JPS6244574B2 - - Google Patents

Info

Publication number
JPS6244574B2
JPS6244574B2 JP15801578A JP15801578A JPS6244574B2 JP S6244574 B2 JPS6244574 B2 JP S6244574B2 JP 15801578 A JP15801578 A JP 15801578A JP 15801578 A JP15801578 A JP 15801578A JP S6244574 B2 JPS6244574 B2 JP S6244574B2
Authority
JP
Japan
Prior art keywords
talc
parts
weight
polyamide
thermal stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15801578A
Other languages
Japanese (ja)
Other versions
JPS5584344A (en
Inventor
Yoshihisa Oowada
Minoru Shioda
Tetsuo Yamamoto
Itaru Hatano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP15801578A priority Critical patent/JPS5584344A/en
Priority to EP79105260A priority patent/EP0012990B1/en
Priority to US06/104,810 priority patent/US4368284A/en
Priority to DE7979105260T priority patent/DE2963993D1/en
Publication of JPS5584344A publication Critical patent/JPS5584344A/en
Publication of JPS6244574B2 publication Critical patent/JPS6244574B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はタルクによ぀お匷化した塩化ビニル系
暹脂組成物の熱安定性の改良に関するものであ
る。 近幎、熱可塑性暹脂を無機の充填剀で耇合しお
機械的匷床、耐熱性を附䞎する研究が各方面でな
され、䞀郚では既に実甚化されおいる。ポリ塩化
ビニルに関しおは、ガラス繊維による匷化が知ら
れおいる。その他、充填剀ずしお、アスベスト、
ワラストナむト、石こう繊維等が研究されおい
る。これらの繊維状充填剀は成圢時の流れ方向に
配向する為に物性の異方性を生じ、流れず盎角方
向の物性が著しく䜎いずいう欠点を有する。異方
性の少ない充填剀ずしおマむカやタルクがある
が、マむカはポリ塩化ビニルに充填しおも、成圢
加工時のセン断力によ぀おアスペクト比長さず
厚みの比が䜎䞋し物性の匷化性がなくなる。こ
の点、タルクは物性の匷化性があり、異方性は小
さいものの、ポリ塩化ビニルの劣化を著しく促進
し、その為に成圢加工時に“ダケ”を生じたり、
成圢品が黒く着色しやすいずいう欠点があ぀た。 䞀般に、無機充填剀をポリ塩化ビニルに配合す
るずポリ塩化ビニルの劣化を促進する事が知られ
おおり、その原因は䞍玔物ずしお含たれる鉄むオ
ン等がポリ塩化ビニルの脱塩化氎玠を促進する為
ずいわれおいる。アスベスト―ポリ塩化ビニルは
いわゆる塩ビタむルずしお倚甚されおいるが、こ
の堎合、熱安定性の改良研究が皮々行なわれ、䟋
えばプラスチツクおよびゎム甚添加剀実甚䟿芧
化孊工業瀟、昭和45幎によるず、ゞシアンゞ
アミドやメラミンが熱安定性の改良効果が倧きい
ずされおいる。タルクを含むポリ塩化ビニルコン
パりンド100郚にゞシアンゞアミドやメラミンを
郚添加しおも前者は、さらに熱安定性を䜎䞋さ
せ、埌者はほずんど効果がない事が刀぀た。又、
ポリ塩化ビニルの安定剀ずしお優れた効果を有す
る䞉塩基性硫酞鉛や、ブチル錫マレヌトを添加し
おも、その効果はほずんどみられない。 本発明者は、タルクずポリ塩化ビニル耇合材の
熱安定性を改良する為に鋭意研究した結果、軟化
点又は融点が玄200℃以䞋のポリアミドをタルク
の含たれる塩化ビニル暹脂に添加するず著しく熱
安定性を改良する効果のある事を芋出し、本発明
に到぀たものである。以䞋にその詳现を説明す
る。 本発明のタルク滑石は、鉱物組成Mg3
Si4O10OH2で瀺される単斜晶系の鉱物で、
鉱石を粉砕したものが䜿甚される。粉砕したタル
クの圢状は薄片状である。タルクの粉砕には、
Jaw crushersHammer crushersImpact
mill等の砎砕機又は粉砕機が䜿甚されるが、
Impact millに属する粉砕機が奜たしい。曎に奜
たしくは遠心力分玚型ミルが奜たしく、䟋えばス
ヌパヌミクロンミル现川鉄工所、Mikro
Atomiser米囜、Raymond vertical mill米
囜、Ultra contra―plex muhle独がある。
さらに奜たしくは、Impact millに属する粉砕機
で玛砕した埌、アルキメデス枊型分玚機で分玚す
るのが良い。この皮の分玚機ずしおAlpine瀟の
ミクロプレツクスMikroplexが知られおい
る。この堎合、矜根の角床の調敎ず、同䞀操䜜を
数回繰返すこずが必芁である。その他ゞグザグ回
転壁型分玚機Alpine瀟でもよい。たたは、
粉砕しやすいタルクの鉱石を甚いお数回粉砕機に
かけるこずによ぀おも埗られる。必芁によ぀お、
タルクはシラン、カツプリング剀、有機チタネヌ
ト、脂肪酞等で衚面凊理しお䜿甚しおもよい。 ポリ塩化ビニル系暹脂に充填するタルクの量は
〜40重量で䜿甚するのが良い。 本発明にいうポリ塩化ビニル系暹脂ずは、ポリ
塩化ビニル暹脂、ポリ塩化ビニリデン暹脂、塩化
ビニル、塩化ビニリデン共重合䜓、塩化ビニルず
酢酞ビニル、無氎マレむン酞、゚チレン、プロピ
レン等ずの共重合䜓、塩玠化ポリ塩化ビニル暹脂
のような倉性暹脂を含み、これを単独又は混合し
お䜿甚するこずも可胜である。たたABS
MBS、塩玠化ポリ゚チレン等の耐衝撃性改良甚
の暹脂を混合するこずもできる。配合剀ずしお鉛
系、錫系、Ca―Zn系等の安定剀、滑剀、加工性
改良剀を添加するこずができる。必芁によ぀お他
の充填剀䟋えば炭酞カルシナム、石こう、石こう
繊維、アスベスト、マむカ、ケむ酞カルシりム、
ガラス繊維等を䜵甚しおもよい。 本発明の軟化点又は融点が玄200℃以䞋のポリ
アミドずは、―CONH―結合を有しASTME―28
―58Tの環球法で枬定した軟化点もしくはDSC法
差動熱量蚈による䞻融解ピヌク枩床による融
点が玄200℃以䞋の線状高分子である。さらに詳
しく説明するず、䞀般のポリアミドのホモポリマ
ヌずしお著名なナむロンナむロン6.6ナむ
ロン11ナむロン12は結晶性が高いために、本発
明の融点よりはるかに高く、塩化ビニル系暹脂の
成圢時の暹脂枩では軟化せず効果がみられない。
軟化点又は融点を玄200℃以䞋にする為にはポリ
アミドの結晶性を乱す必芁があり、その方法ずし
お、ナむロン6.66.10やナむロン12系倚元
共重合䜓のような共重合によ぀お結晶性を乱した
もの、アルコキシメチル化によ぀お倉性されたメ
トキシメチル化ナむロン、メトキシメチル化ナ
むロン6.6などの倉性ナむロン、䞍飜和脂肪酞を
Diels―Alder反応で量化したダむマヌ酞ず゚チ
レンゞアミンを反応重合化したポリアミド暹脂等
があげられる。又、さらに䞊蚘ポリアミドを䞍飜
和酞やプノヌル等で倉性したものも含たれる。 このようなポリアミドの䞭で遊離アミン濃床の
高いものは十分効果を発揮しないし又ポリアミド
の安定剀がポリ塩化ビニルの熱安定性を阻害する
ものがあるので、泚意を芁する。 本発明のポリアミドを混入する方法は任意であ
るが、䟋えば本発明のポリアミドをタルクを含ん
だ塩化ビニル系暹脂コンパりンドに添加し混合し
おも良いし、あらかじめタルクに本発明のポリア
ミドを添加し加熱混合した埌塩化ビニル系暹脂コ
ンパりンドに添加しおもよいし、又溶剀可溶のポ
リアミドであればタルクを衚面凊理しおも良い。
本発明のポリアミドの䜿甚郚数に぀いおタルクに
察する䜿甚量が25重量を越すず効果が小さく、
又タルクに察する䜿甚量が0.1重量以䞋である
ず効果が小さいために奜たしくはタルクに察し玄
0.1〜〜25重量䜿甚するのが良い。 本発明に䜿甚するタルクの量は、それのみでは
塩化ビニル系暹脂にわずか添加するだけで著しく
熱安定性を䜎䞋させるが、この堎合にも本発明で
は熱安定性を倧巟に改良する効果がある。タルク
を倧量に添加した堎合にも、本発明の効果は倧で
あるが、タルクの䜿甚量が40重量を越すず、成
圢加工が難しく、又、物性も䜎い為に40重量以
䞋で䜿甚するのが奜たしい。 本発明の塩化ビニル系暹脂組成物の成圢加工は
必芁な添加剀を添加した埌、通垞の方法で実斜で
きるが、タルクず塩化ビニル系暹脂ずが充分に初
期分散をするように混合するのが望たしい。䟋え
ば機械により䞀抂には蚀えないが高速で20分皋床
混合するずか、バンバリヌミキサヌで予備混緎す
る等の方策がずられる、成圢に぀いおは二本ロヌ
ル、単軞抌出機、二軞抌出機、特殊な耇合混緎機
によ぀お盎接成圢する方法、あるいは、二本ロヌ
ル、バンバリヌミキサヌ、単軞抌出機、二軞抌出
機あるいは特殊な耇合混緎機によ぀おペレツトを
補造し、射出成圢、吹き蟌み成圢、抌出成圢、カ
レンダヌ成圢、溶融玡糞加工等によ぀お成圢材料
を埗おもよい。 タルクは埓来よりポリスチレンやポリオレフむ
ン甚の充填剀ずしお䜿われおいたが、塩化ビニル
系暹脂では、塗料のように熱安定性の䞍甚な甚途
又は軟質のように倚量に可塑剀を䜿甚する甚途以
倖ほずんど実甚化されおいなか぀た。その理由の
぀は熱安定性が極めお悪く工業的に実斜するの
が困難であ぀たが、本発明のポリアミドは安定剀
でもないものが、しかもアミド基はポリ塩化ビニ
ルの耐熱性を䜎䞋させるず考えるのが垞識である
にもかかわらず、タルクの存圚䞋においおは著し
い熱安定性の改良効果がある事は驚きであり、工
業䞊の利甚䟡倀は倧きいず考えおいる。 以䞋に実斜䟋で本発明の効果を詳述する。 実斜䟋〜、察照䟋〜 䞭囜産タルクをスヌパヌミクロンミル现川鉄
工所補粉砕分玚し、さらにミクロプレツクス
安川電機補で分玚操䜜を繰返しお、10Ό以䞋
90.4、Ό以䞋81.1の分垃を有するタルク
以䞋タルクずいうを調補した。又、ポリ塩化
ビニルカネビニル―1001100郚、䞉塩基性
硫酞鉛郚、二塩基性ステアリン酞鉛1.5郚、ス
テアリン酞鉛0.5郚、ステアリン酞ルシりム0.5
郚、PA―20鐘淵化孊補郚をスヌパヌミキ
サヌで110℃たで昇枩混合し冷华しお鉛配合のコ
ンパりンドを埗た以䞋ベヌスコンパりンド。 ベヌスコンパりンド79郚、タルク20郚ず以䞋の
ポリアミド郚をミキサヌで混合しお、ニヌダヌ
型のプラストグラフブラベンダヌ瀟により熱
安定性を枬定した。図―に代衚的なプラストグ
ラフを、衚―に、最倧トルクB定垞トル
ク保持時間△T1、最倧トルクから分解開始た
での時間△T2を瀺す。 プラストグラフの枬定条件は、内容積55c.c.のチ
ダンバヌを䜿甚し、蚭定枩床190℃、仕蟌量73
、予熱時間分、ロヌタヌ回転数40rpmであ
る。 尚、△T1ず△T2は図―に瀺すように、最底
トルクより0.1Kg―cm高い点をそれぞれTc
Tcずし、最倧トルク発生時間をBずしお、 △T1Tc−Tc△T2Tc−Bず定矩し
た。 アミランCM―8000東レ融点128℃  実斜䟋 バヌサロン1200日本れネラルミルズ化孊 軟化点200℃  実斜䟋 バヌサロン1164日本れネラルミルズ化孊 軟化点160℃  実斜䟋 バヌサロン1117日本れネラルミルズ化孊 軟化点117℃  実斜䟋 バヌサロン1300日本れネラルミルズ化孊 軟化点 95℃  実斜䟋 ミルベツクス1000日本れネラルミルズ化孊 軟化点135℃  実斜䟋 ミルベツクス1235日本れネラルミルズ化孊 軟化点200℃  実斜䟋 アミランCM―8000 AA20(泚1) 融点玄120℃  実斜䟋 泚 CM―8000粉末を氎䞭に分散させ2N―
H2SO4溶液ずアクリル酞20郚を滎䞋し、さらに
硫酞第二セリりムアンモニりムを加えおアクリ
ル酞をグラフトしたもの。 又比范の為に ベヌスコンパりンド  察照䟋 ベヌスコンパりンド80郚ずタルク20郹
 〃  〃 79郚ずタルク20郚ず䞉塩基性硫酞鉛郚  察照䟋 〃 〃 ブチルスズマレヌト郚  察照䟋 〃 å°¿ 玠 〃 郚  察照䟋 〃 〃 ゞシアンゞアミド 郚  察照䟋 〃 〃 メラミン 郚  察照䟋 〃 〃 ナむロン6.6 郚  察照䟋
The present invention relates to improving the thermal stability of vinyl chloride resin compositions reinforced with talc. In recent years, research has been conducted in various fields to impart mechanical strength and heat resistance to thermoplastic resins by compounding them with inorganic fillers, and some have already been put into practical use. Regarding polyvinyl chloride, reinforcement with glass fibers is known. Other fillers include asbestos,
Wollastonite, gypsum fiber, etc. are being studied. These fibrous fillers are oriented in the flow direction during molding, resulting in anisotropy in physical properties, and have the disadvantage that physical properties in the direction perpendicular to the flow are extremely low. Mica and talc are fillers with low anisotropy, but even when mica is filled into polyvinyl chloride, the aspect ratio (length to thickness ratio) decreases due to shearing force during molding, resulting in poor physical properties. Strengthening properties are lost. In this regard, although talc has the ability to strengthen physical properties and has small anisotropy, it significantly accelerates the deterioration of polyvinyl chloride, resulting in "staining" during molding.
The drawback was that the molded product was easily colored black. It is generally known that blending inorganic fillers with polyvinyl chloride accelerates the deterioration of the polyvinyl chloride, and the reason for this is that iron ions, etc. contained as impurities accelerate dehydrochlorination of the polyvinyl chloride. It is said. Asbestos-polyvinyl chloride is often used as so-called PVC tiles, but in this case, various studies have been conducted to improve its thermal stability. , dicyandiamide and melamine are said to have a large effect on improving thermal stability. It has been found that even if one part of dicyandiamide or melamine is added to 100 parts of polyvinyl chloride compound containing talc, the former further reduces the thermal stability, while the latter has little effect. or,
Even if tribasic lead sulfate or butyltin malate, which has excellent effects as a stabilizer for polyvinyl chloride, is added, the effect is hardly seen. As a result of extensive research to improve the thermal stability of talc and polyvinyl chloride composites, the present inventor found that when a polyamide with a softening point or melting point of approximately 200°C or less is added to a vinyl chloride resin containing talc, the temperature increases significantly. The present invention was developed based on the discovery that this method has the effect of improving stability. The details will be explained below. The talc of the present invention has a mineral composition of Mg 3
(Si 4 O 10 ) (OH) 2 monoclinic mineral,
Crushed ore is used. The shape of the crushed talc is flaky. For grinding talc,
Jaw crushers, Hammer crushers, Impact
A crusher or pulverizer such as a mill is used, but
A crusher belonging to the Impact mill family is preferred. More preferably, a centrifugal force classification type mill is used, such as Super Micron Mill (Hosokawa Iron Works), Mikro
These include Atomiser (USA), Raymond vertical mill (USA), and Ultra contra-plex muhle (Germany).
More preferably, it is pulverized using a crusher belonging to an impact mill, and then classified using an Archimedean vortex classifier. Mikroplex by Alpine is known as this type of classifier. In this case, it is necessary to adjust the blade angle and repeat the same operation several times. Other zigzag rotating wall classifiers (Alpine) may also be used. or
It can also be obtained by milling several times using easily crushed talc ore. Depending on the need,
Talc may be used after surface treatment with silane, coupling agent, organic titanate, fatty acid, etc. The amount of talc to be filled into the polyvinyl chloride resin is preferably 5 to 40% by weight. The polyvinyl chloride resin referred to in the present invention refers to polyvinyl chloride resin, polyvinylidene chloride resin, vinyl chloride, vinylidene chloride copolymer, copolymer of vinyl chloride and vinyl acetate, maleic anhydride, ethylene, propylene, etc. , modified resins such as chlorinated polyvinyl chloride resins, which can be used alone or in combination. Also ABS,
Resins for improving impact resistance such as MBS and chlorinated polyethylene can also be mixed. As compounding agents, lead-based, tin-based, Ca-Zn-based stabilizers, lubricants, and processability improvers can be added. If necessary, other fillers such as calcium carbonate, gypsum, gypsum fiber, asbestos, mica, calcium silicate, etc.
Glass fiber or the like may also be used in combination. The polyamide of the present invention having a softening point or melting point of about 200°C or less is a polyamide having a -CONH- bond and an ASTME-28
- It is a linear polymer with a softening point measured by the ring and ball method of 58T or a melting point measured by the DSC method (main melting peak temperature using a differential calorimeter) of approximately 200℃ or less. To explain in more detail, nylon 6, nylon 6.6, nylon 11, and nylon 12, which are well-known homopolymers of general polyamides, have high crystallinity, so their melting point is much higher than that of the present invention, and when molded with vinyl chloride resin. At resin temperature, it does not soften and has no effect.
In order to lower the softening point or melting point to about 200°C or less, it is necessary to disrupt the crystallinity of polyamide, and this can be done by copolymerization such as nylon 6/6.6/6.10 or nylon 12 multi-component copolymer. Those with disturbed crystallinity, modified nylons such as methoxymethylated nylon 6 and methoxymethylated nylon 6.6 modified by alkoxymethylation, and unsaturated fatty acids.
Examples include polyamide resins made by reaction polymerization of dimer acid dimerized by Diels-Alder reaction and ethylenediamine. Furthermore, polyamides modified with unsaturated acids, phenols, etc. are also included. Among such polyamides, those with a high free amine concentration do not exhibit sufficient effects, and some polyamide stabilizers may inhibit the thermal stability of polyvinyl chloride, so care must be taken. The method of mixing the polyamide of the present invention is arbitrary, but for example, the polyamide of the present invention may be added to a vinyl chloride resin compound containing talc and mixed, or the polyamide of the present invention may be added to talc in advance and heated. It may be added to the vinyl chloride resin compound after mixing, or talc may be surface-treated if it is a solvent-soluble polyamide.
When the amount of polyamide used in the present invention exceeds 25% by weight relative to talc, the effect is small;
Also, if the amount used is less than 0.1% by weight relative to talc, the effect will be small, so it is preferable to use approximately
It is best to use 0.1 to ~25% by weight. The amount of talc used in the present invention is such that if it is added alone to a vinyl chloride resin, the thermal stability will be significantly lowered, but even in this case, the present invention has the effect of greatly improving the thermal stability. be. The effect of the present invention is great even when a large amount of talc is added, but if the amount of talc used exceeds 40% by weight, it is difficult to mold and process, and the physical properties are also poor, so it is recommended to use less than 40% by weight. It is preferable to do so. Molding of the vinyl chloride resin composition of the present invention can be carried out in a conventional manner after adding necessary additives, but it is important to mix the talc and vinyl chloride resin so that they are sufficiently initially dispersed. desirable. For example, measures such as mixing at high speed for about 20 minutes or pre-kneading with a Banbury mixer are taken, although it cannot be generalized depending on the machine.For molding, measures such as two-roll, single-screw extruder, twin-screw extruder, special Direct molding using a compound mixer, or producing pellets using a two-roll, Banbury mixer, single-screw extruder, twin-screw extruder, or special compound compounder, followed by injection molding, blow molding, or extrusion. The molding material may be obtained by molding, calendering, melt spinning, or the like. Talc has traditionally been used as a filler for polystyrene and polyolefins, but it is rarely used for vinyl chloride resins, except for applications where heat stability is not required, such as in paints, or applications where large amounts of plasticizers are used, such as in soft materials. It had not been put into practical use. One of the reasons for this is that the polyamide of the present invention has extremely poor thermal stability and is difficult to implement industrially, but the polyamide of the present invention is not a stabilizer, and moreover, the amide group reduces the heat resistance of polyvinyl chloride. Although it is common sense to think that, it is surprising that the presence of talc has a remarkable effect of improving thermal stability, and we believe that it has great industrial utility value. The effects of the present invention will be explained in detail in Examples below. Examples 1 to 8, Comparative Examples 1 to 8 Chinese talc was crushed and classified using a Super Micron Mill (manufactured by Hosokawa Iron Works), and the classification operation was repeated using a Microplex (manufactured by Yaskawa Electric) to obtain particles of 10Ό or less.
Talc (hereinafter referred to as talc) having a distribution of 90.4% and 81.1% below 5Ό was prepared. Also, 100 parts of polyvinyl chloride (Kanevinyl S-1001), 3 parts of tribasic lead sulfate, 1.5 parts of dibasic lead stearate, 0.5 parts of lead stearate, 0.5 parts of lucium stearate.
1 part and 2 parts of PA-20 (manufactured by Kanebuchi Chemical Co., Ltd.) were heated to 110°C and mixed in a super mixer, and then cooled to obtain a lead-containing compound (hereinafter referred to as base compound). 79 parts of the base compound, 20 parts of talc, and 1 part of the following polyamide were mixed in a mixer, and the thermal stability was measured using a kneader type Plastograph (Brabender). Figure 1 shows a typical plastograph, and Table 1 shows the maximum torque ( MB ), steady torque holding time (△T 1 ), and time from maximum torque to the start of decomposition (△T 2 ). The measurement conditions for Plastograph were to use a chamber with an internal volume of 55 c.c., a set temperature of 190°C, and a preparation amount of 73.
g, preheating time was 4 minutes, and rotor rotation speed was 40 rpm. As shown in Figure 1, △T 1 and △T 2 are the points 0.1Kg-cm higher than the lowest torque (Tc), respectively.
Tc and maximum torque generation time T B were defined as △T 1 = Tc - (Tc) and △T 2 = Tc - T B. Amiran CM-8000 (Toray) Melting point: 128°C...Example 1 Bar Salon 1200 (Japan General Mills Chemical) Softening point: 200°C...Example 2 Bar Salon 1164 (Japan General Mills Chemical) Softening point: 160°C...Example 3 Bar Salon 1117 (Japan General Mills Chemical) Softening point 117°C...Example 4 Barsalon 1300 (Japan General Mills Chemical) Softening point 95°C...Example 5 Milvex 1000 (Japan General Mills Chemical) Softening point 135°C...Example 6 Milvex 1235 (Japan General Mills Chemical) Softening point 200℃...Example 7 Amiran CM-8000 AA 20 ( Note 1) Melting point approximately 120℃...Example 8 (Note 1) CM-8000 powder was dispersed in water and 2N-
Acrylic acid is grafted by dropping H 2 SO 4 solution and 20 parts of acrylic acid, and then adding ceric ammonium sulfate. For comparison, base compound...Control example 1 80 parts of base compound and 20 parts of talc... 〃 2 〃 79 parts and 20 parts of talc and 1 part of tribasic lead sulfate...Control example 3 〃 〃 1 part of butyltin malate...Control Example 4 Urea 1 part...Control Example 5 Dicyandiamide 1 part...Control Example 6 Melamine 1 part...Control Example 7 Nylon 6.6 1 part...Control Example 8

【衚】 察照䟋のベヌスコンパりンドずタルクを添加
した察照䟋の比范で刀るように△T1で1/7、△
T2で玄1/4ずタルクを添加する事で熱安定性が著
しく䜎䞋するこずが刀るが、これに塩化ビニルの
安定剀である䞉塩基性硫酞鉛や、ブチルスズマレ
ヌトを添加しおもほずんど効果がみられない察
照䟋。アスベスト―塩化ビニル耇合材の
熱安定性改良に有効ずされる尿玠、ゞシアンゞア
ミド、メラミンを添加しおも、ほずんど効果がみ
られず、むしろ䜎䞋するものさえあり、埓来から
䜿甚されおいた改良剀では改良が困難である事が
刀る察照䟋〜本発明のポリアミドの堎
合、添加によ぀お△T1で2.2〜3.3倍、△T2で1.7
〜2.9倍ず著し熱安定性が改良されおいる事が刀
る。実斜䟋〜 ナむロン6.6のように融点の高いポリアミドの
堎合、本発明の察象倖であるがほずんど効果がみ
られず、融点もしくは軟化点が玄200℃以䞋であ
る事が必芁であるこずを瀺しおいる。 実斜䟋 〜14 実斜䟋のベヌスコンパりンド、タルク、アミ
ランCM―8000を甚いお、以䞋の配合で混合し、
実斜䟋ず同じ方法でプラストグラフを枬定結果
を衚―に瀺す。 ベヌスコンパりンド79.9郚、タルク20郚 CM―80000.1郚  実斜䟋 〃 79.7郚 〃 20郚 〃 0.3郚  実斜䟋10 〃 79.5郚 〃 20郚 〃 0.5郚  実斜䟋11 〃 79郚 〃 20郚 〃 1.0郚  実斜䟋12 〃 78郚 〃 20郚 〃 2.0郚  実斜䟋13 〃 75郚 〃 20郚 〃 5.0郚  実斜䟋14
[Table] As can be seen from the comparison between the base compound of Control Example 1 and Control Example 2 with added talc, △T 1 is 1/7, △
It can be seen that by adding about 1/4 of talc to T2 , the thermal stability decreases significantly, but even if tribasic lead sulfate, which is a stabilizer for vinyl chloride, or butyl tin malate is added to this, Almost no effect was observed (Control Examples 3 and 4). Even when urea, dicyandiamide, and melamine are added, which are effective in improving the thermal stability of asbestos-vinyl chloride composites, there is almost no effect, and in some cases the effect is even reduced. In the case of the polyamide of the present invention, which is found to be difficult to improve (Comparative Examples 5 to 7), △T 1 is 2.2 to 3.3 times, and △T 2 is 1.7 times, depending on the addition.
It can be seen that the thermal stability is significantly improved by ~2.9 times. (Examples 1 to 8) In the case of a polyamide with a high melting point such as nylon 6.6, although it is outside the scope of the present invention, almost no effect is observed, and the melting point or softening point must be approximately 200°C or less. It is shown that. Examples 9 to 14 Using the base compound of Example 1, talc, and Amilan CM-8000, mix them in the following formulation,
The plastograph was measured using the same method as in Example 1, and the results are shown in Table 2. Base compound 79.9 parts, talc 20 parts CM-8000, 0.1 part ...Example 9 79.7 parts 20 parts 0.3 parts ...Example 10 79.5 parts 20 parts 0.5 parts ...Example 11 79 parts 20 parts 〃 1.0 parts 
Example 12 〃 78 parts 〃 20 parts 〃 2.0 parts 
Example 13 〃 75 parts 〃 20 parts 〃 5.0 parts 
Example 14

【衚】 実斜䟋〜14のCM―8000の添加量はタルクに
察し、それぞれ0.51.52.55.010.025重
量に盞圓するが、タルクに察し0.5重量添加
するだけで倧巟に熱安定性が改良され、タルクに
察しお1.5〜2.5重量をピヌクに25重量たで、
改良効果はピヌク時にくらべるず䜎䞋するが察照
䟋ず比范すれば倧巟に改良されおいる事を瀺
す。本発明のポリアミドを添加しおも最倧トルク
は同じか増加傟向を瀺しおいるので、滑性附䞎に
よる熱安定性の改良ずは本質的に異なる驚ろくべ
き特異効果である。 実斜䟋15〜18、察照䟋〜12 タルクの含有量による熱安定性効果をみるため
に実斜䟋ず同様に、CM―8000をタルクに察し
お2.5重量を甚いお、以䞋の配合し、プラスト
グラフを枬定し、結果を衚―に瀺した。 尚、プラストグラフの詊料の仕蟌量は比重を考
慮しお、ベヌスコンパりンド66.0、タルク重
量67.6、タルク10重量96.2、タルク15重
量70.8、タルク20重量73、タルク30重量
76.4を甚いた。 ベヌスコンパりンド94.875郚、タルク郚、 CM―8000

0.125郚 実斜䟋15 〃 89.75郚、 〃 10郚、 〃 

0.25郚 実斜䟋16 〃 84.625郚、 〃 15郚、 〃 

0.325郚 実斜䟋17 ベヌスコンパりンド79.5郚、タルク20郚、 CM―8000

0.5郚 実斜䟋11 〃 96.25郚、 〃 30郚、 〃 

0.75郚 実斜䟋18 〃 95 郚、 〃 郚、  察照䟋  〃 90 郚、 〃 10郚、 
 〃 10 〃 85 郚、 〃 15郚、 
 〃 11 〃 70 郚、 〃 30郚、 
 〃 12
[Table] The amounts of CM-8000 added in Examples 9 to 14 correspond to 0.5, 1.5, 2.5, 5.0, 10.0, and 25% by weight of talc, respectively, but adding only 0.5% by weight to talc results in a large amount of CM-8000. Thermal stability has been greatly improved, from a peak of 1.5 to 2.5% by weight to 25% by weight, based on talc.
Although the improvement effect decreases compared to the peak, a comparison with Control Example 2 shows that it has been greatly improved. Even if the polyamide of the present invention is added, the maximum torque remains the same or shows a tendency to increase, which is a surprising and unique effect that is essentially different from the improvement of thermal stability by imparting lubricity. Examples 15 to 18, Comparative Examples 9 to 12 In order to examine the thermal stability effect due to the content of talc, the following formulations were made in the same manner as in Example 1, using 2.5% by weight of CM-8000 based on talc. The plastograph was measured and the results are shown in Table 3. In addition, considering the specific gravity, the amount of Plastograph sample prepared was as follows: base compound 66.0g, talc 5% by weight 67.6g, talc 10% by weight 96.2g, talc 15% by weight 70.8g, talc 20% by weight 73g, talc 30% by weight. A weight percent of 76.4 g was used. Base compound 94.875 parts, talc 5 parts, CM-8000...0.125 parts...Example 15 89.75 parts, 10 parts, 0.25 parts...Example 16 84.625 parts, 15 parts, 0.325 parts ...Example 17 Base compound 79.5 parts, talc 20 parts, CM-8000...0.5 parts...Example 11 〃 96.25 parts, 〃 30 parts, 〃 ...0.75 parts...Example 18 〃 95 parts, 〃 5 parts, ... Comparative example 9 90 copies, 10 copies, 
 10 85 copies, 15 copies, 
 11 70 copies, 30 copies, 
 12

【衚】【table】

【衚】 ベヌスコンパりンドにタルクを重量添加す
るず△T1△T2が倧巟に䜎䞋し、30重量たで
増すず、さらに䜎䞋する傟向がある。 このようにタルクを添加しお熱安定性の䜎䞋し
たコンパりンドに本発明のアミド実斜䟋では
CM―8000をタルクに察し2.5盞圓を加えるず
熱安定性は倧巟に改良される。この効果はタルク
を30重量添加した堎合でも充分発揮されるが、
タルクが10重量以䞋では特に顕著で、ほずんど
ベヌスコンパりンドず同じ熱安定性に改良される
結果を瀺しおいる。
[Table] When 5% by weight of talc is added to the base compound, △T 1 and △T 2 decrease significantly, and when they increase to 30% by weight, they tend to decrease further. The amide of the present invention (in the example,
When CM-8000) is added in an amount equivalent to 2.5% to talc, the thermal stability is greatly improved. This effect is fully exhibited even when 30% by weight of talc is added.
This is particularly noticeable when talc is less than 10% by weight, showing that the thermal stability is almost the same as the base compound.

【図面の簡単な説明】[Brief explanation of the drawing]

図―は察照䟋ず実斜䟋のプラストグラフ
を瞊軞にトルク、暪軞に時間をず぀お図瀺したも
のである。又、△T1ず△T2をそれぞれに぀いお
図瀺した。 グラフ  実線、タルク20重量察照䟋
、グラフ  砎線、タルク20重量CM
―8000、1.0重量実斜䟋。
FIG. 1 is a plastograph of Comparative Example 2 and Example 1, with torque on the vertical axis and time on the horizontal axis. Furthermore, ΔT 1 and ΔT 2 are illustrated respectively. Graph 1...solid line, talc 20% by weight (control example 2), graph 2...broken line, talc 20% by weight + CM
-8000, 1.0% by weight (Example 1).

Claims (1)

【特蚱請求の範囲】  〜40重量のタルクを含有する塩化ビニル
系暹脂ず軟化点又は融点が200℃以䞋のポリアミ
ドずを配合しおなるこずを特城ずする塩化ビニル
系暹脂組成物。  特蚱請求の範囲第項蚘茉のポリアミドをタ
ルクに察し0.1〜25重量含有する塩化ビニル系
暹脂組成物。
[Scope of Claims] 1. A vinyl chloride resin composition comprising a vinyl chloride resin containing 5 to 40% by weight of talc and a polyamide having a softening point or melting point of 200°C or less. 2. A vinyl chloride resin composition containing 0.1 to 25% by weight of the polyamide according to claim 1 based on talc.
JP15801578A 1978-12-19 1978-12-19 Vinyl chloride resin composition Granted JPS5584344A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15801578A JPS5584344A (en) 1978-12-19 1978-12-19 Vinyl chloride resin composition
EP79105260A EP0012990B1 (en) 1978-12-19 1979-12-18 Talc containing moulding compositions on the basis of vinyl chloride polymers
US06/104,810 US4368284A (en) 1978-12-19 1979-12-18 Polyvinyl chloride composite material
DE7979105260T DE2963993D1 (en) 1978-12-19 1979-12-18 Talc containing moulding compositions on the basis of vinyl chloride polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15801578A JPS5584344A (en) 1978-12-19 1978-12-19 Vinyl chloride resin composition

Publications (2)

Publication Number Publication Date
JPS5584344A JPS5584344A (en) 1980-06-25
JPS6244574B2 true JPS6244574B2 (en) 1987-09-21

Family

ID=15662399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15801578A Granted JPS5584344A (en) 1978-12-19 1978-12-19 Vinyl chloride resin composition

Country Status (1)

Country Link
JP (1) JPS5584344A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249052A (en) * 1988-04-08 1990-02-19 Kureha Chem Ind Co Ltd Resin composition and molded product thereof
JP4898512B2 (en) * 2007-03-23 2012-03-14 株匏䌚瀟ショヌワ Damping force generator
JP4898511B2 (en) * 2007-03-23 2012-03-14 株匏䌚瀟ショヌワ Damping force generator

Also Published As

Publication number Publication date
JPS5584344A (en) 1980-06-25

Similar Documents

Publication Publication Date Title
US4098758A (en) Inorganic-organic composites and methods of reacting the same with organo-titanium compounds
JP2006517597A (en) Masterbatch based on pre-exfoliated nanoclay and its use
JPS63207617A (en) Manufacture of polyolefin resin composition containing inorganic filler
DE2330022A1 (en) THERMOPLASTIC COMPOUNDS WITH A FILLER CONTENT
JPH0662837B2 (en) Flame-retardant polybutylene terephthalate composition
US5786415A (en) Use of styrene and maleic anhydride copolymers as dispersing agents and/or for treatment of mineral fillers and thermoplastic compounds containing same
EP0012990B1 (en) Talc containing moulding compositions on the basis of vinyl chloride polymers
JP3393879B2 (en) Composite material, method for producing the same, and resin molding material using the same
JPH09217012A (en) Production of thermoplastic resin/lamellar clay mineral composite material
JPH1053724A (en) Inorganic particulate substance for incorporation into composition containing hydrophobic polymeric material
JPS6244574B2 (en)
JP2932904B2 (en) Mica reinforced polypropylene resin composition
JP2736906B2 (en) Method for blending thermoplastic wholly aromatic polyester resin composition
JPS591741B2 (en) Polypropylene horns
JPS6242936B2 (en)
JPS6026421B2 (en) Reinforced polyvinyl chloride resin composition
JPH0222094B2 (en)
JPH02212532A (en) Polypropylene composite material reinforced with granulated fibrous magnesium oxysulfate
JP3190362B2 (en) Polyamide resin composition
JPH07712B2 (en) Inorganic filler-containing polyolefin resin composition
JPS6121257B2 (en)
JP3522795B2 (en) Resin composition
JPS6315941B2 (en)
JPH0485351A (en) Thermoplastic rubber composition
JPS6242933B2 (en)