JPS6121257B2 - - Google Patents

Info

Publication number
JPS6121257B2
JPS6121257B2 JP16289478A JP16289478A JPS6121257B2 JP S6121257 B2 JPS6121257 B2 JP S6121257B2 JP 16289478 A JP16289478 A JP 16289478A JP 16289478 A JP16289478 A JP 16289478A JP S6121257 B2 JPS6121257 B2 JP S6121257B2
Authority
JP
Japan
Prior art keywords
talc
polyvinyl chloride
chloride resin
width
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16289478A
Other languages
Japanese (ja)
Other versions
JPS5589346A (en
Inventor
Minoru Shioda
Yoshihisa Oowada
Tetsuo Yamamoto
Itaru Hatano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP16289478A priority Critical patent/JPS5589346A/en
Publication of JPS5589346A publication Critical patent/JPS5589346A/en
Publication of JPS6121257B2 publication Critical patent/JPS6121257B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、タルクによつて強化したポリ塩化ビ
ニル系樹脂組成物に関するものである。 近年、熱可塑性樹脂に無機の充填剤で複合して
機械的強度、耐熱性を附与する研究が各方面でな
され、一部では既に実用化されている。ポリ塩化
ビニルに関してはガラス繊維による強化が知られ
ている。その他、強化用の充填剤として、アスベ
スト、針状ケイ酸カルシウム(ワラストナイト)
等があるが、これらの繊維状充填剤で強化した複
合材料は一方向の引張物性は強化されるが、それ
と直角方向の引張強度が著しく低下(繊維の配向
で異方性を生じる)し、さらにポリ塩化ビニルの
特徴の1つである衝撃強度を著しく低下させると
いう欠点があつた。物性に異方性のでない強化用
充填剤としてマイカやタルクがあるが、マイカの
場合は縦又は横のいずれかの長さと厚みの比(以
下アスペクト比という)の大きなマイカを使用し
ても引張物性は低下し、また衝撃強度も著しく低
いことが判つた。これはマイカをポリ塩化ビニル
中に分散させるに必要なセン断力でマイカの板状
結晶が破壊される為に引張強度が低下し、又、一
部破壊されずに残つたマイカが衝撃強度を低下さ
せるからである。一方、タルクを使用した場合は
引張、曲げ物性が強化され、且つ物性の異方性も
小さいが、衝撃強度の低下は著しく大きいことが
わかつた。タルクで強化したポリ塩化ビニル系樹
脂の大きな欠点であつた衝撃強度は85%以上が10
μ以下であるタルクを使用することにより改善さ
れることが判つたが、ほぼ同じ粒度のタルクでも
鉱石が異なると、それによつて強化されたポリ塩
化ビニル系樹脂組成物の衝撃強度に大きな差が見
られた。 本発明者は、引張曲げ物性を強化し、且つ物性
の異方性を少なくすると同時に、衝撃強度を改善
する為に鋭意研究した結果、85%以上好ましくは
90%以上が10μ以下であるタルクの内、X線回折
図形の(004)面の半価幅に対する(020)面の半
価幅の比〔(020)半価幅/(004)半価幅〕が約
1.2以上であるタルクで強化した塩化ビニル系樹
脂組成物は、引張曲げ物性に優れ、且つ異方性が
小さく、衝撃強度が一層改善されるという事を見
出し、本発明に到つたものである。 タルクのX線回折の測定には、CuKαの特性
線を用いた。 ポリ塩化ビニル系樹脂の引張曲げ強度を強化す
るためにはタルクが薄片状であることが好ましい
が、この場合には結晶が配向性を示すため
(00l)面の回折強度が高くなる。一方、結晶格子
の乱れが大きいと(020)面のピークがブロード
になる。すなわち、本発明でいうX線回折図形の
(004)面の半価幅に対する(020)面の半価幅の
比が約1.2以上であるタルクというのは、結晶格
子が完全でなくある程度乱れているタルクを言
う。このようなタルクによつて強化されたポリ塩
化ビニル系樹脂組成物は、特に衝撃強度において
優れている。 本発明において使用されるタルクは、85%以
上、好ましくは90%以上が10μ以下のものである
が、10μより大きなものが15%より多いタルクで
強化されたポリ塩化ビニル系樹脂はタルクのX線
回折図形が異なつたものでも、鉱石が異なるもの
でも全て衝撃強度は著しく低い。 タルク(滑石)は、鉱物組成Mg3(Si4O10
(OH)2で示される単斜晶系の鉱物で、鉱石を粉砕
したものが使用される。粉砕したタルクの形状は
薄片状である。タルクの粉砕には、Jaw
crushers,Hammer crushers,Impact mill等の
破砕機又は粉砕機が使用される。更に、85%以上
が10μ以下であるタルクを得るためにタルクを粉
砕した後、アルキメデス渦型分級機、ジグザグ回
転壁型分級機等の分級機が使用される。タルクの
X線回折は、こうして得られたタルクをCuKα
の特性線を用いて粉末法で測定され、(004)面の
半価幅に対する(020)面の半価幅の比が約1.2以
上であるタルクを本発明において用いる。必要に
よつて、タルクはシラン・カツプリング剤、有機
チタネート、脂肪酸等で表面処理して使用しても
よい。 本発明にいうポリ塩化ビニル系樹脂とは、ポリ
塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、塩化
ビニル・塩化ビニリデン共重合体、塩化ビニルと
酢酸ビニル、無水マレイン酸、エチレン、プロピ
レン等との共重合体、塩素化ポリ塩化ビニル樹脂
のような変性樹脂を含み、これを単独又は混合し
て使用することも可能である。またABS,
MBS、塩素化ポリエチレン等の耐衝撃性改良用
の樹脂を混合することもできる。配合剤として鉛
系、錫系、Ca−Zn系等の安定剤、滑剤、加工性
改良剤を添加することができる。必要によつて他
の充填剤例えば炭酸カルシウム、石こう、石こう
繊維、アスベスト、マイカ、ケイ酸カルシウム、
ガラス繊維等を併用してもよい。 本発明に使用するタルクと塩化ビニル系樹脂と
の混合は、通常の方法がとられるが、タルクと塩
化ビニル系樹脂とが充分に初期分散をするように
混合するのが望ましい。例えば機械により一概に
は言えないが高速で20分程度混合するとか、バン
バリーミキサーで予備混練する等の方策がとられ
る。成形については二本ロール、単軸押出機、二
軸押出機、特殊な複合混練機によつて直接成形す
る方法、あるいは、二本ロール、バンバリーミキ
サー、単軸押出機、二軸押出機あるいは特殊な複
合混練機によつてペレツトを製造し、射出成形、
吹き込み成形、押出成形、カレンダー成形、溶融
紡糸加工等によつて成形材料を得てもよい。 タルクは、従来よりポリスチレンやポリオレフ
イン用の充填剤として使われているがポリ塩化ビ
ニルには使われなかつた。その理由は衝撃強度の
低下が極めて大きく、実用化できなかつたからで
ある。本発明では85%以上好ましくは90%以上が
10μ以下であるタルクの内、X線回折図形の
(004)面の半価幅に対する(020)面の半価幅の
比が約1.2以上であるタルクをポリ塩化ビニル系
樹脂の強化に使えば衝撃強度が大幅に改善され
た、且つ品質の安定したものが得られるという点
で工業上の利用価値はきわめて大きい。 以下に実施例で更に説明する。 実施例1、比較例1 タルクの鉱石A,B,C及びDをスーパーミク
ロンミルで粉砕分級した後、ミクロプレツクス
(Alpine社−安川電機)を用いて分級点を変えて
同一操作を繰返して分級し、10μ以下のものが約
90%のタルク(A),(B),(C)及び(D)を得た。 鉛配合のポリ塩化ビニル(鐘淵化学工業製、商
品名カネビニールS−1001)に上記のタルクをそ
れぞれ5、10、20、30重量%配合し、80℃以下の
温度に保つてスーパーミキサーで20分間混合した
後、40mmφの押出機(田端機械:HV−40−28、
ダルメージスクリユーCR=3.2,2.2)を用いて
180℃でペレツト化する。このペレツトを、同じ
押出機(スクリユーはフルフライト)で厚み3
mm、巾60mmのベルトを成形した。 押出方向(MD)の引張強度は、JIS K−6745
の1号試験片で試験スピード10mm/minで試験、
横方向(TD)はJIS K−7113の3号試験片で試
験スピード5mm/minで試験した。また、衝撃強
度はデユポン試験機を使用し、3″/8の撃芯で300
g換算の半数破壊高さ(cm)で試験表示した。測
定温度はいずれも23℃である。結果を第1表に示
す。 尚、使用したタルクの粒度分布は、島津遠心沈
降式粒度測定装置CP−50により測定した。使用
溶媒は蒸留水、分散剤として(NaPO36の0.2%
溶液使用、懸濁液温度は29℃である。 比較例 2 タルクの鉱石BとCを実施例1と同様にして粉
砕分級し、10μ以下のものが約75%のタルク
(B′)と(C′)を得た。このタルクを鉛配合ポリ
塩化ビニルに15重量%配合し実施例1と同様な方
法で成形加工し、物性を測定した。結果を表2に
示す。
The present invention relates to a polyvinyl chloride resin composition reinforced with talc. In recent years, research has been conducted in various fields on adding mechanical strength and heat resistance to thermoplastic resins by compounding them with inorganic fillers, and some of them have already been put into practical use. Regarding polyvinyl chloride, reinforcement with glass fiber is known. In addition, asbestos and acicular calcium silicate (wollastonite) are used as reinforcing fillers.
Composite materials reinforced with these fibrous fillers have enhanced tensile properties in one direction, but the tensile strength in the direction perpendicular to this is significantly reduced (anisotropy occurs due to fiber orientation). Furthermore, it had the disadvantage of significantly lowering impact strength, which is one of the characteristics of polyvinyl chloride. Mica and talc are reinforcing fillers that do not have anisotropic physical properties, but in the case of mica, even if mica is used with a large ratio of length to thickness (hereinafter referred to as aspect ratio), it will not cause tensile strength. It was found that the physical properties deteriorated and the impact strength was also significantly low. This is because the shearing force required to disperse mica in polyvinyl chloride destroys the plate-like crystals of mica, resulting in a decrease in tensile strength, and the remaining unbroken mica decreases impact strength. This is because it reduces the On the other hand, it was found that when talc was used, the tensile and bending properties were enhanced and the anisotropy of the properties was small, but the impact strength was significantly reduced. The impact strength, which was a major drawback of talc-reinforced polyvinyl chloride resin, is 85% or more.
It was found that the improvement could be achieved by using talc with a particle size of less than μ, but even if the particle size of talc is approximately the same, if the ore is different, there will be a large difference in the impact strength of the reinforced polyvinyl chloride resin composition. It was seen. As a result of intensive research in order to strengthen the tensile and bending physical properties, reduce the anisotropy of the physical properties, and at the same time improve the impact strength, the inventor found that the
Among talcs of which 90% or more are 10μ or less, the ratio of the half-width of the (020) plane to the half-width of the (004) plane in the X-ray diffraction pattern [(020) half-width/(004) half-width ] is approximately
It was discovered that a vinyl chloride-based resin composition reinforced with talc having a strength of 1.2 or more has excellent tensile and bending properties, low anisotropy, and further improved impact strength, leading to the present invention. The characteristic line of CuKα was used to measure the X-ray diffraction of talc. In order to enhance the tensile bending strength of the polyvinyl chloride resin, it is preferable that talc be in the form of flakes, but in this case, the crystals exhibit orientation, so the diffraction intensity of the (00l) plane increases. On the other hand, when the crystal lattice is highly disordered, the peak of the (020) plane becomes broad. In other words, in the present invention, talc whose X-ray diffraction pattern has a ratio of the half-width of the (020) plane to the half-width of the (004) plane of about 1.2 or more means that the crystal lattice is not perfect and is disordered to some extent. Tell the talc that is there. Such talc-reinforced polyvinyl chloride resin compositions are particularly excellent in impact strength. The talc used in the present invention has a particle size of 85% or more, preferably 90% or more, of 10μ or less, but a polyvinyl chloride resin reinforced with talc in which 15% or more of talc larger than 10μ is Even if the line diffraction pattern is different or the ore is different, the impact strength is extremely low. Talc has the mineral composition Mg 3 (Si 4 O 10 )
(OH) A monoclinic mineral represented by 2 , which is used as a crushed ore. The shape of the crushed talc is flaky. Jaw for grinding talc
Crushers or crushers such as crushers, hammer crushers, impact mills, etc. are used. Further, after pulverizing the talc to obtain talc in which 85% or more is 10μ or less, a classifier such as an Archimedes vortex classifier or a zigzag rotating wall classifier is used. X-ray diffraction of talc reveals that the talc thus obtained is CuKα
The present invention uses talc whose ratio of the half-width of the (020) plane to the half-width of the (004) plane is about 1.2 or more, as measured by a powder method using the characteristic line. If necessary, talc may be surface-treated with a silane coupling agent, an organic titanate, a fatty acid, etc. before use. The polyvinyl chloride resin referred to in the present invention refers to polyvinyl chloride resin, polyvinylidene chloride resin, vinyl chloride/vinylidene chloride copolymer, copolymer of vinyl chloride and vinyl acetate, maleic anhydride, ethylene, propylene, etc. , modified resins such as chlorinated polyvinyl chloride resins, which can be used alone or in combination. Also ABS,
Resins for improving impact resistance such as MBS and chlorinated polyethylene can also be mixed. As compounding agents, lead-based, tin-based, Ca-Zn-based stabilizers, lubricants, and processability improvers can be added. If necessary, other fillers such as calcium carbonate, gypsum, gypsum fiber, asbestos, mica, calcium silicate, etc.
Glass fiber or the like may also be used in combination. The talc and vinyl chloride resin used in the present invention are mixed by a conventional method, but it is desirable to mix the talc and the vinyl chloride resin so that they are sufficiently initially dispersed. For example, measures such as mixing at high speed for about 20 minutes or pre-kneading with a Banbury mixer may be taken, although it cannot be generalized depending on the machine. For molding, there is a method of direct molding using a two-roll, single-screw extruder, twin-screw extruder, special compound kneader, or a method of direct molding using a two-roll, Banbury mixer, single-screw extruder, twin-screw extruder, or special Pellets are manufactured using a complex compound kneader, injection molded,
The molding material may be obtained by blow molding, extrusion molding, calender molding, melt spinning, or the like. Talc has traditionally been used as a filler for polystyrene and polyolefins, but has not been used for polyvinyl chloride. The reason for this is that the drop in impact strength was so large that it could not be put to practical use. In the present invention, 85% or more, preferably 90% or more
Among talcs with a diameter of 10μ or less, if the ratio of the half-width of the (020) plane to the half-width of the (004) plane in the X-ray diffraction pattern is about 1.2 or more, it can be used to strengthen polyvinyl chloride resin. It has extremely high industrial utility value in that it can provide products with significantly improved impact strength and stable quality. This will be further explained in Examples below. Example 1, Comparative Example 1 After pulverizing and classifying talc ores A, B, C and D using a super micron mill, the same operation was repeated using a microplex (Alpine - Yaskawa Electric) by changing the classification point. It is classified and those less than 10μ are approx.
90% talc (A), (B), (C) and (D) were obtained. Add 5, 10, 20, and 30% by weight of each of the above talc to lead-containing polyvinyl chloride (manufactured by Kanebuchi Chemical Industry Co., Ltd., trade name Kanevinyl S-1001), keep the temperature below 80℃, and mix in a super mixer. After mixing for 20 minutes, use a 40mmφ extruder (Tabata Machinery: HV-40-28,
Using Dalmage Screw CR=3.2, 2.2)
Pelletize at 180℃. The pellets are made into the same extruder (the screw is in full flight) to a thickness of 3
A belt with a width of 60 mm and a width of 60 mm was formed. The tensile strength in the extrusion direction (MD) is JIS K-6745.
Tested with No. 1 test piece at a test speed of 10 mm/min.
The transverse direction (TD) was tested using a JIS K-7113 No. 3 test piece at a test speed of 5 mm/min. In addition, the impact strength was measured at 300 using a Dupont tester with a 3″/8 impact core.
The test was expressed in g-converted half-break height (cm). The measurement temperature was 23°C in both cases. The results are shown in Table 1. The particle size distribution of the talc used was measured using a Shimadzu centrifugal sedimentation particle size analyzer CP-50. The solvent used was distilled water and 0.2% of (NaPO 3 ) 6 as a dispersant.
Solution used, suspension temperature is 29°C. Comparative Example 2 Talc ores B and C were crushed and classified in the same manner as in Example 1 to obtain talc (B') and (C') in which approximately 75% of the minerals were 10 μm or less. This talc was blended at 15% by weight with lead-containing polyvinyl chloride, molded in the same manner as in Example 1, and its physical properties were measured. The results are shown in Table 2.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 85%以上が10μ以下であり、且つX線回折図
形の(020)面の半価幅の(004)面の半価幅に対
する比が約1.2以上であるタルクとポリ塩化ビニ
ル系樹脂を含むことを特徴とするポリ塩化ビニル
系樹脂組成物。 2 特許請求の範囲第1項記載のタルクを40重量
%以下含有するポリ塩化ビニル系樹脂組成物。
[Scope of Claims] 1. Talc and polyester, in which 85% or more of the particles are 10μ or less, and the ratio of the half-width of the (020) plane to the half-width of the (004) plane in the X-ray diffraction pattern is about 1.2 or more. A polyvinyl chloride resin composition comprising a vinyl chloride resin. 2. A polyvinyl chloride resin composition containing 40% by weight or less of talc according to claim 1.
JP16289478A 1978-12-26 1978-12-26 Polyvinyl chloride resin composition Granted JPS5589346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16289478A JPS5589346A (en) 1978-12-26 1978-12-26 Polyvinyl chloride resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16289478A JPS5589346A (en) 1978-12-26 1978-12-26 Polyvinyl chloride resin composition

Publications (2)

Publication Number Publication Date
JPS5589346A JPS5589346A (en) 1980-07-05
JPS6121257B2 true JPS6121257B2 (en) 1986-05-26

Family

ID=15763259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16289478A Granted JPS5589346A (en) 1978-12-26 1978-12-26 Polyvinyl chloride resin composition

Country Status (1)

Country Link
JP (1) JPS5589346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391577A (en) * 1986-10-06 1988-04-22 Saamotetsuku:Kk Cooler-heater for temperature test

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391577A (en) * 1986-10-06 1988-04-22 Saamotetsuku:Kk Cooler-heater for temperature test

Also Published As

Publication number Publication date
JPS5589346A (en) 1980-07-05

Similar Documents

Publication Publication Date Title
Fuad et al. Polypropylene/calcium carbonate nanocomposites--effects of processing techniques and maleated polypropylene compatibiliser.
Liu et al. Investigation on unusual crystallization behavior in polyamide 6/montmorillonite nanocomposites
US6310129B1 (en) Processing and use of carbide lime
Hanim et al. The effect of calcium carbonate nanofiller on the mechanical properties and crystallisation behaviour of polypropylene
Petrucci et al. Filled polymer composites
Deepak et al. Study of nanocomposites with emphasis to halloysite nanotubes
Shimpi et al. Dispersion of nano CaCO3 on PVC and its influence on mechanical and thermal properties
Gonzalez et al. Exfoliated PA6, 6 nanocomposites by modification with PA6
Ahmadi et al. Morphology and characterization of clay-reinforced EPDM nanocomposites
Sengupta et al. Lauric acid coated fly ash as a reinforcement in recycled polymer matrix composites
JPS6121257B2 (en)
Ghalia et al. RETRACTED ARTICLE: Viscoelastic Behavior and Mechanical Properties of Polypropylene/Nano-Calcium Carbonate Nanocomposites Modified by a Coupling Agent
JP2736906B2 (en) Method for blending thermoplastic wholly aromatic polyester resin composition
Balachandran et al. Studies on acrylonitrile—butadiene copolymer (NBR) layered silicate composites: mechanical and viscoelastic properties
JPS6121256B2 (en)
JPS6121255B2 (en)
Song et al. Preparation of ultra-nano talcum in sand mill and its application in the polypropylene
JP6005349B2 (en) Polyamide resin composition
Basilia et al. Study on the functionality of nano-precipitated calcium carbonate as filler in thermoplastics
CN114381036A (en) Plastic product and preparation method thereof
JPS6242936B2 (en)
EP3910031A1 (en) Talc particulate
JPH10265630A (en) Reinforced polypropylene composition
JPS6244574B2 (en)
JPH10265613A (en) Composite filler for resin