JPS60123795A - Open-close loop type seawater cooling system - Google Patents

Open-close loop type seawater cooling system

Info

Publication number
JPS60123795A
JPS60123795A JP58231043A JP23104383A JPS60123795A JP S60123795 A JPS60123795 A JP S60123795A JP 58231043 A JP58231043 A JP 58231043A JP 23104383 A JP23104383 A JP 23104383A JP S60123795 A JPS60123795 A JP S60123795A
Authority
JP
Japan
Prior art keywords
seawater
condenser
water
cooling system
water intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58231043A
Other languages
Japanese (ja)
Inventor
田沖 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58231043A priority Critical patent/JPS60123795A/en
Publication of JPS60123795A publication Critical patent/JPS60123795A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子力発電所の海水を冷却源とする系統に係
わシ、特に地震による原子炉スクラム時に海水潮位異常
低下に起因する海水ポンプトリップを防止し、主蒸気逃
がし安全弁を作動させることなく原子炉を安全に停止さ
せるのに好適な海水冷却系に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a system that uses seawater as a cooling source in a nuclear power plant, and particularly relates to seawater pump tripping caused by an abnormal drop in seawater tide level during a nuclear reactor scram caused by an earthquake. The present invention relates to a seawater cooling system suitable for preventing nuclear reactors from occurring and safely shutting down a nuclear reactor without activating a main steam relief safety valve.

〔発明の背景〕[Background of the invention]

海水を冷却源とする従来例の循環水系と残留熱除去系に
ついて第1図によシ説明する。
A conventional circulating water system and residual heat removal system using seawater as a cooling source will be explained with reference to FIG.

循環水系は基本的に、タービン6駆動後の蒸気を復水器
3内で凝縮冷却し、復水器3内を高真空に保持する機能
を有している。
The circulating water system basically has the function of condensing and cooling the steam after driving the turbine 6 in the condenser 3 and maintaining the inside of the condenser 3 at a high vacuum.

取水口4より取シ入れた海水11は、循環ポンプ1によ
り復水器3内に移送され、蒸気を凝縮冷却し復水器3内
を高真空に保持する。復水器3を出た海水は、放水口5
よシそのままrt6−へ放出される。
Seawater 11 taken in from the water intake port 4 is transferred into the condenser 3 by the circulation pump 1, and the steam is condensed and cooled to maintain the inside of the condenser 3 at a high vacuum. The seawater leaving the condenser 3 is sent to the water outlet 5.
It is released as is to rt6-.

この状態で原子炉スクラムが発生した場合、循環水系は
、運転を続は炉水を冷却し、原子炉7の内圧を低下させ
、一方、残留熱除却系は、原子炉停止時冷却モードで運
転に入シ、逃がし安全弁9を作動させることなく、原子
炉7を安全に停止できるO しかし地足等の理由で、原子炉スクラムと、地震による
津波で海水潮位が異常に低下する現象とが同時に発生し
た場合、取水槽2の水位は低下し、取水槽水位検出装置
15の水位低下信号で、循環ポンプ1、残留熱除去海水
ポンプ24はトリップしてしまう。循環ポンプ1がトリ
ップすると、復水器3内の真空度が低下し、真空度P 
T smHgでタービン6がトリップする。更に真空度
が低下してPvmmHgに到ると、主蒸気隔離弁8が閉
じられ、汚染蒸気がタービン6から漏洩するのを防止す
る。この場合、原子炉7は隔離されているから、燃料の
崩壊熱によシ内圧が上昇し、主蒸気逃がし安全弁9が作
動して、高温蒸気を圧力抑制呈10に噴出妊せ、圧力抑
制室10内の保有水で冷却させる。しかし、残留熱除去
海水ポンプ24がトリップして熱交換器25が熱交換し
ないため、圧力銅Ill室10内の保有水には冷却源は
無く、温度上昇を続け、その温度限界値を越える欠点が
おった。
If a reactor scram occurs in this state, the circulating water system will continue operating to cool the reactor water and reduce the internal pressure of reactor 7, while the residual heat removal system will operate in reactor shutdown cooling mode. The reactor 7 can be safely shut down without activating the safety relief valve 9.However, due to grounding and other reasons, the reactor scram and the abnormally low seawater level caused by the tsunami caused by the earthquake occur at the same time. If this occurs, the water level in the water intake tank 2 will drop, and the circulation pump 1 and the residual heat removal seawater pump 24 will trip due to the water level drop signal from the water intake tank water level detection device 15. When the circulation pump 1 trips, the degree of vacuum inside the condenser 3 decreases, and the degree of vacuum P
Turbine 6 trips at T smHg. When the degree of vacuum further decreases to PvmmHg, the main steam isolation valve 8 is closed to prevent contaminated steam from leaking from the turbine 6. In this case, since the reactor 7 is isolated, the internal pressure rises due to the decay heat of the fuel, the main steam relief safety valve 9 operates, and high-temperature steam is ejected into the pressure suppression chamber 10. It is cooled with water stored in the tank. However, since the residual heat removal seawater pump 24 trips and the heat exchanger 25 does not exchange heat, the water held in the pressure copper Ill chamber 10 has no cooling source, and the temperature continues to rise, exceeding its temperature limit value. It was loud.

このようにして温度が上昇すると、濾過機能が充分働か
なくなるし、圧力抑制室10内が汚染されてしまうので
、できる限υ主蒸気逃がし安全弁9を作動させることな
く、原子炉を安全に停止することが望ましい。
If the temperature rises in this way, the filtration function will not work properly and the inside of the pressure suppression chamber 10 will be contaminated, so it is necessary to safely shut down the reactor without activating the main steam relief safety valve 9 as much as possible. This is desirable.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、地震による原子炉スクラムと地震によ
る津波で海水潮位異常低下の現象とが同時に発生した場
合にも、海水を系内に保ち、復水器内の真空度を保持し
、主蒸気逃がし安全弁が作動するのを防止しながら、原
子炉を安全に停止するのに好適な海水冷却系を提供する
ことである。
The purpose of the present invention is to keep seawater within the system, maintain the degree of vacuum in the condenser, and maintain the vacuum level in the condenser even if a nuclear reactor scram caused by an earthquake and an abnormal seawater level drop caused by a tsunami caused by the earthquake occur simultaneously. To provide a seawater cooling system suitable for safely stopping a nuclear reactor while preventing a steam relief safety valve from operating.

〔発明の概要〕[Summary of the invention]

本発明は、海水を取水口から取水槽に取p入れ、循環水
系や残留熱除去系統に供給して熱交換によシ復水器等を
冷却し、使用済の海水を放水口から海に放出する開ルー
プ型海水冷却系において、取水槽の取水口付近に逆流防
止装置を設けるとともに、循環水系と残留熱除去系等か
ら放水口への配管をバイパス配管によシ分岐させて取水
槽にも接続し放水口と取水槽へ択一的に海水を放出させ
る切換弁を設け、地震による津波等で海水潮位が低1す
るときに取水口からの海水の逆流流出を防止しながら冷
却系にあった海水を取水槽に循環させて閉ループ型海水
冷却系を形成する一方、海水潮位が回復したときに逆流
防止装置を解除し切換弁を元の状態にして新鮮な海水を
用いる通常の開ループ型海水冷却系に戻る開閉ループ型
海水冷却系を提供するものである。
The present invention takes seawater into the water intake tank from the water intake, supplies it to the circulating water system and residual heat removal system, cools the condenser, etc. through heat exchange, and discharges the used seawater from the water outlet to the sea. In the open-loop seawater cooling system that discharges water, a backflow prevention device is installed near the water intake of the water intake tank, and the piping from the circulating water system and residual heat removal system to the water outlet is branched by bypass piping to the water intake tank. A switching valve is installed to selectively discharge seawater to the water outlet and water intake tank, which prevents seawater from flowing backwards from the water intake when the seawater tide level is low due to an earthquake or tsunami. The existing seawater is circulated to the water tank to form a closed-loop seawater cooling system, while when the seawater level returns, the backflow prevention device is released and the switching valve is returned to its original state to create a normal open-loop system that uses fresh seawater. This provides an open/closed loop type seawater cooling system that returns to the type seawater cooling system.

さて、原子炉スクラムが発生した場合、復水器内の交換
熱量比(原子炉出力100%時の復水器内交換熱量Qo
に対する比)は第2図曲紛イに示す如く時間(秒)の経
過とともに急速に減少する。
Now, when a reactor scram occurs, the ratio of heat exchanged in the condenser (the amount of heat exchanged in the condenser at 100% reactor output Qo)
As shown in FIG.

原子炉スクラムが発生して津波等による海水潮位が異常
低下する時間をt秒後とすると、その時の復水器内交換
熱量比はQ ” Q/ Qo X 100(チ)となっ
ている。
Assuming that the time after which a reactor scram occurs and the seawater level abnormally drops due to a tsunami or the like is t seconds later, the heat exchange ratio in the condenser at that time is Q'' Q/Qo x 100 (chi).

第3図は復水器性能曲線を示したものであシ1横軸は復
水器内交換熱量比、縦軸は復水器真空度を表わしている
FIG. 3 shows a condenser performance curve, in which the horizontal axis represents the heat exchange ratio within the condenser, and the vertical axis represents the degree of vacuum in the condenser.

曲線口、ノ・、二は、復水器入口海水温度θN。Curve inlet No. 2 is the condenser inlet seawater temperature θN.

θ、θVを一定とした場合の復水器内交換熱量比と復水
器真空度との関係を表わしたものである。
This figure shows the relationship between the exchange heat ratio in the condenser and the degree of vacuum in the condenser when θ and θV are kept constant.

ここで復水器入口海水温度θN、θ、θVは、θNくθ
くθV の関係がある。
Here, the condenser inlet seawater temperatures θN, θ, θV are θN × θ
There is a relationship of θV.

図中ホの点は、復水器設計点(原子炉出力100チ時の
復水器運転状態)で復水器真空度PM、復水復水器入水
海水温度の状態にある。
Point E in the figure is at the condenser design point (condenser operating state when the reactor output is 100 cm), the condenser vacuum degree PM, and the condenser condenser inlet seawater temperature.

図中への点は、復水器真空度Pvで、復水器入口海水温
度θVとなシ、この点で主蒸気隔離弁8が閉じられ、主
蒸気逃がし安全弁9が作動する。
The point in the figure is the condenser vacuum degree Pv and the condenser inlet seawater temperature θV. At this point, the main steam isolation valve 8 is closed and the main steam relief safety valve 9 is activated.

さて、原子炉スクラムが発生してt秒後に、津波等によ
り取水槽の水位が低下すると、取水槽2゜循環ポンプ1
.復水器3が閉ループを構成して、循環ポンプ1は運転
を続けるが、この場合−閉ループ海水温度は上昇し、復
水器真空度は低下する。
Now, t seconds after a reactor scram occurs, when the water level in the water intake tank decreases due to a tsunami, etc., the water intake tank 2° circulation pump 1
.. The condenser 3 forms a closed loop and the circulation pump 1 continues to operate, but in this case - the closed loop seawater temperature increases and the condenser vacuum decreases.

すなわち復水器3の状態は、点ホから口の曲線に沿って
点トに到シ、海水循環温度の上昇とともに、チの直線上
に沿って点へに到ると、主蒸気隔離弁8が閉じ、主蒸気
逃がし安全弁9が作動してしまう。
In other words, the state of the condenser 3 reaches point G along the curve from point E to point G, and as the seawater circulation temperature rises, the state of the condenser 3 reaches point G along the straight line from point E to point G. is closed, and the main steam relief safety valve 9 is activated.

第4図は、原子炉スフ2ム発生後、取水槽2゜循環ポン
プ1.復水器3が閉ループを構成した場合の復水器入口
温度上昇カーブを示したものである。
Figure 4 shows the water intake tank 2° circulation pump 1. The figure shows a condenser inlet temperature rise curve when the condenser 3 forms a closed loop.

この曲線は、微分方程式(1)で表わされる。This curve is expressed by differential equation (1).

ただし、 C:循環水系の熱容量 θ :復水器入口海水温度 τ :循環水系が閉サイクルを構成した後の時間 k :熱伝達係数 A :循環水系全表面積 θ0 :周囲温度(θ0キθN) QQo:復水器熱交換量 (1)式より1時間後の復水器入口海水温度は、周囲温
度θ0が近似的にθNに等しいとすると、で表現される
However, C: heat capacity of the circulating water system θ: condenser inlet seawater temperature τ: time after the circulating water system forms a closed cycle k: heat transfer coefficient A: total surface area of the circulating water system θ0: ambient temperature (θ0 x θN) QQo :Condenser heat exchange amount From formula (1), the condenser inlet seawater temperature after one hour is expressed as follows, assuming that the ambient temperature θ0 is approximately equal to θN.

次に津波の周期をtTとすれば、t T / 20間は
、設計潮位以上であシ、この間逆流防止装置を解除すれ
ば、ある程度温度上昇した海水は取水槽内で新鮮な外部
の海水と充分に混合冷却され、復水器入口海水温度は、
第5図に示す如く周期t↑で上下する曲線となる。
Next, if the period of a tsunami is tT, the tide level will be above the design level for tT/20, and if the backflow prevention device is released during this period, the seawater whose temperature has risen to a certain extent will be mixed with fresh outside seawater in the water intake tank. After sufficient mixing and cooling, the temperature of the seawater at the condenser inlet is
As shown in FIG. 5, it becomes a curve that moves up and down with a period t↑.

今、循環水系の配管口径をd1長さをtとし、復水器の
表面積と熱容量を無視すると、kA=にπdt ・川・
・・・・(4)これまで経験された津波の周期が最長で
もチリ津波の約30分であったことから、余裕をみて津
波の周期をt T = 1時間とすれば、但し k =
 10 Lol/ h 0cnr2d = 3.5 m 又、q Q o / k A = Q Qo / kπ
d7中3X10まただし、7 =200 n1+ qQ
 o =6 X 10 ’ kcal / h(1系列
の交換熱電) 従ってθ−θN (3Cとなる。
Now, if the pipe diameter of the circulating water system is d1 and the length is t, and the surface area and heat capacity of the condenser are ignored, kA = πdt ・River ・
(4) Since the longest tsunami cycle experienced so far was about 30 minutes for the Chile tsunami, taking a margin and setting the tsunami cycle to t T = 1 hour, however, k =
10 Lol/h 0cnr2d = 3.5 m Also, q Q o / k A = Q Qo / kπ
3x10 in d7, but 7 = 200 n1+ qQ
o = 6 X 10' kcal/h (1 series of exchange thermoelectricity) Therefore, θ-θN (3C).

復水器人口温匿θVが80〜90Cになると主蒸気隔離
弁8は閉じるが、復水器の運転状態は、第3図で示した
曲線チの上にあり、復水器真空度はPv以上になること
はないし、海水温度もθV新鮮な海水を取シ込む開閉サ
イクルで運転できるようにしておけば、冷却効果も加わ
り、原子炉を安全に停止できることになる。
When the condenser population temperature θV reaches 80 to 90C, the main steam isolation valve 8 closes, but the operating state of the condenser is on the curve H shown in Fig. 3, and the condenser vacuum degree is Pv. The temperature of the seawater will not exceed θV, and if the reactor can be operated in an open/close cycle that takes in fresh seawater, a cooling effect will be added and the reactor can be shut down safely.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第6図によって説明する。 An embodiment of the present invention will be described with reference to FIG.

プラント通常運転中は、取水口4よシ取シ入れた海水は
、取水槽2に貯水される。
During normal plant operation, seawater taken in through the water intake 4 is stored in the water intake tank 2.

取水槽2内の海水は、循環ポンプ1によυ復水器3へ移
送する。
Seawater in the water intake tank 2 is transferred to the υ condenser 3 by the circulation pump 1.

復水器3を出た海水は、そのまま放水口5よシ海へ放出
される。
The seawater leaving the condenser 3 is directly discharged into the sea through the water outlet 5.

この状態で地震が発生した場合、原子炉7はスクラムす
るが、循環水系は燃料の崩壊熱の除去のために運転を継
続しており、原子炉7内圧がおる値に低下した時点で、
残留熱除去ポンプ23と残留熱除去海水ポンプ24が起
動し、原子炉冷却モード運転に入シ、主蒸気逃がし安全
弁9を作動させることなく原子炉7は安全に停止される
If an earthquake occurs in this state, the reactor 7 will scram, but the circulating water system continues to operate to remove the decay heat of the fuel, and as soon as the internal pressure of the reactor 7 drops to a low value,
The residual heat removal pump 23 and the residual heat removal seawater pump 24 are started, the reactor cooling mode operation is entered, and the reactor 7 is safely stopped without operating the main steam relief safety valve 9.

しかし地震が発生した後、津波等が発生し、海水潮位が
異常に低下して設計潮位よりも下がった場合、取水槽2
内の海水が逆流するので、検測器16によシ、逆流防止
装置17を作動させ、海水の逆流を防ぐとともに、バイ
パス配管31の切換弁13を閉から開、バイパス配管3
1の接続点と放水口5との途中にある切換弁14を開か
ら閉状態にし、取水槽2.循環ポンプ1.復水器3で閉
サイクルを構成させ、運転を継続可能とする。
However, after an earthquake occurs, if a tsunami etc. occurs and the seawater tide level drops abnormally and falls below the design tide level, the water intake tank 2
Since the seawater inside will flow backwards, the detector 16 activates the backflow prevention device 17 to prevent the seawater from flowing backwards, and also opens the switching valve 13 of the bypass pipe 31 from closed to open the bypass pipe 3.
The switching valve 14 located between the connection point of water intake tank 2.1 and the water outlet 5 is turned from open to closed. Circulation pump 1. The condenser 3 forms a closed cycle, allowing continued operation.

この場合は、循環水系は、主蒸気隔離弁8が閉じられる
復水器3内温度θVを(5)式を満足するように、係数
にとAを設計の段階で考慮しておくと、周期tTの津波
が発生した場合でも、逆流防止装置17をt−172の
間隔で、開閉させれば、第5図で説明した如く新鮮な海
水が取シ込まれるから、復水器、3人口海水源度はθV
を越えることはなく、主蒸気逃がし安全弁9は作動しな
い。
In this case, the circulating water system has a period of Even if a tsunami of tT occurs, if the backflow prevention device 17 is opened and closed at intervals of t-172, fresh seawater will be taken in as explained in Fig. 5. Water source degree is θV
is not exceeded, and the main steam relief safety valve 9 does not operate.

同様に残留熱解除系もバイパス配管32、切換弁33.
34を設置し、水位低下時に切換弁34を閉じる一方切
換弁33を開くことによシ、津波が発生しても運転可能
でアシ、原子炉圧力が低下しである一定の圧力以下にな
った時点で原子炉停止時冷却モード運転に入り、炉心を
冷却し、原子炉7を安全に停止できる。
Similarly, the residual heat release system includes a bypass pipe 32, a switching valve 33.
34 was installed, and by closing the switching valve 34 and opening the switching valve 33 when the water level dropped, it was possible to operate even if a tsunami occurred, and the reactor pressure decreased to below a certain pressure. At this point, the reactor shutdown cooling mode operation is entered, the reactor core is cooled, and the reactor 7 can be safely shut down.

第7図に逆流防止装置17の一例を示す。図において逆
流防止装置17は建屋20に取り付けられた昇降trR
A19とこれによシ上げ下げされるゲート22とからな
る。潮位が設計潮位以下になる場合、ゲート22は閉じ
られ、潮位が回復すると開けられるように前記検潮器1
6によシ制御され、循環水系と残留熱除去系の海水冷却
系に開閉サイクルを構成させる。
FIG. 7 shows an example of the backflow prevention device 17. In the figure, the backflow prevention device 17 is a lift trR installed in the building 20.
It consists of A19 and a gate 22 which is raised and lowered by this. The gate 22 is closed when the tide level is below the design tide level, and the gate 22 is opened when the tide level recovers.
6, the circulating water system and the seawater cooling system of the residual heat removal system form an open/close cycle.

本実施例によれば、原子炉通常運転中、地震等によシ原
子炉スクラムが発生し、かつ津波にょシ海水潮位が異常
に低下した場合でも、循環水系と残留熱除去系は運転可
能であp1主蒸気逃がし安全弁9を作動させることなく
、原子炉を安全に停止できる。
According to this example, even if a reactor scram occurs due to an earthquake or the like during normal reactor operation, and the seawater level drops abnormally during a tsunami, the circulating water system and residual heat removal system can be operated. The nuclear reactor can be safely stopped without operating the Ap1 main steam relief safety valve 9.

なセここでは好ましい実施例どして、検潮器を備えたも
のを示したが、検潮器がなくても本発明は実施可能であ
る。というのは、津波の周期が通常の波に比べてかなシ
長く、地震が発生してから潮位の低下が予想された後に
手動でゲ下トや切換弁の起動スイッチを入れても充分間
に合うからである。
Although a preferred embodiment is shown here that is equipped with a tide gauge, the present invention can be carried out even without a tide gauge. This is because the period of a tsunami is much longer than that of a normal wave, and there is plenty of time to manually turn on the gates or switch on the switching valve after the tide level is expected to drop after an earthquake occurs. It is.

また、取水槽水位検出装置15がらの信号を7F′u用
してもよい。
Alternatively, the signal from the water intake tank water level detection device 15 may be used as 7F'u.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、地震による原子炉スクラムと地震によ
る津波で海水潮位異常低下の現象と≠五同時に発生した
場合にも、海水を系内に保ち、復水器内の真空度を保持
し、主蒸気逃カニし安全弁カニ作動するのを防止しなが
ら、原子炉を安全r停止するのに好適な開閉ル−プ型海
水冷却系示得られる。
According to the present invention, even if a reactor scram caused by an earthquake and a tsunami caused by an earthquake occur at the same time as an abnormal seawater tide level drop phenomenon, seawater is kept in the system and the degree of vacuum in the condenser is maintained. An open/close loop seawater cooling system suitable for safely shutting down a nuclear reactor while preventing the main steam relief valve from operating is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の開ループ型海水冷却系の−flJの系統
図、第2図は原子炉スクラム後の交換熱量比の推移を示
す図、第3図は復水器の性有シ曲線図、第4図は循環水
系が閉ル−プを構成した後の復水器入口海水温度の推移
を示す図、第5図は本発明により循環水系が開閉ル−プ
を構成した後の復水器入口海水温度の推移を示す図、第
6図は本発明の一実施例の系統図、第7図は逆流防止装
置等を示す図である。 1五循環ポンプ、2・・・取水槽、3・・・復水器、4
・・・取水口、5・・・放水口、6・・・タービン、7
・・°原子炉、8・・・主蒸気隔離弁、9・・・主蒸気
逃がし安全弁、10−・・圧力抑制室、13.14・・
・切換弁、15.6゜取水槽水位検出装置、16・・・
検潮器、17・・・逆流防止装置、19・・・昇降機、
20・・・建屋、22・・・ゲート、23・・・残留熱
除去ポンプ、24・・・残留熱除去海水ポンプ、25・
・・熱交換器、31.32・・・バイパス配管、33.
34・・・切換弁。 代理人 弁理士 鵜沼辰之 第2 目 茅3目 吸 7、oo−一交朽U外!比 第4− 目 茅5′固
Figure 1 is a -flJ system diagram of a conventional open-loop seawater cooling system, Figure 2 is a diagram showing the transition of the exchange heat ratio after reactor scram, and Figure 3 is a condenser curve diagram. , Fig. 4 is a diagram showing the transition of the condenser inlet seawater temperature after the circulating water system forms a closed loop, and Fig. 5 shows the condensate water temperature after the circulating water system forms an open/closed loop according to the present invention. FIG. 6 is a diagram showing a change in seawater temperature at the vessel inlet, FIG. 6 is a system diagram of an embodiment of the present invention, and FIG. 7 is a diagram showing a backflow prevention device, etc. 15 circulation pump, 2... water intake tank, 3... condenser, 4
...Water intake, 5...Water outlet, 6...Turbine, 7
...°Reactor, 8...Main steam isolation valve, 9...Main steam relief safety valve, 10-...Pressure suppression chamber, 13.14...
・Switching valve, 15.6° water intake tank water level detection device, 16...
Tide gauge, 17... Backflow prevention device, 19... Elevator,
20... Building, 22... Gate, 23... Residual heat removal pump, 24... Residual heat removal seawater pump, 25...
...Heat exchanger, 31.32...Bypass piping, 33.
34...Switching valve. Agent Patent Attorney Tatsuyuki Unuma 2nd Eye Kaya 3rd Eye Suction 7, oo-One exchange U outside! Hibi No. 4 - Mekyo 5' solid

Claims (1)

【特許請求の範囲】[Claims] 1、海水を取水口から取水槽に取シ入れ、循環水系や残
留熱除却系等に供給して熱交換により復水器等を冷却し
、使用済の海水を放水口から海に放出する開ループ型海
水冷却系において、取水槽の取水口付近に逆流防止装置
を設けるとともに、循環水系と残留熱除去系等から放水
口への配管を分岐させて取水槽にも接続し放水口と取水
槽へ択一的に海水を放出させる手段を設け、地震による
津波等で海水潮位が低下するときに取水口からの海水の
逆流流出を防止しながら冷却系にあった海水を取水槽に
循環させて閉ループ型海水冷却系を形成する一方、海水
潮位が回復したときに逆流防止装置等を解除し新鮮な海
水を用いる通常の開ループ型海水冷却系に戻ることを特
徴とする開閉ループ型海水冷却系。
1. Seawater is taken into the water intake tank from the water intake, supplied to the circulating water system, residual heat removal system, etc., cools the condenser etc. through heat exchange, and used seawater is discharged into the sea from the water outlet. In a loop type seawater cooling system, a backflow prevention device is installed near the water intake of the water intake tank, and the piping from the circulating water system and residual heat removal system to the water outlet is branched and connected to the water intake tank. A means for selectively discharging seawater to the cooling system is installed, and when the seawater level drops due to a tsunami caused by an earthquake, etc., the seawater that was in the cooling system is circulated to the water tank while preventing seawater from flowing backwards from the water intake. An open-closed loop seawater cooling system that forms a closed-loop seawater cooling system, but when the seawater tide level recovers, the backflow prevention device, etc. is released and the system returns to a normal open-loop seawater cooling system that uses fresh seawater. .
JP58231043A 1983-12-07 1983-12-07 Open-close loop type seawater cooling system Pending JPS60123795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58231043A JPS60123795A (en) 1983-12-07 1983-12-07 Open-close loop type seawater cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58231043A JPS60123795A (en) 1983-12-07 1983-12-07 Open-close loop type seawater cooling system

Publications (1)

Publication Number Publication Date
JPS60123795A true JPS60123795A (en) 1985-07-02

Family

ID=16917379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58231043A Pending JPS60123795A (en) 1983-12-07 1983-12-07 Open-close loop type seawater cooling system

Country Status (1)

Country Link
JP (1) JPS60123795A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244692A (en) * 1985-08-22 1987-02-26 株式会社東芝 Decay heat removing device for nuclear reactor
JP2012230524A (en) * 2011-04-26 2012-11-22 Toshiba Corp Plant monitoring control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244692A (en) * 1985-08-22 1987-02-26 株式会社東芝 Decay heat removing device for nuclear reactor
JP2012230524A (en) * 2011-04-26 2012-11-22 Toshiba Corp Plant monitoring control system

Similar Documents

Publication Publication Date Title
US5120494A (en) Reactor-core isolation cooling system with dedicated generator
JPS62187291A (en) Passive safety device for nuclear reactor
CN109841288B (en) Be used for carbon dioxide cooling reactor waste heat discharge system
WO2018108068A1 (en) Ultimate heat sink system utilized in nuclear power plant
JPS60123795A (en) Open-close loop type seawater cooling system
US3702281A (en) Removal of heat from a nuclear reactor under emergency conditions
JP6462872B2 (en) Intake equipment for nuclear power plants
JP2003270374A (en) Containment spray control device
CN110176318B (en) Emergency treatment system and method for abnormal cooling water source of million-kilowatt nuclear power station
JPS6098394A (en) Open and close loop type circulating water system
KR102660990B1 (en) Passive Emergency Core Cooling System of Nuclear power Plant and Cooling Method using the same
CN220895201U (en) Passive residual heat removal system of small-sized lead-cooled ocean pool type natural circulation reactor
JP6242690B2 (en) Intake equipment for nuclear power plants
JPS5896288A (en) Emergency core cooling system for reactor
JP3462235B2 (en) Steam generator
JPS60201290A (en) Cooling facility on stoppage of nuclear reactor
JPS5915890A (en) Auxiliary cooling device for atomic power plant
CN116525154A (en) Passive residual heat removal system of small lead-cooled ocean pool type natural circulation reactor and use method thereof
JPS58182595A (en) High water level protecting device of reactor
JPH0113079B2 (en)
CN112017797A (en) Device for discharging steam from reactor core in small-break loss of coolant accident
JPS5919894A (en) Auxiliary cooling device of fast breeder
French Jet pump-drive system for heat removal
JPS5915891A (en) Cooling circuit for reactor equipment
JPS5844396A (en) Bwr type reactor plant