炉心露出が起こり、炉心溶融
事故へと進展する恐れがある。
[Technical background of the invention and its problems] When a total AC power loss event occurs during the rated operation of the nuclear reactor at a nuclear power plant, all dynamic equipment that uses AC power as a noise source stops, and the nuclear power If the power plant is ≦2, this will be one of the situations with the greatest impact. Even in such a case, in order to ensure that the safety of the nuclear power plant is not compromised, a turbine-driven Reactor Isolation Cooling System (hereinafter abbreviated as RCIC), which uses reactor steam as a driving source, is installed. do.)
is provided. Since this RCIC uses nuclear reactor steam as its source of ground motion, it is designed to be able to function even if all AC power is lost, unlike other electrically driven systems. In the configuration C2, the condensate storage ml- is shorter than the turbine-driven pump 1-.
For longer periods of time, reactor water from the stored water source is injected into the reactor from the suppression pool, making it possible to maintain the water level in the reactor even when all AC power is lost. However, if the total AC power loss becomes prolonged, the DC power used to control the RCIC will run out in a few hours, making it difficult to continue operating the RCIC, and the reactor water level will drop, causing a worst-case scenario. This would lead to core meltdown accident C2. Furthermore, even if this problem of DC power depletion could be solved by some method, assuming that all AC power continues to be lost for an extended period of time, the steam generated by the reactor's decay heat C2 will have to be released. The decay heat is transferred from the safety valve to the suppression pool of the reactor containment vessel, where it is condensed and cooled. This ζ2 causes the temperature and pressure inside the reactor containment vessel to rise, and if this state continues for a long time, the final C2 will reach the failure temperature and failure pressure of the reactor containment vessel, causing the reactor containment vessel 1 to fail. If the reactor containment vessel is damaged, the suppression pool water will rapidly boil under reduced pressure and the water level will drop, making it impossible for the RCIe pump to secure the required suction head (required NPSH) and stop it. What you end up doing C: Become. If this happens, the water level in the reactor will also decrease below the decay heat C, leading to exposure of the reactor core, which could lead to a core meltdown accident.

[発明の目的] 本発明は上記事実1ユ鑑みなされたものであり原子力発
電所1:於て原子炉の定格運転中C二全交流電源喪失が
発生し原子炉冷却系、非常用炉心冷却系及び残留熱除去
系等を含む全ての電動の炉心冷却機能が喪失した場合、
炉心から崩壊熱を好適C二除去し崩壊熱1:よる炉心損
傷及び原子炉格納容器の過温破損或いは過圧破損を防止
する原子炉の崩壊熱除去装置を提供することを目的とす
る。
[Object of the Invention] The present invention has been made in view of the above-mentioned facts. At a nuclear power plant 1, a complete loss of AC power supply occurred during the rated operation of the reactor, and the reactor cooling system and emergency core cooling system If all electric core cooling functions including the residual heat removal system etc. are lost,
It is an object of the present invention to provide a decay heat removal device for a nuclear reactor that appropriately removes decay heat from a reactor core and prevents core damage due to decay heat and overtemperature damage or overpressure damage to a reactor containment vessel.

[発明の概要コ 本発明は、原子炉圧力容器内に収容された炉心から全交
流電源喪失時C1発生する蒸気を流量調整弁を介して導
く第1の配管と、この第1の配管から導びかれた蒸気を
凝縮させかつ原子炉建屋外から冷却材を導びくプールと
、このプール内で凝縮された凝縮水を貯える畿水貯槽と
、この復水貯槽内の復水を導びき昇圧するポンプと、こ
のポンプによって昇圧されたり水を原子炉圧力容器の上
部C−設けられた上部スプレィノズルに導びく上部スプ
レィ配管と、前記ポンプに直結される蒸気タービンと、
前記第1の配管と分岐し流量調整弁を介して蒸気を前記
蒸気タービンへ導びく第2の配管と、前記蒸気タービン
に直結しかつ発生電流を整流した後制御電源に使用する
発電機とから成ることを特徴とする原子炉の崩壊熱除去
装置にある。
[Summary of the Invention] The present invention provides a first pipe that guides steam generated by C1 from a reactor housed in a reactor pressure vessel when all AC power is lost through a flow rate adjustment valve; A pool that condenses the released steam and leads coolant from outside the reactor building, a water storage tank that stores the condensed water condensed in this pool, and a water storage tank that leads the condensate in the condensate storage tank to raise the pressure. a pump, an upper spray pipe that leads water pressurized by the pump to an upper spray nozzle provided in an upper part C of the reactor pressure vessel, and a steam turbine directly connected to the pump;
A second pipe that branches from the first pipe and guides steam to the steam turbine via a flow rate regulating valve, and a generator that is directly connected to the steam turbine and used as a control power source after rectifying the generated current. A decay heat removal device for a nuclear reactor is characterized by:

[発明の実施例コ 以下、本発明の第1実施例を第1図C:基づいて説明す
る。第1図C:基す様に原子炉を収納する原子炉圧力容
器lは原子炉格納容器2内(−格納されている。また、
原子炉圧力容器1の気相部からは、V+離弁3,4及び
流量調整弁5を介してプール6水、河川水或いは地下水
等の水源9との間に水門10が設けられている。また、
補給水を原子炉圧力容器1内に給水する配管として復水
貯蔵槽8から逆止弁1]、ポンプ12及び流量調整弁1
3を介して隔離弁14,15を経て原子炉圧力容器1の
上部スプレィノズル15ac至る上部スプレィ配管16
が設けられている。更C二蒸気タービン18を駆動させ
る蒸気ラインとして原子炉圧力容器1の気相部から隔離
弁3.4及び流量調整弁17を介して蒸気タービン18
へ至る第2の配管18aが設けられている。蒸気タービ
ン181ユはポンプ12が直結されるとともIユ小型発
電機19が据え付けられ交流電源を直流電源へ変換する
整流器20として整流した直流電源を貯えるバッテリー
21を介して制御用負荷22及び蒸気タービン19の軸
受の潤滑油クーラー(図示せず)に電源を分配する配電
線が設けられている。
[Embodiment of the Invention] Hereinafter, a first embodiment of the present invention will be described based on FIG. 1C. Figure 1C: The reactor pressure vessel l that houses the nuclear reactor is stored inside the reactor containment vessel 2 (-).
A water gate 10 is provided between the gas phase portion of the reactor pressure vessel 1 and a water source 9 such as pool 6 water, river water, or ground water via V+ separation valves 3 and 4 and a flow rate adjustment valve 5. Also,
A check valve 1], a pump 12, and a flow rate adjustment valve 1 as piping for supplying make-up water into the reactor pressure vessel 1 from the condensate storage tank 8.
3 to the upper spray nozzle 15ac of the reactor pressure vessel 1 via the isolation valves 14 and 15.
is provided. Further, as a steam line for driving the steam turbine 18, a steam line is connected to the steam turbine 18 from the gas phase part of the reactor pressure vessel 1 via an isolation valve 3.4 and a flow rate adjustment valve 17.
A second piping 18a leading to is provided. The steam turbine 181 is directly connected to the pump 12, and is also equipped with a small generator 19, which is used as a rectifier 20 to convert AC power into DC power. A power distribution line is provided to distribute power to a lubricating oil cooler (not shown) for the bearings of the turbine 19.

以上の構成Cユおいて、原子力発電所C二おける原子炉
の定格運転中1ユ全交流電源喪失学故が発生し、全ての
電動駆動の原子炉冷却系、非常用炉心冷却系及び残留熱
除去系を含む全ての炉心冷却機能が喪失した場合、原子
炉炉心で発生する崩壊熱を除去するため原子炉圧力容器
1内で発生した蒸気を気相部から取り出″tfcめ隔離
弁3・、4を開し史に流量調整弁5を調節し適切な蒸気
流量C二設定テる。
In the above configuration C unit, during the rated operation of the reactor at nuclear power plant C2, an accident occurred in which all AC power was lost in unit 1, and all electrically driven reactor cooling systems, emergency core cooling systems, and residual heat When all core cooling functions including the removal system are lost, the steam generated in the reactor pressure vessel 1 is removed from the gas phase to remove the decay heat generated in the reactor core. , 4 and adjust the flow rate regulating valve 5 to set an appropriate steam flow rate C2.

これらの作動にはすべて制御用電流電源が使用される。A control current power source is used for all these operations.

取り出した蒸気はプール6内を通る熱交換用配管7aで
プール6と熱交換し凝縮水となり復水貯蔵槽8に貯えら
れる。プール6は通常時は真水で充たされ熱交換用配管
7aの腐蝕を防止するが、崩壊熱移行により温度上昇す
る際は水門10を開き海水。
The extracted steam exchanges heat with the pool 6 through a heat exchange pipe 7a passing through the pool 6, becomes condensed water, and is stored in a condensate storage tank 8. The pool 6 is normally filled with fresh water to prevent corrosion of the heat exchange piping 7a, but when the temperature rises due to decay heat transfer, the water gate 10 is opened and seawater is poured into the pool 6.

河川水または地下水9をプール6イー導き入れる。River water or groundwater 9 is introduced into pool 6E.

−万、原子炉冷却水補給のため摺水貯蔵榴8からポンプ
12により冷却水を引き、流量調整弁13(:て補給水
流音を調節した後隔離弁14.15を介して上部スプレ
ィノズル16aから原子炉圧力容器l内に冷却水を供給
する。蒸気タービン18はポンプ12の駆動及び小型交
流発電機19の駆動を行うためのもので原子炉圧力容器
1気相部から取り出した蒸気を流量調整弁17で流量調
整した後、この蒸気タービン18を駆動させる。小型発
電機19で発電し念1   交流電源は整流器20で直
流に交換し食後バッテリー21に貯えるとともl二、制
御用負荷22及び蒸気タービン■9の軸受筒滑油クーラ
ーの電源として使用される。
- In order to replenish the reactor cooling water, the pump 12 draws cooling water from the water storage tank 8, and after adjusting the supply water flow noise with the flow rate adjustment valve 13 (:), it is passed through the isolation valve 14 and 15 to the upper spray nozzle 16a. The steam turbine 18 supplies cooling water into the reactor pressure vessel l.The steam turbine 18 is for driving the pump 12 and the small AC generator 19, and is used to control the flow rate of steam taken out from the gas phase part of the reactor pressure vessel 1. After adjusting the flow rate with the regulating valve 17, the steam turbine 18 is driven.The small generator 19 generates electricity.The alternating current power is exchanged to direct current using the rectifier 20, and then stored in the battery 21. It is also used as a power source for the bearing sleeve oil cooler of steam turbine 9.

次シ一本発明の第2実施例C一ついて第2図を参照して
説明する。なお、′第2図において第1図と同一部分に
は同一符号を付している。第2図1−おい七、原子炉を
収納する原子炉圧力容器1は原子炉格納容器2内に据え
付けられている。また、原子炉圧力容器1の気相部から
は、隔離弁3,4及び流量調整弁5を介してプール6内
の熱交換用配管7aを経て、再び隔離弁14.15を介
して原子炉圧力容器1液相部へ至る配管7が設けられて
いZJ0プール6には海水、河川水或いは地下水等の水
源9との間に水門10が設けられている。
Next, a second embodiment of the present invention will be described with reference to FIG. Note that in FIG. 2, the same parts as in FIG. 1 are given the same reference numerals. FIG. 2 1-7, A reactor pressure vessel 1 housing a nuclear reactor is installed within a reactor containment vessel 2. Further, from the gas phase part of the reactor pressure vessel 1, it passes through the isolation valves 3, 4 and the flow rate adjustment valve 5, through the heat exchange piping 7a in the pool 6, and then through the isolation valve 14, 15 again to the reactor. A pipe 7 leading to the liquid phase portion of the pressure vessel 1 is provided, and a water gate 10 is provided between the ZJ0 pool 6 and a water source 9 such as seawater, river water, or groundwater.

以上の構成において、全交流電源が喪失した場°合、原
子炉圧力容器1気相部から隔離弁3.4を介して蒸気を
取り出した後、この蒸気は流量調整弁5で蒸気流量を調
節した後プール6内の熱交換用配管7aへ導かれ冷却水
と熱交換して凝縮水とし自重C二より原子炉圧力容器1
液相部へ戻される。
In the above configuration, when all AC power is lost, steam is taken out from the gas phase part of the reactor pressure vessel 1 via the isolation valve 3.4, and the flow rate of this steam is adjusted by the flow rate adjustment valve 5. After that, it is guided to the heat exchange piping 7a in the pool 6 and exchanges heat with the cooling water to form condensed water from the reactor pressure vessel 1 due to its own weight C2.
It is returned to the liquid phase.

プール6内の熱交換用配管7aの腐蝕を防止するためプ
ール6内には、通常時には真水が貯えられている。しか
し、崩壊熱6二より水温が上昇した場合イニは水門10
を開いて海水、河川水または地下水である水源9から冷
却水をプール6へ導き入れプール6の冷却を行う。
In order to prevent corrosion of the heat exchange piping 7a in the pool 6, fresh water is normally stored in the pool 6. However, if the water temperature rises above the decay heat of 62, the ini will be sluice 10.
is opened, and cooling water is introduced into the pool 6 from a water source 9, which is seawater, river water, or underground water, and the pool 6 is cooled.

[発明の効果] 上述したように本発明に係る原子炉の崩壊熱除去装置C
ユよhば、原子力発電所(−於いて原子炉の定格運転中
1ユ全交流電源喪失が発生し、全ての電動駆動の原子炉
冷却系、非常用炉心冷却系及び崩急熱除去系等を含む全
ての炉心冷却機能が喪失した場合炉心で発生する崩壊熱
を交流電源に依らない系統により除去することができ、
史Cユ放熱源として海水、河川水または地下水という多
様性がありかつ無限に熱容量がある水源を利用するため
半永久的な運転が可能である。従って崩壊熱(−よる炉
心溶融9w、子炉圧力容器破損、原子炉格納容器破損を
防止でき環境へ与えるリスクを防止することが出来る。
[Effect of the invention] As described above, the decay heat removal device C for a nuclear reactor according to the present invention
At a nuclear power plant (-), a complete loss of AC power occurred during the rated operation of the reactor, and all electrically driven reactor cooling systems, emergency core cooling systems, rapid decay heat removal systems, etc. In the event that all core cooling functions, including the
Semi-permanent operation is possible because a variety of water sources such as seawater, river water, or groundwater, which have an infinite heat capacity, are used as a heat radiation source. Therefore, it is possible to prevent core melting due to decay heat (-), damage to the child reactor pressure vessel, and damage to the reactor containment vessel, and to prevent risks to the environment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1冥施例ζ二係る原子炉の崩壊熱除
去装置を示す概略系統図、第2図は本発明の第2実施例
C二係る原子炉の崩壊熱除去装置の概略系統図である。 1・・・原子炉圧力容器 5,13.17・・・流量調
整弁6・・・プール     7・・・第1の配管7a
・・・熱交換用配W  8・・・復水貯蔵槽9・・・水
源      ■2・・・ポンプ16・・・上部スプレ
ィ配管 16a・・・上部スプレィ18・・・蒸気ター
ビン  18a・・・第2の配管19・・・小型発電機
   22・・・ルIJ御用負荷代理人 弁理士 則 
近 憲 佑 同  三俣弘文
FIG. 1 is a schematic system diagram showing a decay heat removal device for a nuclear reactor according to the first embodiment ζ2 of the present invention, and FIG. 2 is a schematic system diagram showing a decay heat removal device for a nuclear reactor according to the second embodiment C2 of the present invention. It is a schematic system diagram. 1... Reactor pressure vessel 5, 13.17... Flow rate adjustment valve 6... Pool 7... First piping 7a
...Heat exchange distribution W8...Condensate storage tank 9...Water source ■2...Pump 16...Upper spray piping 16a...Upper spray 18...Steam turbine 18a... Second piping 19... Small generator 22... Le IJ official load agent Patent attorney rules
Ken Chika Yudo Hirofumi Mitsumata

Claims (1)

【特許請求の範囲】[Claims] (1)原子炉圧力容器内に収容された炉心から全交流電
源喪失時に発生する蒸気を流量調整弁を介して導く第1
の配管と、この第1の配管から導びかれた蒸気を凝縮さ
せかつ原子炉建屋外から冷却材を導びくプールと、この
プール内で凝縮された凝縮水を貯える復水貯槽と、この
復水貯槽内の復水を導びき昇圧するポンプと、このポン
プによって昇圧された復水を原子炉圧力容器の上部に設
けられた上部スプレイノズルに導びく上部スプレイ配管
と、前記ポンプに直結される蒸気タービンと、前記第1
の配管と分岐し流量調整弁を介して蒸気を前記蒸気ター
ビンへ導びく第2の配管と、前記蒸気タービンに直結し
かつ発生電流を整流した後制御電源に使用する発電機と
から成ることを特徴とする原子炉の崩壊熱除去装置。
(1) A first channel that guides steam generated from the reactor housed in the reactor pressure vessel when all AC power is lost through a flow rate regulating valve.
a pool that condenses the steam led from this first pipe and leads coolant from outside the reactor building, a condensate storage tank that stores condensed water condensed in this pool, and a condensate storage tank that stores condensed water condensed in this pool, and A pump that guides and pressurizes condensate in a water storage tank, an upper spray pipe that guides the condensate pressurized by this pump to an upper spray nozzle provided at the upper part of the reactor pressure vessel, and an upper spray pipe that is directly connected to the pump. a steam turbine;
A second pipe that branches off from the pipe and guides steam to the steam turbine via a flow rate regulating valve, and a generator that is directly connected to the steam turbine and used as a control power source after rectifying the generated current. Features of nuclear reactor decay heat removal equipment.
JP60183057A 1985-08-22 1985-08-22 Decay heat removing device for nuclear reactor Pending JPS6244692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60183057A JPS6244692A (en) 1985-08-22 1985-08-22 Decay heat removing device for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60183057A JPS6244692A (en) 1985-08-22 1985-08-22 Decay heat removing device for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS6244692A true JPS6244692A (en) 1987-02-26

Family

ID=16128984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60183057A Pending JPS6244692A (en) 1985-08-22 1985-08-22 Decay heat removing device for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS6244692A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255660A (en) * 2011-06-07 2012-12-27 Tohoku Univ Powerless reactor cooling system
JP2013024672A (en) * 2011-07-20 2013-02-04 Hitachi-Ge Nuclear Energy Ltd Nuclear power plant
JP2013104729A (en) * 2011-11-11 2013-05-30 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor core cooling system and nuclear power plant facility equipped with the same
JP2013217814A (en) * 2012-04-10 2013-10-24 Mitsubishi Heavy Ind Ltd Nuclear power plant
JP2014010114A (en) * 2012-07-02 2014-01-20 Mitsubishi Heavy Ind Ltd Auxiliary cooling device and auxiliary cooling method
JP2015534649A (en) * 2012-10-12 2015-12-03 コリア ハイドロ アンド ニュークリア パワー カンパニー リミティッド Water replenisher for driven auxiliary water system at nuclear power plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444195A (en) * 1977-09-14 1979-04-07 Hitachi Ltd Reactor cooling system
JPS60123795A (en) * 1983-12-07 1985-07-02 株式会社日立製作所 Open-close loop type seawater cooling system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444195A (en) * 1977-09-14 1979-04-07 Hitachi Ltd Reactor cooling system
JPS60123795A (en) * 1983-12-07 1985-07-02 株式会社日立製作所 Open-close loop type seawater cooling system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255660A (en) * 2011-06-07 2012-12-27 Tohoku Univ Powerless reactor cooling system
JP2013024672A (en) * 2011-07-20 2013-02-04 Hitachi-Ge Nuclear Energy Ltd Nuclear power plant
JP2013104729A (en) * 2011-11-11 2013-05-30 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor core cooling system and nuclear power plant facility equipped with the same
JP2013217814A (en) * 2012-04-10 2013-10-24 Mitsubishi Heavy Ind Ltd Nuclear power plant
JP2014010114A (en) * 2012-07-02 2014-01-20 Mitsubishi Heavy Ind Ltd Auxiliary cooling device and auxiliary cooling method
JP2015534649A (en) * 2012-10-12 2015-12-03 コリア ハイドロ アンド ニュークリア パワー カンパニー リミティッド Water replenisher for driven auxiliary water system at nuclear power plant

Similar Documents

Publication Publication Date Title
US5106571A (en) Containment heat removal system
US5120494A (en) Reactor-core isolation cooling system with dedicated generator
US6795518B1 (en) Integral PWR with diverse emergency cooling and method of operating same
KR101463440B1 (en) Passive safety system and nuclear power plant having the same
KR101389276B1 (en) Passive Safety System of Integral Reactor
US10529457B2 (en) Defense in depth safety paradigm for nuclear reactor
US5169595A (en) Reactor core isolation cooling system
EP2877997A1 (en) Passive power production during a nuclear station blackout
CN207909507U (en) A kind of passive residual heat removal system
EP2642489A1 (en) Emergency reactor core cooling system, and boiling-water nuclear power plant
CN102903402A (en) Advanced secondary side core heat lead-out device
JPS6244692A (en) Decay heat removing device for nuclear reactor
KR102044832B1 (en) Safety injection device and nuclear power plant having the same
JP2012230085A (en) Nuclear power plant
JP4398640B2 (en) Reactor containment cooling equipment
CN209149827U (en) A kind of secondary side residual heat removal system of active and passive combination
KR20060020756A (en) Integral pwr with diverse emergency cooling and method of operating same
CN115240880B (en) Passive residual heat removal system and method capable of achieving continuous heat removal
CN214175702U (en) Passive water replenishing system of steam generator for passive nuclear power plant
JPS6375691A (en) Natural circulation type reactor
Iwamura et al. A concept and safety characteristics of JAERI passive safety reactor (JPSR)
JP2020012768A (en) Reactor cooling system and operation method thereof
Matsunaga Sato et al.
RU2669010C1 (en) Metal-water protection tank for the caisson cooling
Luckas et al. Assessment of candidate accident management strategies