JPS6315941B2 - - Google Patents

Info

Publication number
JPS6315941B2
JPS6315941B2 JP55095482A JP9548280A JPS6315941B2 JP S6315941 B2 JPS6315941 B2 JP S6315941B2 JP 55095482 A JP55095482 A JP 55095482A JP 9548280 A JP9548280 A JP 9548280A JP S6315941 B2 JPS6315941 B2 JP S6315941B2
Authority
JP
Japan
Prior art keywords
composite material
vinyl chloride
producing
material according
talc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55095482A
Other languages
Japanese (ja)
Other versions
JPS5721424A (en
Inventor
Yoshihisa Oowada
Minoru Shioda
Yoshinori Yamaguchi
Kenji Matsumoto
Kazuo Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP9548280A priority Critical patent/JPS5721424A/en
Publication of JPS5721424A publication Critical patent/JPS5721424A/en
Publication of JPS6315941B2 publication Critical patent/JPS6315941B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は無機系充填剀によ぀お匷化した衝撃匷
床の高い塩化ビニル系暹脂組成物の補造方法に関
するものである。 近幎、熱可塑性暹脂に無機の充填剀で耇合しお
機械的匷床、耐熱性を附䞎する研究が各方面でな
され、䞀郚では既に実甚化されおいる。ポリ塩化
ビニルに関しおはガラス繊維による匷化が知られ
おいる。その他、匷化甚の充填剀ずしお、アスベ
スト、針状ケむ酞カルシりムワラストナむト
等があるが、これらの繊維状充填剀で匷化した耇
合材料は䞀方向の匕匵物性は匷化されるが、それ
ず盎角方向の匕匵匷床が著しく䜎䞋繊維の配向
で異方性を生じるし、さらにポリ塩化ビニルの
動城の぀である衝撃匷床を著しく䜎䞋させるず
いう欠点があ぀た。物性に異方性のでない匷化甚
充填剀ずしおマむカがあるが、瞊又は暪のいずれ
かの長さず厚みの比以䞋アスペクト比ずいう
の倧きなマむカを䜿甚しおも、匕匵物性は䜎䞋
し、又、衝撃匷床も著しく䜎いこずが刀぀た。こ
れはマむカをポリ塩化ビニル䞭に分散させるに必
芁なセン断力でマむカの板状結晶が砎壊される為
に匕匵匷床が䜎䞋し、又、䞀郚砎壊されずに残぀
たマむカが衝撃匷床を䜎䞋させるからである。
又、タルクで塩化ビニル系暹脂を匷化した堎合、
匕匵物性は匷化され、か぀物性の異方圢は小さい
ずいう特城があるもののマむカず同様衝撃匷床の
䜎䞋が倧きく、又、塩化ビニル系暹脂ずタルクそ
れに必芁な安定剀、滑剀をスヌパヌミキサヌで混
合しお、タルクを充分分散させるべく長時間混合
するず、そのコンパりンドの熱安定性が䜎䞋し、
成圢時のダケは勿論、成圢品の着色が倧きく、商
品性に乏しい成圢品しか埗られなか぀た。 たたこのような耇合材料においお高い耐衝撃性
を埗るには無機系充填剀ず塩化ビニル系暹脂をあ
らかじめ高速混合以䞋予備混合ずいうした埌
必芁な安定剀滑剀を加えお加熱混合しおコンパり
ンドを埗る必芁があ぀た。この予備混合では倚量
の充填剀が粉塵ずしお発生するために衛生的にも
奜たしくない事から、予備混合が䞍芁でか぀充填
剀が粉塵ずしお発生しにくい、぀たり嵩比重の倧
きい無機系充填剀ず塩化ビニル系暹脂の混合物を
埗る目的で鋭意怜蚎した結果、本発明に甚いる無
機系充填剀ずしおは䞀般に熱可塑暹脂ず混合しお
甚いられる小粒埄ないし粉末状の無機充填剀たた
はこれらを衚面凊理したものが䞀般的に䜿甚可胜
である。たた本発明は埌蚘するように高分子凝集
剀の添加を぀の特城ずするものであるが、この
こずによる利益は無機系充填材ずしお雲母、タル
クあるいはガラスフレヌクの劂き板状充填剀を䜿
甚するずき特に顕著に埗られる。埓぀お以䞋は板
状充填剀の代衚䟋ずしおタルクを甚いたケヌスを
䞻䜓に説明する。 䞭囜産タルクを䟋えばスヌパヌミクロンミルで
粉砕するず10Ό以䞋74.7、5Ό以䞋59.7の分垃
を持぀粉砕タルク以䞋10Ό以䞋74.7タルクず
云うが埗られる。このタルクをポリ塩化ビニル
重合床1000、鉛配合に充填し、ペレツト化し
た埌、厚みmm、巟60mmのベルトを成圢しお抌出
方向MDの匕匵物性、衝撃匷床デナポン衝
撃3/8″、300換算半数砎壊高さcmを求めるず、
〜30重量の間で、匕匵匷床はポリ塩化ビニル
ずほゞ同等か玄10高いもののデナポン衝撃匷床
がポリ塩化ビニルに比べお極めお䜎い。衝撃匷床
の改良には特定の粒床分垃をも぀タルクを䜿甚す
るこずが有効である。本発明に䜿甚するタルク
は、遠心力沈降匏粒床分垃枬定装眮によ぀お枬定
した粒床分垃で10Ό以䞋の粒子が85以䞊のタル
クが奜たしい。本発明で䜿甚するタルクを䞊蚘の
方法で、ポリ塩化ビニルに充填した堎合初期分散
を充分に行぀た堎合衝撃匷床が改良される。タル
クを初期分散させるには、タルクずポリ塩化ビニ
ルをあらかじめ高速ミキサヌ䟋えばヘンシ゚ル
ミキサヌで玄分間の予備混合を必芁ずする。 この方法においお問題になる事は、予備混合䞭
にタルクが粉塵ずしお発生し、衛生䞊奜たしくな
い事、予備混合の最適倀が狭く、又、ミキサヌの
倧きさ、皮類等でその最適倀が異なる為に、工業
的実斜が難しい事である。本発明はこの点を解決
したもので、塩化ビニル系暹脂の氎性スラリヌに
高分子凝集剀を加え、次いでタルクを加えお撹拌
し脱氎也燥しお埗たプレミツクスは、嵩比重が倧
きく予備混合しなくおも高い耐衝撃性の埗られる
事を芋い出した。 本発明に䜿甚し埗る塩化ビニル系暹脂は塩化ビ
ニル単独もしくは塩化ビニルず共重合し埗る単重
䜓ずの共重合䜓が含たれる。䟋えば有機酞のビニ
ル゚ステル、ビニリデンフルオロクロラむド、ビ
ニリデンクロラむド、察称ゞクロル゚チレン、ア
クリロニトリル、メタクリロニトリル、アルキル
アクリレヌト゚ステル、アルキルメタクリレヌト
゚ステル、ゞブチルフマレヌトおよびゞ゚チルマ
レヌト等の䞍飜和二塩基性有機酞のゞアルキル゚
ステル、䞍飜和炭化氎玠、アリヌル化合物、共圹
および亀叉共圹゚チレン䞍飜和化合物等ずの共重
合物が含たれる。 これらの塩化ビニル系暹脂の重合埌のスラリヌ
又は脱氎埌のケヌキを再びスラリヌ化したもの、
又は也燥埌の暹脂を再びスラリヌ化したものを甚
いる。スラリヌ濃床は任意であるが〜30重量
ぐらいが適圓である。高分子凝集剀ずしおはアニ
オン系、カチオン系、ノニオン系いずれのものも
䜿甚し埗る。アクリルアミド系の重合物が䞀般的
であるが、ポリビニルアルコヌル等の塩化ビニル
重合に甚いる懞濁剀も䜿甚し埗る。又、メタノヌ
ル可溶性ナむロンの氎性ラテツクス等も有効であ
る。 特に無機系充填剀が平板状であるずきは、融点
たたは軟化点が200℃以䞋のポリアミドを䜿甚す
れば、熱安定性においおも優れたものが埗られ
る。䜿甚量に関しおはタルク100重量郚に察しお
箄0.05〜0.5重量郚が奜たしい。05重量郚未
満では凝集力が匱く脱氎時にロ垃から挏れる事が
あり又0.5重量郚をこえれば、タルク間の凝集が
生じる為に耐衝撃性が䜎䞋し奜たしくない。 本発明の方法においお塩化ビニル系暹脂の氎性
スラリヌに凝集剀を加えお撹拌した埌タルクを加
える点にポむントがある。塩化ビニル系暹脂ずタ
ルクのスラリヌに凝集剀を加えたり、タルクのス
ラリヌに凝集剀を加えた埌塩化ビニル系暹脂を加
える方法では耐衝撃性が著しく䜎く䞍適である。 タルクは粉䜓のたた加えおもよいが、あらかじ
めスラリヌにしおおいお加える方が奜たしい。 これらの操䜜は宀枩で良く撹拌条件は、装眮様
匏による異なるが、䞊䞋動のある撹拌機を甚いお
激しく撹拌するのが奜たしい。 本発明では高い耐衝撃性を埗るのが最終目的の
ために、タルクは10Ό以䞊の粒子が玄15以䞋で
ある事が奜たしい。10Ό以䞋の粒子を85以䞊に
する方法ずしおはImpact millに属する粉砕機で
粉砕した埌、アルキメデス枊型分玚機で分玚する
方法が優れおいる。この皮の分玚機ずしお
Alpine瀟のミクロプレツクスMikroplexが
知られおいる。この堎合、矜根の角床の調敎ず、
同䞀操䜜を数回繰返すこずが必芁である。その他
ゞグザグZig−Zag回転壁型分玚機Alpine
瀟でもよい。たたは、粉砕しやすいタルクの鉱
石を甚いお数回粉砕機にかけるこずによ぀おも埗
られる。必芁によ぀お、タルクはシラン・カツプ
リング剀、有機チタネヌト、脂肪酞等で衚面凊理
しお䜿甚しおもよい。 本発明のプレミツクス䞭のタルクの含有量は玄
30重量以䞋であるこずが奜たしい。30重量以
䞊では充分にタルクが凝集しないので本発明の効
果が発揮されない。たた耇合材ずしおの特性発珟
のためには以䞊奜たしくは以䞊を目安に
する。 本発明のプレミツクスは通垞の塩化ビニル系暹
脂の加工方法がずられる。配合に関しおは鉛系、
錫系、Ca−Zn系等いずれの配合でもよくタルク
濃床を調敎する為に塩化ビニル系暹脂を混入しお
甚いおもよい。混合方法は必芁な配合剀を加えお
䟋えばスヌパヌミキサヌでホツトブレンドするず
いう埓来ず同じ方法が甚いられる。成圢方法に぀
いおもパりダ、ペレツトいずれでもよく、カレン
ダヌ抌出吹き蟌み成圢等が甚いられる。 以䞋に実斜䟋で説明する。 実斜䟋  䞭囜産タルクをスヌパヌミクロンミルで粉砕分
玚し、さらにミクロンセパレヌタヌ、サむクロン
を甚いお衚−に瀺す粒床分垃をも぀タルク、
、、、を調補した。 粒床分垃は島接遠心沈降匏粒床枬定装眮CP−
50を甚いお0.2のNapo26氎溶液を分散液ず
しお29℃で枬定したものである。 本発明の実斜䟋ずしお10重量のポリ塩化ビニ
ル1000を含む氎性スラリヌ850重量郚に
ポリアクリルアミド䞉掋化成補−50p0.015
重量郚察タルク0.1wtの氎溶液を加えお宀
枩で20分間撹拌し次いで衚−ののタルク15重
量郚を加えお、さらに20分間撹拌し脱氎しお60℃
で24Hr也燥しお実斜䟋のプレミツクスを埗る。
察照䟋ずしお、実斜䟋のポリ塩化ビニルを含む
氎性スラリヌ850重量郚に衚−ののタルク15
重量郚を加えお20分間撹拌しお均䞀なスラリヌに
した埌−50p0.015重量郚の氎溶液を加えお宀枩
で20分間撹拌し脱氎也燥しお察照䟋のプレミツ
クスを埗る。
The present invention relates to a method for producing a vinyl chloride resin composition reinforced with an inorganic filler and having high impact strength. In recent years, research has been conducted in various fields on adding mechanical strength and heat resistance to thermoplastic resins by compounding them with inorganic fillers, and some of them have already been put into practical use. Regarding polyvinyl chloride, reinforcement with glass fiber is known. In addition, asbestos and acicular calcium silicate (wollastonite) are used as reinforcing fillers.
Composite materials reinforced with these fibrous fillers have enhanced tensile properties in one direction, but the tensile strength in the direction perpendicular to this is significantly reduced (anisotropy occurs due to fiber orientation). Furthermore, it has the disadvantage that impact strength, which is one of the dynamic characteristics of polyvinyl chloride, is significantly reduced. Mica is a reinforcing filler that does not have anisotropic physical properties, but it has a ratio of either vertical or horizontal length to thickness (hereinafter referred to as aspect ratio).
It was found that even when using mica with a large value, the tensile properties deteriorate and the impact strength is also significantly low. This is because the shearing force required to disperse mica in polyvinyl chloride destroys the plate-like crystals of mica, resulting in a decrease in tensile strength, and the remaining unbroken mica decreases impact strength. This is because it reduces the
Also, when vinyl chloride resin is reinforced with talc,
Although the tensile properties are strengthened and the anisotropy of the physical properties is small, the impact strength is greatly reduced like mica, and the vinyl chloride resin, talc, and the necessary stabilizers and lubricants are mixed in a super mixer. , mixing for long periods of time to fully disperse talc reduces the thermal stability of the compound;
Not only was there discoloration during molding, but the molded product was also heavily colored, resulting in a molded product with poor marketability. In addition, in order to obtain high impact resistance in such composite materials, the inorganic filler and vinyl chloride resin are mixed in advance at high speed (hereinafter referred to as premixing), then the necessary stabilizer lubricant is added, and the mixture is heated and mixed to form a compound. I needed to get it. This premixing generates a large amount of filler as dust, which is not sanitary. Therefore, premixing is unnecessary and the filler is less likely to be generated as dust, which means that inorganic fillers with high bulk specific gravity and chloride As a result of intensive studies for the purpose of obtaining a vinyl resin mixture, we found that the inorganic filler used in the present invention is a small particle size or powdered inorganic filler that is generally mixed with a thermoplastic resin, or a surface-treated inorganic filler. are generally available. Further, as described later, one of the features of the present invention is the addition of a polymer flocculant, but the benefit of this is that a plate-like filler such as mica, talc, or glass flakes is used as an inorganic filler. It is especially noticeable when Therefore, the following explanation will mainly be based on the case where talc is used as a representative example of the plate-shaped filler. When Chinese talc is ground with a super micron mill, for example, crushed talc with a distribution of 74.7% below 10ÎŒ and 59.7% below 5ÎŒ (hereinafter referred to as 74.7% talc below 10ÎŒ) can be obtained. After filling this talc into polyvinyl chloride (polymerization degree 1000, lead content) and pelletizing it, a belt with a thickness of 3 mm and a width of 60 mm is formed, and the tensile physical properties in the extrusion direction (MD) and impact strength (Dupont impact 3/ 8″, 300g equivalent half failure height cm),
Between 3 and 30% by weight, the tensile strength is approximately equal to or about 10% higher than that of polyvinyl chloride, but the Dupont impact strength is extremely low compared to polyvinyl chloride. It is effective to use talc with a specific particle size distribution to improve impact strength. The talc used in the present invention is preferably talc in which 85% or more of particles are 10 ÎŒm or less in particle size distribution measured by a centrifugal sedimentation type particle size distribution analyzer. When the talc used in the present invention is filled into polyvinyl chloride by the method described above, the impact strength is improved if the initial dispersion is sufficient. Initial dispersion of the talc requires premixing of the talc and polyvinyl chloride in a high speed mixer (eg, a Henschel mixer) for about 5 minutes. Problems with this method are that talc is generated as dust during premixing, which is unfavorable from a sanitary standpoint, and the optimum value for premixing is narrow, and the optimum value varies depending on the size and type of mixer. However, it is difficult to implement it industrially. The present invention has solved this problem, and the premix obtained by adding a polymer flocculant to an aqueous slurry of vinyl chloride resin, then adding talc, stirring, and dehydrating and drying has a large bulk density and requires no premixing. It has been found that high impact resistance can be obtained even when using the same method. The vinyl chloride resin that can be used in the present invention includes vinyl chloride alone or a copolymer of vinyl chloride and a monopolymer that can be copolymerized. unsaturated dibasic organic acids such as vinyl esters of organic acids, vinylidene fluorochloride, vinylidene chloride, symmetrical dichloroethylene, acrylonitrile, methacrylonitrile, alkyl acrylate esters, alkyl methacrylate esters, dibutyl fumarate and diethyl maleate. Copolymers with dialkyl esters, unsaturated hydrocarbons, aryl compounds, conjugated and cross-conjugated ethylenically unsaturated compounds, and the like are included. The slurry after polymerization or the cake after dehydration of these vinyl chloride resins is re-slurried,
Alternatively, a slurry of the dried resin may be used. Slurry concentration is arbitrary, but 5 to 30% by weight
Approx. Any of anionic, cationic, and nonionic polymer flocculants can be used. Acrylamide-based polymers are common, but suspending agents used in vinyl chloride polymerization, such as polyvinyl alcohol, may also be used. Also effective are methanol-soluble nylon aqueous latexes. Particularly when the inorganic filler is in the form of a plate, if a polyamide with a melting point or softening point of 200° C. or lower is used, excellent thermal stability can be obtained. The amount used is preferably about 0.05 to 0.5 parts by weight per 100 parts by weight of talc. If it is less than 0.05 parts by weight, the cohesive force will be weak and it may leak from the cloth during dehydration, and if it exceeds 0.5 parts by weight, the impact resistance will decrease due to agglomeration between talcs, which is not preferable. The key point in the method of the present invention is that a coagulant is added to an aqueous slurry of vinyl chloride resin, stirred, and then talc is added. Methods such as adding a flocculant to a slurry of vinyl chloride resin and talc, or adding a flocculant to a talc slurry and then adding vinyl chloride resin are unsuitable because the impact resistance is extremely low. Talc may be added as a powder, but it is preferable to make it into a slurry beforehand. These operations may be performed at room temperature, and the stirring conditions vary depending on the type of equipment, but it is preferable to vigorously stir using a stirrer with vertical movement. In the present invention, for the ultimate purpose of obtaining high impact resistance, it is preferable that the talc contains about 15% or less of particles with a size of 10 Όm or more. An excellent method to increase the proportion of particles of 10Ό or less to 85% or more is to crush the particles using a crusher belonging to the Impact mill and then classify them using an Archimedean vortex classifier. As this kind of classifier
Mikroplex from Alpine is known. In this case, adjusting the blade angle,
It is necessary to repeat the same operation several times. Other Zig-Zag rotating wall classifiers (Alpine
company) is also acceptable. Alternatively, it can be obtained by using a talcum ore that is easy to crush and passing it through a crusher several times. If necessary, talc may be surface-treated with a silane coupling agent, an organic titanate, a fatty acid, etc. before use. The content of talc in the premix of the present invention is approximately
It is preferably 30% by weight or less. If it exceeds 30% by weight, the talc will not coagulate sufficiently and the effects of the present invention will not be exhibited. Further, in order to exhibit properties as a composite material, the content should be 1% or more, preferably 5% or more. The premixes of the present invention can be processed using conventional vinyl chloride resin processing methods. Regarding the formulation, lead-based,
Any combination of tin-based, Ca-Zn-based, etc. may be used, and vinyl chloride-based resin may be mixed in to adjust the talc concentration. The mixing method used is the same as the conventional method of adding necessary ingredients and hot blending using, for example, a super mixer. The molding method may be either powder or pellet, and calender extrusion blow molding or the like may be used. This will be explained below using examples. Example 1 Talc produced in China was crushed and classified using a super micron mill, and then a micron separator and a cyclone were used to produce talc A having the particle size distribution shown in Table 1.
B, C, and D were prepared. Particle size distribution was measured using Shimadzu centrifugal sedimentation particle size analyzer CP-
50 and a 0.2% aqueous solution of (Napo 2 ) 6 as a dispersion at 29°C. As an example of the present invention, 850 parts by weight of an aqueous slurry containing 10% by weight of polyvinyl chloride (=1000) and 0.015 parts by weight of polyacrylamide (N-50p manufactured by Sanyo Chemical Co., Ltd.)
Add part by weight (0.1 wt% of talc) of an aqueous solution and stir at room temperature for 20 minutes, then add 15 parts by weight of talc A in Table 1, stir for another 20 minutes, dehydrate, and heat at 60°C.
The premix of Example 1 was obtained by drying for 24 hours.
As a control example, 15 parts by weight of talc A in Table 1 was added to 850 parts by weight of the aqueous slurry containing polyvinyl chloride of Example 1.
After adding parts by weight and stirring for 20 minutes to form a uniform slurry, an aqueous solution of 0.015 parts by weight of N-50p was added and stirred at room temperature for 20 minutes, followed by dehydration and drying to obtain the premix of Control Example 1.

【衚】 衚−ののタルク15重量郚を氎150重量郚に
分散させ、次いで0.015重量郚の−50Pを含む氎
溶液を加えお宀枩で90分間撹拌し次いで実斜䟋
で甚いたポリ塩化ビニルのスラリヌ850重量郚を
加えお、さらに20分間撹拌した埌脱氎也燥しお察
照䟋のプレミツクスを埗る。 加工する為の配合䟋ずしお、重量郚で䞉塩基性
硫酞鉛郚、二塩基性ステアリン酞鉛0.5郚、ス
テアリン酞鉛1.5郚、ステアリン酞カルシりム0.5
郚、ステアリン酞バリりム0.5郚、ポリ゚チレン
ワツクス0.2郚、CM−8000 0.25郚、顔料0.25郚の
割合で混合したマスタヌバツチ以䞋MBずい
うを甚いる。 実斜䟋察照䟋、のプレミツクスKgを20
のスヌパヌミキサヌ川田補䜜所に入れ、高
速混合で分、分、10分ず混合以䞋それぞれ
予備混合分、分、10分ずいうした埌
MB200を加えお高速混合で110℃たで混合し、
次いで70℃たで冷华しおコンパりンドを埗る。 比范の為にポリ塩化ビニルに衚−ののタル
クを15wt含む混合物Kgを同様にブレンドす
る参考䟋。 これらのブレンド物を40mmψの抌出機田端機
械HU−40−28ダルメ−ゞスクリナヌでC1C2
C3C4190℃でペレツト化し、さらに同じ抌
出機で巟60mm厚さmmのベルトを成圢する。この
ベルトを185℃でプレスし30mm×30mm×25mmの角
片を䜜りDu Pon′t匏の萜錘匷床を枬定する。3/
″撃芯Kgの重りで半数砎壊高さを求め300換
算の高さcmで衚瀺した。埗られた結果を衚−
に瀺す。 参考䟋では予備混合分で極倧になり、さらに
長くするず再び䜎䞋する。この傟向が混合機によ
぀お異なる為に工業的実斜が難しいが本発明の堎
合予備混合しなくおも高い倀が埗られる。察照
、は共に䜎い倀しか瀺さない。本発明の方法
によ぀お高い倀の埗られる事が刀る。
[Table] 15 parts by weight of talc A in Table 1 was dispersed in 150 parts by weight of water, and then an aqueous solution containing 0.015 parts by weight of N-50P was added and stirred for 90 minutes at room temperature.
850 parts by weight of the polyvinyl chloride slurry used in step 2 was added thereto, stirred for an additional 20 minutes, and then dehydrated and dried to obtain the premix of Control Example 2. As an example of a formulation for processing, by weight: 1 part tribasic lead sulfate, 0.5 part dibasic lead stearate, 1.5 parts lead stearate, 0.5 part calcium stearate.
A masterbatch (hereinafter referred to as MB) is used, which is a mixture of 0.5 parts of barium stearate, 0.2 parts of polyethylene wax, 0.25 parts of CM-8000, and 0.25 parts of pigment. Example 1 5 kg of premixes from Control Examples 1 and 2 was added to 20
After mixing at high speed for 0 minutes, 5 minutes, and 10 minutes (hereinafter referred to as premixing 0 minutes, 5 minutes, and 10 minutes, respectively),
Add 200g of MB and mix at high speed until 110℃.
Then, it is cooled to 70°C to obtain a compound. For comparison, 5 kg of a mixture containing polyvinyl chloride and 15 wt% of talc A in Table 1 was blended in the same manner (reference example). These blends were processed using a 40 mmψ extruder (Tabata Kikai HU-40-28 Dalmage Screw) to produce C 1 = C 2
= C 3 = C 4 = Pelletized at 190°C, and further formed into a belt with a width of 60 mm and a thickness of 3 mm using the same extruder. This belt is pressed at 185℃ to form square pieces of 30 mm x 30 mm x 25 mm, and the falling weight strength of the Du Pont't method is measured. 3/
The half-breakage height was calculated using an 8" striking core with a 2 kg weight and expressed as a height (cm) in 300 g. The obtained results are shown in the table below.
Shown in 2. In the reference example, the temperature reaches a maximum after 5 minutes of premixing, and decreases again when the time is extended further. Since this tendency differs depending on the mixer, it is difficult to implement it industrially, but in the case of the present invention, high values can be obtained without premixing. Controls 1 and 2 both show low values. It can be seen that high values can be obtained by the method of the present invention.

【衚】 実斜䟋 、、 衚−ののタルクを甚いお、実斜䟋ず同じ
方法でタルクが10wt、20wt、25wt、含た
れるプレミツクスを䜜る。これを以䞋のように実
斜䟋に甚いたMBを配合し20のスヌパヌミキ
サヌで予備混合分の条件で混合し、さらに成圢
しおDu Pon′t衝撃匷床を求める。 タルク10wtのプレミツクスKgMB212
実斜䟋 タルク20wtのプレミツクスKgMB188
実斜䟋 タルク25wtのプレミツクスKgMB176
実斜䟋 又参考䟋ずしお、のタルクずカネビニヌル
−1001の混合物を甚い タルク10wtの混合物KgMB212
参考䟋 タルク20wtの混合物KgMB188
参考䟋 タルク25wtの混合物KgMB176
参考䟋 の配合で、実斜䟋〜ず同様に混合、成圢しお
Du Pon′t衝撃匷床を調べた。 結果を衚−に瀺す。 予備混合しない堎合参考䟋に比范しお高い
耐衝撃性が埗られる。
[Table] Examples 2, 3, 4 Using talc A in Table 1, premixes containing 10 wt%, 20 wt%, and 25 wt% of talc are prepared in the same manner as in Example 1. This was blended with the MB used in Example 1 as shown below, mixed in a 20 super mixer under conditions of 0 minutes of premixing, and further molded to determine the Du Pont't impact strength. Talc 10wt% premix 5kg + MB212g
(Example 2) Premix with 20wt% talc 5kg + MB188g
(Example 3) Premix with 25wt% talc 5kg + MB176g
(Example 4) Also, as a reference example, talc of A and Kanevinyl S
-1001 mixture with talc 10wt% mixture 5Kg + MB212g
(Reference example 2) 5 kg of 20 wt% talc mixture + 188 g of MB
(Reference example 3) 5 kg of mixture of 25 wt% talc + 176 g of MB
(Reference Example 4) Mix and mold in the same manner as Examples 2 to 4 with the formulation.
Du Pont't impact strength was investigated. The results are shown in Table-3. Higher impact resistance can be obtained compared to the case without premixing (reference example).

【衚】 実斜䟋  衚−の、、のタルクを甚いお実斜䟋
ず同じ方法でタルクを15wt含むプレミツクス
を䜜る。参考䟋ずしお衚−の、、のタル
ク15wtを含むカネビニル−1001の混合物を
甚いお、実斜䟋ず同じ配合で予備混合分の条
件で混合し、成圢しおDu Pon′t衝撃匷床を調べ
た。結果を衚−に瀺す。
[Table] Example 5 Example 1 using talc B, C, and D in Table-1
Prepare a premix containing 15wt% talc using the same method as above. As a reference example, a mixture of Kanevinyl S-1001 containing 15 wt% of talc B, C, and D in Table 1 was mixed with the same formulation as in Example 1 under the conditions of 0 minutes of premixing, and molded into Du Pon. The impact strength was investigated. The results are shown in Table 4.

【衚】 〜の粒埄で本発明の効果が発揮されおいる
が耐衝撃性ずいう点から、よりも埮粒子のタル
クが奜たしい。 実斜䟋、察照䟋 実斜䟋の方法で−50Pの量を倉えお、凝集
剀の量の圱響を調べた。比范の為に察照䟋の方
法で同様に−50Pの量の圱響を調べた。仕蟌み
時のタルク量は15重量であるが、凝集剀が䞍充
分な堎合埗られたプレミツクス䞭のタルク量が倉
る為にタルク含有量を求めた。その方法は也燥埌
のプレミツクスを700℃で時間焌成しその枛量
からタルク含有量を求める。タルク単独で700℃
時間の焌成でタルクも重量の枛量であるの
で補正を行぀た。 配合䞊びに成圢条件は実斜䟋ず同じである。
混合は予備混合分の条件を甚いた。 結果を衚−に瀺す。 本発明の堎合−50Pが0.05wt郚では脱氎ロス
がみられ、やや䞍充分であるが0.1wt郚以䞊では
脱氎ロスもなく、高いDu Pon′t衝撃匷床が埗ら
れる。0.5郚以䞊になるずDu Pon′t衝撃匷床に䜎
䞋傟向がみられるが、これは、タルク間の凝集に
よる粒子の粗倧化の為ず考えられる。
[Table] Although the effects of the present invention are exhibited with particle sizes A to D, from the viewpoint of impact resistance, fine particle talc is preferable to C. Example 6, Comparative Example 3 The effect of the amount of flocculant was investigated by changing the amount of N-50P in the method of Example 1. For comparison, the effect of the amount of N-50P was investigated in the same manner as in Control Example 1. The amount of talc at the time of charging was 15% by weight, but the amount of talc in the obtained premix changes if the coagulant is insufficient, so the talc content was determined. The method involves baking the dried premix at 700°C for 1 hour and determining the talc content from the weight loss. 700℃ for talc alone
Since talc also lost 2% by weight after 1 hour of firing, correction was made. The formulation and molding conditions are the same as in Example 1.
The mixing was performed under the condition of 0 minutes of premixing. The results are shown in Table-5. In the case of the present invention, when N-50P is 0.05 wt part, dehydration loss is observed, which is somewhat insufficient, but when N-50P is 0.1 wt part or more, there is no dehydration loss and high Du Pont't impact strength can be obtained. When the amount exceeds 0.5 parts, there is a tendency for the Du Pont't impact strength to decrease, but this is thought to be due to coarsening of particles due to aggregation between talc.

【衚】 䞀方、察照䟋では−50Pが0.05郚では脱氎ロ
スがある為にDu Pon′t匷床も高くなるが、0.1郚
にするず脱氎ロスは少なくなるが、Du Pon′t匷
床が䜎く、さらに−50Pを増しおもDu Pon′t匷
床はさらに䜎䞋する傟向を瀺す。タルクずポリ塩
化ビニルの共存䞋で凝集させる為に−50Pが比
范的少ない郚数のずきからタルク自䜓の凝集を生
じ粒子を粗倧化するのであろう。 実斜䟋  実斜䟋の方法で凝集剀の皮類を倉えお本発明
の効果を調べた。凝集剀にはポリビニルアルコヌ
ル以䞋PVA、メタノヌル可溶性ナむロンCM
−8000を甚いた。CM−8000は固䜓であるので、
1wtのメタノヌル溶液を10倍のアンモニア性氎
溶液に滎䞋しながら撹拌しお埗たラテツクスずし
お甚いた。 その䜿甚量はタルク100wt郚に察しお0.1wt郚、
0.2wt郚を甚いた。実斜䟋の配合、加工条件を
甚い、混合は予備混合分の条件を甚い、た。結
果を衚−に瀺す。 いずれの堎合もその䜿甚郚数によらず、高い耐
衝撃性が埗られる。
[Table] On the other hand, in the control example, when N-50P is 0.05 part, there is a dehydration loss and the Du Pont't strength is high, but when it is 0.1 part, the dehydration loss is reduced but the Du Pont't strength is low. Furthermore, even if N-50P is increased, the Du Pont't strength tends to further decrease. Since talc and polyvinyl chloride coexist to coagulate, talc itself will coagulate and coarsen the particles even when N-50P is present in a relatively small amount. Example 7 The effect of the present invention was investigated by changing the type of flocculant using the method of Example 1. Coagulants include polyvinyl alcohol (PVA) and methanol-soluble nylon CM.
−8000 was used. Since CM-8000 is a solid,
A latex was obtained by dropping a 1 wt% methanol solution into a 10 times ammoniacal aqueous solution while stirring. The amount used is 0.1wt part per 100wt part of talc.
A 0.2wt portion was used. The formulation and processing conditions of Example 1 were used, and the mixing was carried out under conditions of 0 minutes of premixing. The results are shown in Table-6. In either case, high impact resistance can be obtained regardless of the number of copies used.

【衚】 実斜䟋  衚−ののタルクを甚いお実斜䟋ず同じ方
法で皮々の高分子凝集剀を甚いおプレミツクスを
埗、それらを実斜䟋ず同様にしお成圢加工予
備混合分しお、Du Pon′t衝撃匷床を枬定し
た。結果を衚−に瀺す。高分子凝集剀ずしおは
アニオン系、カチオン系、ノニオン系のいずれで
も、又、ポリビニルアルコヌルなどでも本発明の
効果を瀺すこずが明らかである。
[Table] Example 8 Using talc A in Table 1, premixes were obtained in the same manner as in Example 1 using various polymer flocculants, and they were molded (premixed) in the same manner as in Example 1. 0 minutes) and the Du Pont't impact strength was measured. The results are shown in Table-7. It is clear that any anionic, cationic, or nonionic polymer flocculant, as well as polyvinyl alcohol, can exhibit the effects of the present invention.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  予め高分子凝集剀を混合しおなる塩化ビニル
系暹脂の氎性スラリヌに無機系充填剀を混合した
埌、脱氎、也燥するこずを特城ずする塩化ビニル
系耇合材の補造方法。  無機系充填剀が板状充填剀である特蚱請求の
範囲第項蚘茉の耇合材の補造方法。  板状充填剀が雲母、タルク及びガラスフレヌ
クの少なくずも皮である特蚱請求の範囲第項
蚘茉の耇合材の補造方法。  無機系充填剀においお玄10Ό以䞊の粒埄を有
するものが15重量以䞋である特蚱請求の範囲第
項蚘茉の耇合材の補造方法。  高分子凝集剀が非むオン系、アニオン系たた
はカチオン系である特蚱請求の範囲第項蚘茉の
耇合材の補造法。  高分子凝集剀が融点200℃以䞋のポリアミド
である特蚱請求の範囲第項乃至第項の䜕れか
の項蚘茉の耇合材の補造方法。  無機系充填剀を混合するにあたり、該充填剀
を氎性スラリヌないし懞濁液の圢で混合する特蚱
請求の範囲第項蚘茉の耇合材の補造方法。  無機系充填剀の量が耇合材䞭〜60重量で
ある特蚱請求の範囲第項蚘茉の耇合材の補造方
法。  塩化ビニル系暹脂の氎性スラリヌが塩化ビニ
ル系モノマヌを重合した埌にできるスラリヌに高
分子凝集剀を添加し撹拌したものである特蚱請求
の範囲第項蚘茉の耇合材の補造方法。  塩化ビニル系暹脂の氎性スラリヌが塩化ビ
ニル系暹脂を氎䞭に分散せしめた埌、高分子凝集
剀を加えお撹拌したものである特蚱請求の範囲第
項蚘茉の耇合材の補造方法。  塩化ビニル系暹脂が塩化ビニル重合䜓であ
る特蚱請求の範囲第項蚘茉の耇合材の補造方
法。  塩化ビニル系暹脂が塩化ビニルず有機酞の
ビニル゚ステル、ビニリデンフルオラむド、ビニ
リデンクロラむド、ゞクロル゚チレン、アクリロ
ニトリル、メタクリロニトリル、アルキルアクリ
レヌト゚ステル、アルキルメタクリレヌト゚ステ
ル、ゞブチルフマレヌト゚ステル、ゞ゚チルマレ
ヌト゚ステルから遞ばれる少なくずも皮のモノ
マヌずの共重合䜓である特蚱請求の範囲第項蚘
茉の耇合材の補造方法。
[Claims] 1. Production of a vinyl chloride-based composite material, characterized in that an inorganic filler is mixed into an aqueous slurry of a vinyl chloride-based resin that has been mixed with a polymer flocculant in advance, and then dehydrated and dried. Method. 2. The method for producing a composite material according to claim 1, wherein the inorganic filler is a plate-like filler. 3. The method for producing a composite material according to claim 2, wherein the plate-like filler is at least one of mica, talc, and glass flakes. 4. The method for producing a composite material according to claim 1, wherein the inorganic filler has a particle size of about 10 Όm or more in an amount of 15% by weight or less. 5. The method for producing a composite material according to claim 1, wherein the polymer flocculant is nonionic, anionic, or cationic. 6. The method for producing a composite material according to any one of claims 1 to 5, wherein the polymer flocculant is a polyamide with a melting point of 200°C or less. 7. The method for producing a composite material according to claim 1, wherein the inorganic filler is mixed in the form of an aqueous slurry or suspension. 8. The method for producing a composite material according to claim 1, wherein the amount of the inorganic filler is 1 to 60% by weight in the composite material. 9. The method for producing a composite material according to claim 1, wherein the aqueous slurry of vinyl chloride resin is obtained by adding a polymer flocculant to a slurry formed after polymerizing a vinyl chloride monomer and stirring the mixture. 10. The method for producing a composite material according to claim 1, wherein the aqueous slurry of vinyl chloride resin is obtained by dispersing vinyl chloride resin in water, adding a polymer flocculant, and stirring the resulting slurry. 11. The method for producing a composite material according to claim 1, wherein the vinyl chloride resin is a vinyl chloride polymer. 12 The vinyl chloride resin is a vinyl ester of vinyl chloride and an organic acid, vinylidene fluoride, vinylidene chloride, dichloroethylene, acrylonitrile, methacrylonitrile, alkyl acrylate ester, alkyl methacrylate ester, dibutyl fumarate ester, diethyl maleate ester. The method for producing a composite material according to claim 1, which is a copolymer with at least one selected monomer.
JP9548280A 1980-07-11 1980-07-11 Production of polyvinyl chloride type composite material Granted JPS5721424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9548280A JPS5721424A (en) 1980-07-11 1980-07-11 Production of polyvinyl chloride type composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9548280A JPS5721424A (en) 1980-07-11 1980-07-11 Production of polyvinyl chloride type composite material

Publications (2)

Publication Number Publication Date
JPS5721424A JPS5721424A (en) 1982-02-04
JPS6315941B2 true JPS6315941B2 (en) 1988-04-06

Family

ID=14138826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9548280A Granted JPS5721424A (en) 1980-07-11 1980-07-11 Production of polyvinyl chloride type composite material

Country Status (1)

Country Link
JP (1) JPS5721424A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483149U (en) * 1990-11-30 1992-07-20

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1984442T3 (en) * 2006-02-14 2010-07-26 Arkema France Hybrid force modifiers and processes for their production
JP5821267B2 (en) * 2011-05-12 2015-11-24 䜏友ベヌクラむト株匏䌚瀟 Method for producing composite material composition, composite material composition and molded body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483149U (en) * 1990-11-30 1992-07-20

Also Published As

Publication number Publication date
JPS5721424A (en) 1982-02-04

Similar Documents

Publication Publication Date Title
US5276092A (en) Encapsulated micro-agglomerated core/shell additives in poly(vinyl chloride) blends
EP2401340B1 (en) Composite polymer modifiers
US4375497A (en) Free flowing SBR black masterbatch powder
US6031047A (en) Impact-modified poly(vinyl chloride) exhibiting improved low-temperature fusion
US2807603A (en) Rigid shock-resistant vinyl halide polymer compositions
EP3464465A1 (en) Polymer composition, its process of preparation, its use and composition comprising it
KR20200055786A (en) One-component polymer modifier
JPS6315941B2 (en)
EP0850740A1 (en) Impact-modified poly(vinyl chloride) exhibiting improved low-temperature fusion
EP2948497B1 (en) Halogenated polymer composite composition, its manufacturing process and its use
US11312854B2 (en) Polymer composition, its process of preparation and its use
JPS6152857B2 (en)
KR100694474B1 (en) Thermoplastic resin having good process ability
US20190352496A1 (en) Polymer composition with filler, its method of preparation and use
RU2782844C2 (en) Polymer composition with filler, its production method and its use
CN107922704B (en) Polymer composition, method for the production and use thereof
RU2781644C2 (en) Polymer composition, its production method, and its use
US10851231B2 (en) Polymer composition with filler, its method of preparation and use
JPS6357461B2 (en)
JPS6244574B2 (en)
SU1281576A1 (en) Method of producing modified calcium carbonate
JPS6242936B2 (en)
JPH07258351A (en) Acrylic-rubber-based compounding ingredient for vinyl chloride resin
JPS62236850A (en) Polycarbonate resin composition
JPS6156243B2 (en)