JP5687440B2 - Reactor containment heat removal apparatus and heat removal method - Google Patents

Reactor containment heat removal apparatus and heat removal method Download PDF

Info

Publication number
JP5687440B2
JP5687440B2 JP2010127982A JP2010127982A JP5687440B2 JP 5687440 B2 JP5687440 B2 JP 5687440B2 JP 2010127982 A JP2010127982 A JP 2010127982A JP 2010127982 A JP2010127982 A JP 2010127982A JP 5687440 B2 JP5687440 B2 JP 5687440B2
Authority
JP
Japan
Prior art keywords
containment vessel
reactor containment
heat
heat removal
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010127982A
Other languages
Japanese (ja)
Other versions
JP2011252837A (en
Inventor
洋一 鬼塚
洋一 鬼塚
一義 青木
一義 青木
山本 泰
泰 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010127982A priority Critical patent/JP5687440B2/en
Publication of JP2011252837A publication Critical patent/JP2011252837A/en
Application granted granted Critical
Publication of JP5687440B2 publication Critical patent/JP5687440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は、原子力発電所の原子炉格納容器除熱装置及び除熱方法に関する。   The present invention relates to a reactor containment heat removal apparatus and a heat removal method for a nuclear power plant.

原子力発電所において、原子炉圧力容器に接続している主蒸気配管等が破断した場合、原子炉格納容器内に高温・高圧の原子炉一次冷却材が放出される原子炉冷却材損失事故(以下、「LOCA」という。)が起こる可能性がある。また、LOCAが起きた際、冷却材が喪失することで原子炉水位が低下し、炉心が露出して冷却が不十分になり炉心融解の可能性がある過酷事故(SA)が起こる可能性がある。   In a nuclear power plant, when the main steam pipe connected to the reactor pressure vessel breaks, a reactor coolant loss accident (hereinafter referred to as `` high temperature / high pressure '' reactor primary coolant is released into the reactor containment vessel) , "LOCA") may occur. In addition, when LOCA occurs, there is a possibility that a severe accident (SA) may occur where the coolant is lost, the reactor water level is lowered, the core is exposed, cooling becomes insufficient, and the core may melt. is there.

例えば、沸騰水型原子力発電所でLOCAが発生した場合、原子炉格納容器内のドライウェルに高温及び高圧の原子炉一次冷却材が放出されると、ドライウェル内の温度及び圧力が急激に上昇する。LOCA時に放射性物質を原子炉格納容器外への放出を防ぐため、原子力発電所は、原子炉格納容器の設計温度及び設計圧力にいたる以前にドライウェル内に放出された高温高圧の冷却材を、ベント管を通じてサプレッションチェンバ内に放出し、サプレッションチェンバ内にあるプール水に吸収することで原子炉格納容器内の温度及び圧力を低減させる構造となっている。   For example, when LOCA occurs in a boiling water nuclear power plant, when high-temperature and high-pressure reactor primary coolant is discharged to the dry well in the reactor containment vessel, the temperature and pressure in the dry well rapidly increase. To do. In order to prevent radioactive materials from being released outside the containment vessel during LOCA, the nuclear power plant uses high-temperature and high-pressure coolant released into the dry well before the design temperature and design pressure of the containment vessel. It is structured to reduce the temperature and pressure in the reactor containment vessel by discharging into the suppression chamber through the vent pipe and absorbing it into pool water in the suppression chamber.

また、冷却材配管破断によって冷却材が原子炉圧力容器に戻らず喪失すると、原子炉水位が低下し、炉心が露出して冷却が不十分になる可能性があるが、非常用炉心冷却系としてサプレッションプール水を水源とした非常用炉心冷却装置(以下、「ECCS」という。)等が備えられており、ECCSが作動することで、原子炉圧力容器内に冷却水が注入され炉心を冠水することで炉心溶融を防ぐ。   In addition, if the coolant is not returned to the reactor pressure vessel due to the coolant piping breakage, the reactor water level may be lowered and the core may be exposed, resulting in insufficient cooling, but as an emergency core cooling system An emergency core cooling device (hereinafter referred to as “ECCS”) using suppression pool water as a water source is provided, and when ECCS is activated, cooling water is injected into the reactor pressure vessel to flood the core. This prevents core melting.

一方、何らかの理由によりECCSが起動せず、注水に失敗した場合でも、中央制御室作業員の手動操作で原子炉格納容器内にスプレイを行う残留熱除去系(RHR)の注水設備を用いて、原子炉圧力容器冷却時に発生した水蒸気をスプレイによって凝縮することで原子炉格納容器内の温度及び圧力を低減させる構造となっている。   On the other hand, even if ECCS does not start for some reason and water injection fails, using the residual heat removal system (RHR) water injection equipment that sprays into the reactor containment vessel by manual operation of the central control room worker, It is structured to reduce the temperature and pressure in the reactor containment by condensing water vapor generated during cooling of the reactor pressure vessel by spraying.

また、万一、原子炉圧力容器の温度上昇に伴い、過酷事故が発生し、原子炉圧力容器が破損した場合、炉心溶融物はドライウェル下部に落下し、原子炉圧力容器から外に出てプール水と直接接触すると、大量の水蒸気が発生する。水素の発生に伴い圧力上昇や水蒸気爆発が起こる可能性があるが、除熱設備により原子炉格納容器の除熱をおこなうことにより圧力上昇及び水蒸気爆発等を防止している。   In the unlikely event that a severe accident occurs due to the temperature rise of the reactor pressure vessel and the reactor pressure vessel is damaged, the core melt falls to the bottom of the dry well and exits from the reactor pressure vessel. In direct contact with pool water, a large amount of water vapor is generated. Although pressure rise and steam explosion may occur with the generation of hydrogen, pressure rise and steam explosion are prevented by removing heat from the reactor containment vessel with heat removal equipment.

このように、LOCAや過酷事故が起きた場合、ECCSが作動することで炉心は冷却されるが、炉心溶融物へ直接注水を行うことで水と炉心溶融物との反応により水蒸気が放射線分解され、水素ガスと酸素ガスが発生する。さらに、燃料被覆管の温度が上昇すると、冷却時に発生した水蒸気と燃料被覆管材料のジルコニウムとの間で反応が起こり、水素ガスが発生する。こうして発生した水素ガスが破断した配管の破断口等から原子炉格納容器内に放出され、水素ガス濃度は次第に上昇する。水素ガスは非凝縮性であるから、原子炉格納容器内の圧力が上昇する。このような圧力上昇を抑制するために、原子炉格納容器内に発生した水素の除去又は、原子炉格納容器内の除熱を行い、水素分圧を低減させる必要がある。そのため、原子炉格納容器内の水素ガスを除去する手段として、アンモニア合成手段等を用いて水素と窒素をアンモニアに合成して水素を除去する手段が提案されている(特許文献1)。   In this way, when a LOCA or severe accident occurs, the core is cooled by the ECCS being activated, but by direct water injection into the core melt, water vapor is decomposed by radiation due to the reaction between the water and the core melt. Hydrogen gas and oxygen gas are generated. Further, when the temperature of the fuel cladding tube rises, a reaction occurs between the water vapor generated during cooling and the zirconium of the fuel cladding tube material, and hydrogen gas is generated. The hydrogen gas generated in this way is released into the reactor containment vessel through the broken port of the broken pipe, and the hydrogen gas concentration gradually increases. Since hydrogen gas is non-condensable, the pressure in the reactor containment vessel increases. In order to suppress such a pressure increase, it is necessary to remove hydrogen generated in the reactor containment vessel or remove heat in the reactor containment vessel to reduce the hydrogen partial pressure. Therefore, as means for removing hydrogen gas in the reactor containment vessel, means for removing hydrogen by synthesizing hydrogen and nitrogen into ammonia using an ammonia synthesis means or the like has been proposed (Patent Document 1).

また、原子炉内部の水位が低下することで炉心溶融等の過酷事故が起きた場合の対策として、原子炉格納容器の上部に冷却水タンクを設置し、タンク内にある水源を動力に頼ることなく重力により原子炉格納容器内に散布する静的な冷却手段、及び原子炉格納容器内に放出される水蒸気を熱交換器により除熱し、凝縮させることにより圧力を抑制させる手段が提案されている(特許文献2、3)。   Also, as a countermeasure against severe accidents such as melting of the core due to a drop in the water level inside the reactor, a cooling water tank is installed at the top of the reactor containment vessel, and the water source in the tank depends on power. There is proposed a static cooling means that sprays into the reactor containment vessel without gravity, and a means for suppressing the pressure by removing and condensing the water vapor released into the reactor containment vessel with a heat exchanger. (Patent Documents 2 and 3).

また、通常運転時にドライウェル雰囲気を規定の温度に冷却する設備として、ドライウェル内に冷却コイルを有するドライウェル冷却ユニットを複数台設置し、送風機によってドライウェル雰囲気を循環させ、冷却コイルによって冷却された冷却空気をダクトを介してドライウェル内の各所に送風し除熱をおこなっている(特許文献4)。   In addition, as a facility for cooling the drywell atmosphere to a specified temperature during normal operation, multiple drywell cooling units with cooling coils are installed in the drywell, and the drywell atmosphere is circulated by a blower and cooled by the cooling coil. The cooled air is blown to various places in the dry well through a duct to remove heat (Patent Document 4).

特開2006−322768号公報JP 2006-322768 A 特開平7−128482号公報JP-A-7-128482 特許第3666836号公報Japanese Patent No. 3666836 特許第4180783号公報Japanese Patent No. 4180783

上述した従来の除熱手段において、例えば格納容器上部の冷却水タンクによる冷却設備は最大3日間の稼働期間(グレースピリオド)を想定した設計であるため、長期的な除熱は考慮されておらず、また、長期的に除熱をおこなうためには、冷却水を確保するために極めて大型の冷却タンクが必要となるが、原子力発電所の耐震性、配置設計、及びコスト等の面で大きな制約を与えるという課題があった。   In the above-described conventional heat removal means, for example, the cooling facility by the cooling water tank at the upper part of the containment vessel is designed assuming an operating period (grace period) of up to 3 days, so long-term heat removal is not considered. In addition, in order to remove heat for a long period of time, an extremely large cooling tank is required to secure cooling water, but there are significant restrictions in terms of earthquake resistance, layout design, cost, etc. of nuclear power plants. There was a problem of giving.

また、ECCS、残留熱除去系、等は動的機器のため、定期的に機能試験及び保守点検作業をおこなう必要があるとともに、事故時にECCS、残留熱除去系が作動し、動力や水源等を使い果たした場合、その後の除熱を行うことができないという課題があった。また、ドライウェル冷却ユニットは伝熱管の冷却能力の向上、冷却材の圧力損失の低減が課題となっている。   In addition, ECCS, residual heat removal system, etc. are dynamic equipment, so it is necessary to perform functional tests and maintenance inspections regularly, and ECCS, residual heat removal system is activated in the event of an accident, and power, water source, etc. When exhausted, there was a problem that the subsequent heat removal could not be performed. Further, the dry well cooling unit has problems of improving the cooling capacity of the heat transfer tube and reducing the pressure loss of the coolant.

本発明は、上記課題を解決するためになされたものであり、LOCA時又は過酷事故時に冷却水タンクや動的機器を用いないで原子炉格納容器内の雰囲気を長期的に除熱することができる静的な原子炉格納容器除熱装置及び除熱方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and it is possible to remove the atmosphere in the reactor containment vessel for a long period of time without using a cooling water tank or dynamic equipment at the time of LOCA or a severe accident. An object of the present invention is to provide a static reactor containment heat removal apparatus and heat removal method that can be performed.

上記課題を解決するために、本発明の原子炉格納容器除熱装置は、原子炉格納容器の外部に設けられた少なくとも一つのダクトと、前記ダクトの内部に配置された熱交換機と、前記格納容器の内部に配置された冷却コイルを有する少なくとも一つのドライウェル冷却ユニットと、前記ドライウェル冷却ユニットに接続された冷却水循環系統と、前記原子炉格納容器の外側で前記ダクト内の熱交換機と前記冷却コイルを接続するヒートパイプとを備えたことを特徴とする。 In order to solve the above problems, a reactor containment vessel heat removal apparatus according to the present invention includes at least one duct provided outside a reactor containment vessel, a heat exchanger disposed inside the duct, and the containment. At least one drywell cooling unit having a cooling coil disposed inside the vessel, a cooling water circulation system connected to the drywell cooling unit, a heat exchanger in the duct outside the reactor containment vessel, and the And a heat pipe for connecting the cooling coil .

また、本発明の原子炉格納容器除熱方法は、本発明に係る原子炉格納容器除熱装置を用いて原子炉格納容器内の雰囲気を冷却することを特徴とする。   The reactor containment vessel heat removal method of the present invention is characterized in that the atmosphere in the reactor containment vessel is cooled using the reactor containment vessel heat removal apparatus according to the present invention.

本発明によれば、LOCA時又は過酷事故時に冷却水タンクや動的な機器を用いずに原子炉格納容器内の雰囲気を長期的に除熱することができる。   According to the present invention, the atmosphere in the reactor containment vessel can be removed for a long period of time without using a cooling water tank or dynamic equipment at the time of LOCA or a severe accident.

第1の実施形態に係る原子炉格納容器除熱装置の全体構成図。1 is an overall configuration diagram of a reactor containment heat removal apparatus according to a first embodiment. FIG. 第1の実施形態に係る原子炉格納容器除熱装置の変形例。The modification of the reactor containment vessel heat removal apparatus which concerns on 1st Embodiment. 第1の実施形態に係る原子炉熱交換機の伝熱管の構成図。The block diagram of the heat exchanger tube of the nuclear reactor heat exchanger which concerns on 1st Embodiment. 第2の実施形態に係る原子炉格納容器除熱装置の全体構成図。The whole block diagram of the reactor containment vessel heat removal apparatus which concerns on 2nd Embodiment.

以下、本発明に係る原子炉格納容器除熱装置及び除熱方法の実施形態を、図面を参照して説明する。
(第1の実施形態)
本発明の第1の実施形態を、図1乃至図3を用いて説明する。
Hereinafter, embodiments of a reactor containment heat removal apparatus and a heat removal method according to the present invention will be described with reference to the drawings.
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS.

本第1の実施形態の原子炉格納容器除熱装置は、図1に示すように、原子炉圧力容器2を格納する原子炉格納容器1と、原子炉格納容器1内に設置された熱交換器3aと、原子炉格納容器1の外部に設置されたダクト5と、ダクト5内に設置された熱交換器3bと、熱交換器3a、3bを接続するヒートパイプ4と、から構成される。   As shown in FIG. 1, the reactor containment vessel heat removal apparatus according to the first embodiment includes a reactor containment vessel 1 that houses a reactor pressure vessel 2, and a heat exchange installed in the reactor containment vessel 1. The heat exchanger 3a, the duct 5 installed outside the reactor containment vessel 1, the heat exchanger 3b installed in the duct 5, and the heat pipe 4 connecting the heat exchangers 3a and 3b are configured. .

ヒートパイプ4に封入する流体としては、ヒートパイプ4内の自然循環促進のため、沸点が事故時の格納容器内の温度に近い流体が望ましく、例えば水が好適である。また、図3に示すように熱交換器3a、3b内の伝熱管10にフィン6を設けてもよく、これにより伝熱性能を向上させることができる。   The fluid sealed in the heat pipe 4 is preferably a fluid whose boiling point is close to the temperature in the containment vessel at the time of the accident, for example, water, in order to promote natural circulation in the heat pipe 4. Moreover, as shown in FIG. 3, you may provide the fin 6 in the heat exchanger tube 10 in the heat exchanger 3a, 3b, and it can improve heat-transfer performance by this.

このように構成された格納容器除熱装置において、原子炉格納容器1外に設置されたダクト5内の空気が熱交換器3bによって加熱されて上向きの流れが生じる。この上向きの流れにより、熱交換器3bにおける熱伝達が促進されるとともに、ヒートパイプ6の熱交換機能によって格納容器内の熱交換機3aは格納容器1内の雰囲気の除熱をおこなう。   In the containment vessel heat removal apparatus configured as described above, the air in the duct 5 installed outside the reactor containment vessel 1 is heated by the heat exchanger 3b to generate an upward flow. This upward flow promotes heat transfer in the heat exchanger 3b, and the heat exchanger 3a in the containment vessel removes heat from the atmosphere in the containment vessel 1 by the heat exchange function of the heat pipe 6.

例えば、熱出力が480MWクラスの原子炉の場合、過酷事故後1日後の崩壊熱はおよそ29MWである。この条件において、直径6mの排気ダクト5を3本設置し、排気ダクト5内の上昇流の流速を5m/s、排気ダクト5の入口の空気温度を30℃、ヒートパイプ6の高温側の温度を153℃と仮定し、一般的な熱伝達特性式を用いてヒートパイプ低温側の温度が100℃以下となる格納容器外側の熱交換器3bの伝熱面積を算出すると、28000mとなる。また、格納容器内部の熱交換器3aの伝熱面積は、3000mとなる。この計算例では、図2に示すように、3本のダクトが格納容器1の外部に配置され、3基の熱交換機3a及び3bが各ダクト5内と格納容器1内にそれぞれ配置される。
なお、ダクトの数、寸法及び熱交換機の基数は、上記実施形態に限定されず、各種条件によって適宜変更可能であることはもちろんである。
For example, in the case of a nuclear reactor having a thermal output of 480 MW class, the decay heat one day after a severe accident is about 29 MW. Under these conditions, three exhaust ducts 5 having a diameter of 6 m are installed, the flow velocity of the upward flow in the exhaust duct 5 is 5 m / s, the air temperature at the inlet of the exhaust duct 5 is 30 ° C., and the temperature on the high temperature side of the heat pipe 6 Is 153 ° C., and the heat transfer area of the heat exchanger 3b outside the containment vessel at which the temperature on the low temperature side of the heat pipe is 100 ° C. or less is calculated using a general heat transfer characteristic equation, it becomes 28000 m 2 . Further, the heat transfer area of the heat exchanger 3a inside the containment vessel is 3000 m 2 . In this calculation example, as shown in FIG. 2, three ducts are arranged outside the containment vessel 1, and three heat exchangers 3a and 3b are arranged in each duct 5 and in the containment vessel 1, respectively.
Of course, the number and size of the ducts and the number of heat exchangers are not limited to the above-described embodiment, and can be appropriately changed according to various conditions.

本第1の実施形態によれば、冷却水タンクや動的機器を用いることなく、ヒートパイプ内の自然循環及びダクト内の自然通風による熱交換機能により、LOCA時又は過酷事故時に原子炉格納容器内の雰囲気を長期的に除熱することができる。   According to the first embodiment, without using a cooling water tank or dynamic equipment, the reactor containment vessel at the time of LOCA or severe accident by the heat exchange function by natural circulation in the heat pipe and natural ventilation in the duct. The atmosphere inside can be removed for a long time.

(第2の実施形態)
第2の実施形態を図4を用いて説明する。なお、第1の実施形態と同様の構成には同一の符号を付し、重複する説明は省略する。
(Second Embodiment)
A second embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the structure similar to 1st Embodiment, and the overlapping description is abbreviate | omitted.

本第2の実施形態は、図1における原子炉格納容器1内の熱交換器3aの代わりに原子炉の通常運転時に原子炉格納容器内を冷却するために配置されている既設のドライウェル冷却ユニット7の冷却コイル(図示せず)を用いる。ダクト5内の熱交換機3bは、ヒートパイプ4によってドライウェル冷却ユニット7の冷却水循環系統8に接続される。   In the second embodiment, instead of the heat exchanger 3a in the reactor containment vessel 1 in FIG. 1, the existing dry well cooling arranged for cooling the inside of the reactor containment vessel during normal operation of the reactor is performed. A cooling coil (not shown) of the unit 7 is used. The heat exchanger 3 b in the duct 5 is connected to the cooling water circulation system 8 of the dry well cooling unit 7 by the heat pipe 4.

このように、既設のドライウェル冷却ユニット7の冷却コイルを用いることで、低コストで原子炉格納容器内の雰囲気を除熱することが可能となる。
なお、原子力発電所の通常運転時はダクト5の熱交換器3bに接続されるヒートパイプ4を開閉弁9で閉止することにより、通常時のドライウェル冷却ユニット7の冷却機能を損なわず、事故時の格納容器の除熱が可能となる。
Thus, by using the cooling coil of the existing dry well cooling unit 7, it is possible to remove heat from the atmosphere in the reactor containment vessel at low cost.
During normal operation of the nuclear power plant, the heat pipe 4 connected to the heat exchanger 3b of the duct 5 is closed by the on-off valve 9, so that the cooling function of the normal drywell cooling unit 7 is not impaired and an accident occurs. It is possible to remove heat from the containment vessel.

本第2の実施形態によれば、既設のドライウェル冷却ユニットを用いることにより、簡便な設備でLOCA時又は過酷事故時に原子炉格納容器内の雰囲気を長期的に除熱することができる。   According to the second embodiment, by using the existing dry well cooling unit, the atmosphere in the reactor containment vessel can be removed for a long period of time at the time of LOCA or severe accident with a simple facility.

1…原子炉格納容器、2…原子炉圧力容器、3a、3b…熱交換機、4…ヒートパイプ、5…ダクト、6…フィン、7…ドライウェル冷却ユニット、8…冷却水循環系統、9…開閉弁、10…伝熱管。 DESCRIPTION OF SYMBOLS 1 ... Reactor containment vessel, 2 ... Reactor pressure vessel, 3a, 3b ... Heat exchanger, 4 ... Heat pipe, 5 ... Duct, 6 ... Fin, 7 ... Drywell cooling unit, 8 ... Cooling water circulation system, 9 ... Opening and closing Valve, 10 ... Heat transfer tube.

Claims (3)

原子炉格納容器の外部に設けられた少なくとも一つのダクトと、前記ダクトの内部に配置された熱交換機と、前記格納容器の内部に配置された冷却コイルを有する少なくとも一つのドライウェル冷却ユニットと、前記ドライウェル冷却ユニットに接続された冷却水循環系統と、前記原子炉格納容器の外側で前記ダクト内の熱交換機と前記冷却コイルを接続するヒートパイプとを備えたことを特徴とする原子炉格納容器除熱装置。 At least one duct provided outside the reactor containment vessel, a heat exchanger arranged inside the duct, and at least one drywell cooling unit having a cooling coil arranged inside the containment vessel; A reactor containment vessel comprising: a cooling water circulation system connected to the dry well cooling unit; and a heat pipe that connects the heat exchanger in the duct and the cooling coil outside the reactor containment vessel. Heat removal device. 前記ヒートパイプに開閉弁を設けたことを特徴とする請求記載の原子炉格納容器除熱装置。 The reactor containment vessel heat removal apparatus according to claim 1, wherein an opening / closing valve is provided on the heat pipe. 請求項1又は2に記載の原子炉格納容器除熱装置を用いて原子炉格納容器内の雰囲気を冷却することを特徴とする原子炉格納容器除熱方法。 A reactor containment vessel heat removal method, wherein the reactor containment vessel heat removal apparatus according to claim 1 or 2 is used to cool an atmosphere in the reactor containment vessel.
JP2010127982A 2010-06-03 2010-06-03 Reactor containment heat removal apparatus and heat removal method Expired - Fee Related JP5687440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010127982A JP5687440B2 (en) 2010-06-03 2010-06-03 Reactor containment heat removal apparatus and heat removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010127982A JP5687440B2 (en) 2010-06-03 2010-06-03 Reactor containment heat removal apparatus and heat removal method

Publications (2)

Publication Number Publication Date
JP2011252837A JP2011252837A (en) 2011-12-15
JP5687440B2 true JP5687440B2 (en) 2015-03-18

Family

ID=45416879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127982A Expired - Fee Related JP5687440B2 (en) 2010-06-03 2010-06-03 Reactor containment heat removal apparatus and heat removal method

Country Status (1)

Country Link
JP (1) JP5687440B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635960B2 (en) * 2011-09-28 2014-12-03 日立Geニュークリア・エナジー株式会社 Nuclear reactor system
KR101502393B1 (en) * 2013-07-30 2015-03-13 한국원자력연구원 Passive safety system and nuclear reactor having the same
JP2015137905A (en) * 2014-01-22 2015-07-30 株式会社日立製作所 Nuclear reactor containment and nuclear reactor
JP2018112480A (en) * 2017-01-12 2018-07-19 株式会社東芝 Hydrogen treatment system
JP7032915B2 (en) * 2017-11-30 2022-03-09 三菱重工業株式会社 Nuclear plant and sleeve cooling mechanism

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223593A (en) * 1987-03-13 1988-09-19 株式会社東芝 Nuclear-reactor container-heat removing device
JPH0651083A (en) * 1992-07-28 1994-02-25 Ishikawajima Harima Heavy Ind Co Ltd Cooling device for nuclear reactor suppression pool
JP4180783B2 (en) * 1999-11-24 2008-11-12 株式会社東芝 Pressure suppression device in the containment vessel
JP4398640B2 (en) * 2002-12-16 2010-01-13 株式会社東芝 Reactor containment cooling equipment
JP2007170832A (en) * 2005-12-19 2007-07-05 Toshiba Corp Unit and method for cooling containment vessel
JP2009204587A (en) * 2008-02-29 2009-09-10 Toshiba Corp Reactor containment facility and method for operating nuclear power plant

Also Published As

Publication number Publication date
JP2011252837A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
KR102580625B1 (en) Passive cooling for cold shutdown
EP2518731A2 (en) Nuclear power plant, fuel pool water cooling facility and method thereof
US6795518B1 (en) Integral PWR with diverse emergency cooling and method of operating same
EP2218076B1 (en) Passive emergency feedwater system for a nuclear reactor
US9984777B2 (en) Passive emergency feedwater system
JP6716479B2 (en) Emergency core cooling system and boiling water nuclear power plant using the same
CN203931515U (en) Based on actively adding of 177 reactor cores non-active nuclear steam supply system and nuclear power station thereof
CN107170493B (en) Passive containment heat exporting system
EP0462810A1 (en) Passive cooling safety system for liquid metal cooled nuclear reactors
JP2014010080A (en) Nuclear power plant and static containment vessel cooling system
JP5687440B2 (en) Reactor containment heat removal apparatus and heat removal method
EP0397509B1 (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
KR20150046005A (en) Hydrogen recombiner
US6519308B1 (en) Corrosion mitigation system for liquid metal nuclear reactors with passive decay heat removal systems
Chen et al. Air ingress analysis of chimney effect in the 200 MWe pebble-bed modular high temperature gas-cooled reactor
KR101250479B1 (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof
JP2020041834A (en) Hydrogen treatment system, nuclear reactor facility and hydrogen treatment method
JP2017067725A (en) Alternative circulating and cooling method of emergency reactor core cooling system and nuclear power plant
JPH032277B2 (en)
Zhipeng et al. Discussion on the accident behavior and accident management of the HTGR
US3461034A (en) Gas-cooled nuclear reactor
JP2019207174A (en) Nuclear power plant
Sviridenko et al. Passive residual heat removal system for the WWER with thermosiphon heat exchanging equipment
US20090225926A1 (en) Cold shutdown assembly for sodium cooled reactor
JP2006322768A (en) Hydrogen remover and its removing method for reactor containment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150122

LAPS Cancellation because of no payment of annual fees