JP4398640B2 - Reactor containment cooling equipment - Google Patents

Reactor containment cooling equipment Download PDF

Info

Publication number
JP4398640B2
JP4398640B2 JP2002363395A JP2002363395A JP4398640B2 JP 4398640 B2 JP4398640 B2 JP 4398640B2 JP 2002363395 A JP2002363395 A JP 2002363395A JP 2002363395 A JP2002363395 A JP 2002363395A JP 4398640 B2 JP4398640 B2 JP 4398640B2
Authority
JP
Japan
Prior art keywords
cooling water
containment vessel
reactor containment
cooler
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002363395A
Other languages
Japanese (ja)
Other versions
JP2004198118A (en
Inventor
良洋 小島
弘秀 及川
亮一 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002363395A priority Critical patent/JP4398640B2/en
Publication of JP2004198118A publication Critical patent/JP2004198118A/en
Application granted granted Critical
Publication of JP4398640B2 publication Critical patent/JP4398640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は原子炉格納容器の冷却設備に係り、特に電源喪失の場合にも安全性を確保できる冷却設備に関する。
【0002】
【従来の技術】
一般に、原子炉格納容器冷却設備は、原子炉通常運転中の原子炉格納容器からの除熱を目的とし、送風機およびポンプの駆動による強制循環によって、格納容器内空気の循環および冷却器コイルへの冷却水供給を行なっている。
【0003】
例えば、沸騰水型原子力発電所の原子炉格納容器は、ドライウェルとウェットウェルから構成され、ドライウェルには原子炉圧力容器が格納されている。原子炉圧力容器には、炉心が収容されている。
【0004】
原子炉格納容器冷却設備は、原子炉格納容器内に設置された冷却ユニットと、この冷却ユニットに原子炉格納容器外から冷水を供給する冷却水強制循環系統とを有する。冷却ユニットは、冷却水強制循環系統によって原子炉格納容器外から冷却水が供給される冷却器コイルユニットと、この冷却器コイルユニットに原子炉格納容器内の空気を送る送風機とを有する。
【0005】
原子炉格納容器内の空気は冷却器コイルユニットで冷却水と熱交換をして冷却される。一方、冷却器コイルユニットで昇温された冷却水は、冷却水強制循環系統を通じて原子炉格納容器外の熱交換器に送られ、ここで、例えば海水と熱交換をして冷却される。
【0006】
また、冷却水配管にはドライウェルの内外に原子炉通常運転中には開放された弁が設けられており、万一原子炉冷却材喪失事象が発生し、原子炉圧力容器内の水位低下あるいはドライウェル内の圧力上昇が起こった場合には、原子炉格納容器を隔離するために閉鎖される。
【0007】
また、従来の原子炉格納容器冷却設備は、送風機と冷却器コイルユニットを収納する収納容器から構成されている。送風機の作動によって吸気口から流入した空気および水蒸気は、冷却器コイルユニットで冷却水配管から供給される冷却水との熱交換によって冷却された後、排気口より収納容器の外へ流出する。送風機は原子炉冷却材喪失事象が発生した際には自動で停止し、駆動電源が喪失した場合にも停止する。
【0008】
また、特許文献1には、スクラムしない過渡変動などのいわゆるシビアアクシデント時に原子炉格納容器からの除熱を行なう技術が開示され、特許文献2には原子炉格納容器内の蒸気圧低減を促進する技術が開示されている。
【0009】
【特許文献1】
特開平8−146184号公報
【特許文献2】
特開2001−215291公報
【0010】
【発明が解決しようとする課題】
特許文献1および2に記載の技術を含めて、上述の従来の技術では、事故が発生した場合や電源が喪失した場合に原子炉格納容器内の除熱ができない。事故が発生した場合や電源が喪失した場合にも原子炉格納容器冷却設備による除熱が可能であれば、これらの事象における原子炉格納容器内の圧力および温度上昇の抑制策として極めて有効となる。
【0011】
本発明は上記従来技術の課題を解決するためになされたものであり、事故が発生した場合や電源が喪失した場合にも、原子炉格納容器内を静的に除熱できる原子炉格納容器の冷却設備を得ることを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明の一つの態様は、原子炉格納容器内に配設されて内部を冷却水が通る冷却器と、前記原子炉格納容器内で前記冷却器周辺の気体を流動させる送風機と、前記原子炉格納容器内に配設されて前記冷却器と送風機を収容する収納容器と、前記原子炉格納容器の外側から前記冷却器内へ冷却水をポンプによって送る冷却水強制循環系統と、前記原子炉格納容器外の前記冷却器より上方に配置されて冷却水を溜めたプールと、前記プールに溜まった冷却水を、前記ポンプを介さずに重力を駆動力として前記冷却器内に供給するように構成された重力利用冷却系統と、を有する原子炉格納容器冷却設備であって、前記重力利用冷却系統は、前記原子炉格納容器を貫通する部分の外側に配置された開閉弁を有するとともに、前記開閉弁は、前記冷却水強制循環系統から前記冷却器内へ送られる冷却水流量が基準値以下となったとき、又は前記冷却器内から前記冷却水強制循環系統へ戻る冷却水の温度が所定の値以上となったときに開くように構成され、前記収納容器は、電源喪失時又は前記原子炉格納容器内の雰囲気温度が所定の値を超えた時に開口する開口部を複数備え、前記冷却器の周りで自然循環を形成することを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明に係る原子炉格納容器の冷却設備の実施の形態について、図面を参照して説明する。
図1は本発明の第1の実施の形態を示すもので、原子炉格納容器30は、ドライウェル2とウェットウェル3から構成され、ドライウェル2には原子炉圧力容器1が格納されている。原子炉圧力容器1には、炉心や炉内構造物や炉水(図示せず)が収容されている。原子炉格納容器冷却設備は、ドライウェル2内に設置された冷却器コイルユニット5および送風機6と、冷却器コイルユニット5に冷却水を供給する冷却水強制循環系統32および重力利用冷却系統34とを有する。
【0016】
冷却水強制循環系統32は、原子炉格納容器30の外に配置された冷却水ポンプ8、熱交換器9を有し、熱交換器9で冷却された冷却水が、冷却水ポンプ8によって、冷却器コイルユニット5内の冷却器コイル4に送られて循環するようになっている。さらに、熱交換器9で冷却水強制循環系統32の冷却水を冷却するために、例えば海水を循環させるための冷却水ポンプ10が配置されている。冷却水強制循環系統32が原子炉格納容器30の壁を貫通する部分の外側と内側にはそれぞれ、弁7が配置されている。なお、本実施の形態では、弁7のひとつとして逆止弁7aを配置しているが、他の弁7と同じ弁としても良い。
【0017】
送風機6は、冷却器コイルユニット5内の冷却器コイル4の周囲の気体を流動させて、ドライウェル2内の気体の冷却器コイル4による冷却を促進する。
弁7は原子炉通常運転中には開放されているが、万一原子炉冷却材喪失事象が発生し、原子炉圧力容器1内の水位低下あるいはドライウェル2内の圧力上昇が起こる場合には、原子炉格納容器30を隔離するために閉鎖される。
【0018】
重力利用冷却系統34は、ドライウェル2内で冷却水強制循環系統32から分岐して接続された第1の配管12aおよび第2の配管12bを含み、これらの配管12a、12bはそれぞれ、原子炉格納容器30の上方に設けられたプール11と接続されている。第1の配管12aはプール11の底部近くと冷却器コイル4の底部近くの間を連絡し、第2の配管12bはプール11の上部と冷却器コイル4の上部の間を連絡している。第1、第2の配管12a,12bの原子炉格納容器30貫通部外に弁13が設けられている。
【0019】
弁13は、原子炉通常運転時には閉鎖されているが、冷却器コイル4への冷却水量が基準値以下となる場合に、プール11から冷却器コイル4へ冷却水を供給するために自動あるいは手動で開放される。この時、弁13を冷却器コイル4から戻る冷却水の温度が所定の温度より上昇したときに自動あるいは手動で開放するようにしても良い。なお、原子力発電所の交流電源が全て喪失した場合にも弁13を開放させるため、弁13を開放させるための駆動電源は、送風機6および冷却水ポンプ8とは異なる電源、例えば非常用の直流電源とする。
【0020】
プール11としては、例えば、沸騰水型原子力発電所における機器プールを適用することができる。通常の機器プールは、原子力発電所の通常運転時には水を有しておらず、定期検査時に水を張って炉内構造物の仮置きに使用されるが、本発明の第1の実施の形態においては、機器プールに平常時にも水を張っておくことによって、事故が発生した場合や電源が喪失した場合に備えることが可能である。
【0021】
このように構成された本実施の形態においては、事故が発生した場合や電源が喪失した場合に、弁7が閉鎖され、冷却水ポンプ8の駆動による冷却水の供給がなくなった場合にも、プール11に蓄積した水が、重力利用冷却系統34を通じて冷却器コイル4に供給される。この場合、冷却器コイル4内で温度上昇や蒸気発生によって相対的に密度が小さくなるので、浮力が生じ、冷却水は、冷却器コイル4を上昇し、さらに第2の配管12bを上昇してプール11の上部に至り、また、比較的低温の冷却水が、プール11の底部から第1の配管12aを経て冷却器コイル4の底部近くに供給される。このように自然循環が形成されるために、冷却器コイル4には長期間に亘って冷却水が供給されることになる。
【0022】
本実施の形態によれば、事故が発生した場合や電源が喪失して冷却水強制循環系統32からの冷却水供給が停止した場合にも、重力利用冷却系統34を通じて冷却水を冷却器コイル4に供給することが可能である。したがって、本原子炉格納容器冷却設備によって、原子炉格納容器30内の圧力および温度の上昇を抑制することが可能である。
【0023】
次に、本発明に係る原子炉格納容器冷却設備の第2の実施の形態を図2を用いて説明する。なお、図2において、図1と同一もしくは類似の部分には同一符号を付し、重複説明は省略する。
図2は第2の実施の形態を示す構成図であり、本実施の形態は、第1、第2の配管12a、12bの原子炉格納容器30貫通部内外に弁13を有している。
【0024】
本実施の形態によれば、事故が発生した際や電源が喪失して冷却水強制循環系統32からの冷却水供給が停止した場合にも、重力利用冷却系統34を通じて冷却冷却器コイル4への冷却水供給を確保することが可能である。したがって、本原子炉格納容器冷却設備によって、原子炉格納容器30内の圧力および温度の上昇を抑制することが可能である。
【0025】
次に、本発明の第3の実施の形態を図3を用いて説明する。なお、図3において、図1または2と同一もしくは類似の部分には同一符号を付し、その重複説明は省略する。
【0026】
ドライウェル2(図1、図2)内に、前述の送風機6と冷却器コイルユニット5を収納する収納容器19が配置されている。送風機6の作動によって吸気口17から流入した空気および水蒸気は、冷却器コイルユニット5で冷却水配管16から供給される冷却水との熱交換によって冷却され、その後、排気口18より収納容器19の外のドライウェル2内へ流出する。送風機6は、原子炉冷却材喪失事象が発生した際には自動で停止し、駆動電源が喪失した場合にも停止する。
【0027】
本実施の形態は、送風機6が停止した場合に開放される吸気口および排気口以外の、一つまたは複数の空気および水蒸気の混合ガスが通過可能な開口部20と開口部20の閉鎖板21を有している。
【0028】
開口部20は、例えば、送風機6が動作している場合には、電磁力によって閉鎖板21を保持することによって閉鎖しておく。送風機6が停止するか、あるいは電源が喪失した場合には、閉鎖板21への電磁力を喪失することによって、閉鎖板21の重力落下によって開口部20を開放することが可能である。
【0029】
本実施の形態によれば、事故が発生した際や電源が喪失した際に、送風機が停止し、冷却器コイル4の外側表面への空気と水蒸気の混合ガスの強制循環による流れが喪失した場合にも、付加的な開口部20を設けることによって、混合ガスが収納容器19内を通過しやすくなり、冷却器コイル4周りで自然循環が形成されることによって、原子炉格納容器30内の空気あるいは水蒸気を冷却することが可能である。
【0030】
また、変形例として、原子炉格納容器30内の雰囲気温度が所定の値を超えたときに、開口部20を開放するようにしてもよい。
なお、第3の実施の形態の構成を第1または第2の実施の形態の構成と組み合わせることにより、事故が発生した際や電源が喪失した際の原子炉格納容器30の冷却に一層効果がある。
【0031】
【発明の効果】
以上説明したように、本発明によれば、事故が発生した場合や電源が喪失した場合にも、動的機器に頼らずに原子炉格納容器からの除熱を行なうことができる。
【図面の簡単な説明】
【図1】本発明に係る原子炉格納容器冷却設備の第1の実施の形態の構造を示す模式的縦断面図。
【図2】本発明に係る原子炉格納容器冷却設備の第2の実施の形態の構造を示す模式的縦断面図。
【図3】本発明に係る原子炉格納容器冷却設備の第3の実施の形態の構造を示す模式的斜視図。
【符号の説明】
1…原子炉圧力容器、2…ドライウェル、3…ウェットウェル、4…冷却器コイル、5…冷却器コイルユニット、6…送風機、7…弁、8…冷却水ポンプ、9…熱交換器、10…冷却水ポンプ、11…プール、12a…第1の配管、12b…第2の配管、13…弁、16…冷却水配管、17…吸気口、18…排気口、19…収納容器、20…開口部、21…閉鎖板、30…原子炉格納容器、32…冷却水強制循環系統、34…重力利用冷却系統。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates Bei cooling setting of the reactor containment vessel, cooling set Bei relates in particular can ensure the safety in case of loss of power.
[0002]
[Prior art]
In general, the containment vessel cooling equipment is intended to remove heat from the containment vessel during normal operation of the reactor, and the forced circulation by the drive of the blower and pump causes the containment air to circulate and to the cooler coil. Supplying cooling water.
[0003]
For example, a reactor containment vessel of a boiling water nuclear power plant is composed of a dry well and a wet well, and a reactor pressure vessel is housed in the dry well. A reactor core is accommodated in the reactor pressure vessel.
[0004]
The reactor containment vessel cooling facility includes a cooling unit installed in the reactor containment vessel and a cooling water forced circulation system that supplies cold water to the cooling unit from outside the reactor containment vessel. The cooling unit includes a cooler coil unit to which cooling water is supplied from the outside of the reactor containment vessel by a cooling water forced circulation system, and a blower that sends air in the reactor containment vessel to the cooler coil unit.
[0005]
The air in the reactor containment vessel is cooled by exchanging heat with cooling water in the cooler coil unit. On the other hand, the cooling water heated by the cooler coil unit is sent to a heat exchanger outside the reactor containment vessel through a cooling water forced circulation system, where it is cooled by exchanging heat with seawater, for example.
[0006]
In addition, the cooling water piping is provided with a valve that is opened during and outside the normal operation of the reactor inside and outside the dry well. If a reactor coolant loss event occurs, the water level in the reactor pressure vessel may drop or If a pressure rise in the drywell occurs, it is closed to isolate the reactor containment.
[0007]
Moreover, the conventional reactor containment vessel cooling equipment is comprised from the storage container which accommodates an air blower and a cooler coil unit. The air and water vapor that have flowed in from the air inlet by the operation of the blower are cooled by heat exchange with the cooling water supplied from the cooling water pipe in the cooler coil unit, and then flow out of the storage container through the air outlet. The blower automatically stops when a reactor coolant loss event occurs and also stops when the drive power is lost.
[0008]
Patent Document 1 discloses a technique for removing heat from a reactor containment vessel during a so-called severe accident such as a transient fluctuation that does not scram, and Patent Document 2 promotes a reduction in steam pressure in the reactor containment vessel. Technology is disclosed.
[0009]
[Patent Document 1]
JP-A-8-146184 [Patent Document 2]
Japanese Patent Laid-Open No. 2001-215291
[Problems to be solved by the invention]
In the conventional techniques described above, including the techniques described in Patent Documents 1 and 2, heat cannot be removed from the reactor containment vessel when an accident occurs or the power source is lost. If heat removal by the reactor containment cooling facility is possible even in the event of an accident or loss of power, it will be extremely effective as a measure to suppress the pressure and temperature rise in the reactor containment in these events. .
[0011]
The present invention has been made to solve the above-described problems of the prior art. A reactor containment vessel capable of statically removing heat in the reactor containment vessel even when an accident occurs or a power source is lost. and to obtain a cooling equipment.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, one aspect of the present invention includes a cooler disposed in a reactor containment vessel through which cooling water passes, and a gas around the cooler in the reactor containment vessel. A flow fan, a storage container disposed in the reactor containment vessel to accommodate the cooler and the blower, and cooling water forced to pump coolant from the outside of the reactor containment vessel into the cooler A circulation system, a pool arranged above the cooler outside the reactor containment vessel and storing the cooling water, and the cooling water collected in the pool using the gravity as a driving force without the pump. A reactor containment cooling system configured to supply a gravity-use cooling system configured to be supplied into the reactor, wherein the gravity-use cooling system is disposed outside a portion penetrating the reactor containment vessel. With open / close valve , The on-off valve, when said cooling water flow sent from the forced cooling water circulation system into the cooler is equal to or less than the reference value, or the temperature of the cooling water from the cooler back to the forced cooling water circulation system Is configured to open when the value exceeds a predetermined value, the storage container is provided with a plurality of openings that open when power is lost or when the atmospheric temperature in the reactor containment vessel exceeds a predetermined value, A natural circulation is formed around the cooler.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the cooling equipment of the containment vessel according to the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of the present invention. A reactor containment vessel 30 is composed of a dry well 2 and a wet well 3, and the reactor pressure vessel 1 is stored in the dry well 2. . The reactor pressure vessel 1 contains a reactor core, reactor internals, and reactor water (not shown). The reactor containment vessel cooling system includes a cooler coil unit 5 and a blower 6 installed in the dry well 2, a cooling water forced circulation system 32 that supplies cooling water to the cooler coil unit 5, and a gravity-use cooling system 34. Have
[0016]
The cooling water forced circulation system 32 includes a cooling water pump 8 and a heat exchanger 9 arranged outside the reactor containment vessel 30, and the cooling water cooled by the heat exchanger 9 is cooled by the cooling water pump 8. It is sent to the cooler coil 4 in the cooler coil unit 5 to circulate. Furthermore, in order to cool the cooling water of the cooling water forced circulation system 32 with the heat exchanger 9, for example, a cooling water pump 10 for circulating seawater is disposed. Valves 7 are arranged on the outside and inside of the portion where the cooling water forced circulation system 32 penetrates the wall of the reactor containment vessel 30. In this embodiment, the check valve 7 a is arranged as one of the valves 7, but the same valve as the other valves 7 may be used.
[0017]
The blower 6 causes the gas around the cooler coil 4 in the cooler coil unit 5 to flow and promotes cooling of the gas in the dry well 2 by the cooler coil 4.
Valve 7 is open during normal reactor operation, but in the unlikely event that a reactor coolant loss event occurs and the water level in reactor pressure vessel 1 drops or the pressure in dry well 2 rises Closed to isolate the reactor containment 30.
[0018]
The gravity-based cooling system 34 includes a first pipe 12a and a second pipe 12b that are branched and connected from the cooling water forced circulation system 32 in the dry well 2, and these pipes 12a and 12b are respectively connected to the nuclear reactor. It is connected to a pool 11 provided above the storage container 30. The first piping 12 a communicates between the vicinity of the bottom of the pool 11 and the bottom of the cooler coil 4, and the second piping 12 b communicates between the upper portion of the pool 11 and the upper portion of the cooler coil 4. The valve 13 is provided outside the reactor containment vessel 30 through portion of the first and second pipes 12a and 12b.
[0019]
The valve 13 is closed during the normal operation of the reactor, but is automatically or manually supplied to supply the cooling water from the pool 11 to the cooling coil 4 when the amount of cooling water to the cooling coil 4 is below the reference value. Released. At this time, the valve 13 may be opened automatically or manually when the temperature of the cooling water returning from the cooler coil 4 rises above a predetermined temperature. Since the valve 13 is opened even when all the AC power of the nuclear power plant is lost, the driving power for opening the valve 13 is a power source different from the blower 6 and the cooling water pump 8, for example, an emergency direct current. Use power.
[0020]
As the pool 11, for example, an equipment pool in a boiling water nuclear power plant can be applied. The normal equipment pool does not have water during normal operation of the nuclear power plant, and is used for temporary placement of the in-reactor structure by filling with water during periodic inspection. The first embodiment of the present invention In this case, it is possible to prepare for a case where an accident occurs or a power source is lost by filling the equipment pool with water in normal times.
[0021]
In the present embodiment configured as described above, when an accident occurs or when the power source is lost, the valve 7 is closed and the cooling water supply by driving the cooling water pump 8 is stopped. Water accumulated in the pool 11 is supplied to the cooler coil 4 through the gravity-based cooling system 34. In this case, since the density becomes relatively small due to the temperature rise or steam generation in the cooler coil 4, buoyancy occurs, and the cooling water rises the cooler coil 4 and further rises the second pipe 12b. A relatively low-temperature cooling water reaches the upper part of the pool 11 and is supplied from the bottom of the pool 11 to the vicinity of the bottom of the cooler coil 4 via the first pipe 12a. Since natural circulation is formed in this way, cooling water is supplied to the cooler coil 4 over a long period of time.
[0022]
According to this embodiment, even when an accident occurs or when the power supply is lost and the cooling water supply from the cooling water forced circulation system 32 is stopped, the cooling water is supplied to the cooler coil 4 through the gravity-based cooling system 34. Can be supplied. Therefore, the increase in pressure and temperature in the reactor containment vessel 30 can be suppressed by the reactor containment vessel cooling facility.
[0023]
Next, a second embodiment of the reactor containment cooling system according to the present invention will be described with reference to FIG. 2 that are the same as or similar to those in FIG. 1 are assigned the same reference numerals, and redundant descriptions are omitted.
FIG. 2 is a block diagram showing the second embodiment. In the present embodiment, the valves 13 are provided inside and outside the penetration portion of the reactor containment vessel 30 of the first and second pipes 12a and 12b.
[0024]
According to the present embodiment, even when an accident occurs or when the power supply is lost and the cooling water supply from the cooling water forced circulation system 32 is stopped, the cooling cooler coil 4 is supplied to the cooling cooler coil 4 through the gravity cooling system 34. It is possible to secure a cooling water supply. Therefore, the increase in pressure and temperature in the reactor containment vessel 30 can be suppressed by the reactor containment vessel cooling facility.
[0025]
Next, a third embodiment of the present invention will be described with reference to FIG. In FIG. 3, the same or similar parts as those in FIG. 1 or 2 are denoted by the same reference numerals, and redundant description thereof is omitted.
[0026]
A storage container 19 for storing the blower 6 and the cooler coil unit 5 is disposed in the dry well 2 (FIGS. 1 and 2). Air and water vapor flowing in from the air inlet 17 by the operation of the blower 6 are cooled by heat exchange with the cooling water supplied from the cooling water pipe 16 in the cooler coil unit 5, and then the storage container 19 is connected through the air outlet 18. It flows out into the outside dry well 2. The blower 6 automatically stops when a reactor coolant loss event occurs, and also stops when the drive power supply is lost.
[0027]
In the present embodiment, an opening 20 through which one or a plurality of mixed gases of air and water vapor can pass, and a closing plate 21 of the opening 20 other than the air inlet and the air outlet that are opened when the blower 6 is stopped. have.
[0028]
For example, when the blower 6 is operating, the opening 20 is closed by holding the closing plate 21 by electromagnetic force. When the blower 6 stops or the power source is lost, the opening 20 can be opened by the gravity drop of the closing plate 21 by losing the electromagnetic force to the closing plate 21.
[0029]
According to the present embodiment, when an accident occurs or the power supply is lost, the blower stops and the flow due to forced circulation of the mixed gas of air and water vapor to the outer surface of the cooler coil 4 is lost. In addition, by providing the additional opening 20, the mixed gas can easily pass through the storage container 19, and natural circulation is formed around the cooler coil 4, so that the air in the reactor containment vessel 30 can be formed. Alternatively, the water vapor can be cooled.
[0030]
As a modification, the opening 20 may be opened when the atmospheric temperature in the reactor containment vessel 30 exceeds a predetermined value.
In addition, by combining the configuration of the third embodiment with the configuration of the first or second embodiment, the reactor containment vessel 30 can be more effectively cooled when an accident occurs or the power source is lost. is there.
[0031]
【The invention's effect】
As described above, according to the present invention, heat can be removed from the reactor containment vessel without depending on the dynamic equipment even when an accident occurs or the power source is lost.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing the structure of a first embodiment of a reactor containment cooling system according to the present invention.
FIG. 2 is a schematic longitudinal sectional view showing the structure of a second embodiment of a reactor containment cooling system according to the present invention.
FIG. 3 is a schematic perspective view showing the structure of a third embodiment of a reactor containment cooling system according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Dry well, 3 ... Wet well, 4 ... Cooler coil, 5 ... Cooler coil unit, 6 ... Blower, 7 ... Valve, 8 ... Cooling water pump, 9 ... Heat exchanger, DESCRIPTION OF SYMBOLS 10 ... Cooling water pump, 11 ... Pool, 12a ... 1st piping, 12b ... 2nd piping, 13 ... Valve, 16 ... Cooling water piping, 17 ... Intake port, 18 ... Exhaust port, 19 ... Storage container, 20 DESCRIPTION OF SYMBOLS ... Opening part, 21 ... Closure plate, 30 ... Reactor containment vessel, 32 ... Cooling water forced circulation system, 34 ... Gravity utilization cooling system.

Claims (1)

原子炉格納容器内に配設されて内部を冷却水が通る冷却器と、前記原子炉格納容器内で前記冷却器周辺の気体を流動させる送風機と、前記原子炉格納容器内に配設されて前記冷却器と送風機を収容する収納容器と、前記原子炉格納容器の外側から前記冷却器内へ冷却水をポンプによって送る冷却水強制循環系統と、前記原子炉格納容器外の前記冷却器より上方に配置されて冷却水を溜めたプールと、前記プールに溜まった冷却水を、前記ポンプを介さずに重力を駆動力として前記冷却器内に供給するように構成された重力利用冷却系統と、を有する原子炉格納容器冷却設備であって、
前記重力利用冷却系統は、前記原子炉格納容器を貫通する部分の外側に配置された開閉弁を有するとともに、前記開閉弁は、前記冷却水強制循環系統から前記冷却器内へ送られる冷却水流量が基準値以下となったとき、又は前記冷却器内から前記冷却水強制循環系統へ戻る冷却水の温度が所定の値以上となったときに開くように構成され、前記収納容器は、電源喪失時又は前記原子炉格納容器内の雰囲気温度が所定の値を超えた時に開口する開口部を複数備え、前記冷却器の周りで自然循環を形成することを特徴とする原子炉格納容器冷却設備。
A cooler disposed in the reactor containment vessel through which cooling water passes, a blower for flowing gas around the cooler in the reactor containment vessel, and disposed in the reactor containment vessel A storage container that houses the cooler and the blower, a cooling water forced circulation system that pumps cooling water from the outside of the reactor containment vessel into the cooler, and above the cooler outside the reactor containment vessel A pool in which cooling water is stored, and a gravity-based cooling system configured to supply the cooling water stored in the pool to the cooler as a driving force without using the pump, and A containment vessel cooling facility comprising:
The gravity-use cooling system has an on-off valve disposed outside a portion penetrating the reactor containment vessel, and the on-off valve is a cooling water flow rate sent from the cooling water forced circulation system into the cooler. Is configured to open when the temperature of the cooling water returning from the inside of the cooler to the cooling water forced circulation system becomes equal to or higher than a predetermined value. A reactor containment vessel cooling system comprising a plurality of openings that open at a time or when the atmospheric temperature in the reactor containment vessel exceeds a predetermined value, and forms a natural circulation around the cooler.
JP2002363395A 2002-12-16 2002-12-16 Reactor containment cooling equipment Expired - Fee Related JP4398640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002363395A JP4398640B2 (en) 2002-12-16 2002-12-16 Reactor containment cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002363395A JP4398640B2 (en) 2002-12-16 2002-12-16 Reactor containment cooling equipment

Publications (2)

Publication Number Publication Date
JP2004198118A JP2004198118A (en) 2004-07-15
JP4398640B2 true JP4398640B2 (en) 2010-01-13

Family

ID=32761549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002363395A Expired - Fee Related JP4398640B2 (en) 2002-12-16 2002-12-16 Reactor containment cooling equipment

Country Status (1)

Country Link
JP (1) JP4398640B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834349B2 (en) * 2005-08-18 2011-12-14 株式会社東芝 Reactor containment cooling equipment
JP5687440B2 (en) * 2010-06-03 2015-03-18 株式会社東芝 Reactor containment heat removal apparatus and heat removal method
US8867690B2 (en) * 2011-08-25 2014-10-21 Babcock & Wilcox Mpower, Inc. Pressurized water reactor with compact passive safety systems
US20140072089A1 (en) * 2012-09-12 2014-03-13 Ge-Hitachi Nuclear Energy Americas Llc Method and system for an alternative bwr containment heat removal system
CN102881342A (en) * 2012-09-27 2013-01-16 中国核电工程有限公司 Active and passive combined heat removal device for containment
JP5801358B2 (en) * 2013-08-28 2015-10-28 中国電力株式会社 Reactor containment cooling system
CN103531256B (en) * 2013-10-25 2016-05-25 清华大学 The non-active cooling system of presurized water reactor prestressed concrete containment vessel
CN107424654A (en) * 2017-08-01 2017-12-01 中广核研究院有限公司 The system and method for exporting heat in containment
JP2023141773A (en) * 2022-03-24 2023-10-05 邦吉 高松 Reactor containment

Also Published As

Publication number Publication date
JP2004198118A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
KR102111813B1 (en) Small modular reactor safety systems
EP2518731A2 (en) Nuclear power plant, fuel pool water cooling facility and method thereof
US6795518B1 (en) Integral PWR with diverse emergency cooling and method of operating same
KR101463440B1 (en) Passive safety system and nuclear power plant having the same
CN104937670B (en) The passive spentnuclear fuel pond cooling system of formula of rotating and method
JPH02268295A (en) Heat removing system for containment vessel
JP2002156485A (en) Reactor
JPH04125495A (en) Nuclear reactor facility
JP4398640B2 (en) Reactor containment cooling equipment
JP2012233698A (en) Nuclear power plant emergency cooling system
CA2066828A1 (en) Passive indirect shutdown cooling system for nuclear reactors
KR20130000572A (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and method for heat transfer-function improvement using thereof
KR101535479B1 (en) Depressurization system of reactor coolant system and nuclear power plant having the same
JP2000180582A (en) Reactor power plant
JP5687440B2 (en) Reactor containment heat removal apparatus and heat removal method
JP6771402B2 (en) Nuclear plant
CN111599498B (en) Passive containment air-water long-term cooling system
JPH05180974A (en) Reactor, reactor cooling system and reactor power plant and its operational method
JPH0463357B2 (en)
KR20060020756A (en) Integral pwr with diverse emergency cooling and method of operating same
JP3581021B2 (en) Reactor heat removal system
JP2003240888A (en) Nuclear reactor containment vessel cooling facility
JP2016003961A (en) Nuclear power plant cooling system and nuclear power plant cooling method
JPS6375594A (en) Natural radiation type container
JPS6244692A (en) Decay heat removing device for nuclear reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081014

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees