JPS6026421B2 - Reinforced polyvinyl chloride resin composition - Google Patents

Reinforced polyvinyl chloride resin composition

Info

Publication number
JPS6026421B2
JPS6026421B2 JP17335079A JP17335079A JPS6026421B2 JP S6026421 B2 JPS6026421 B2 JP S6026421B2 JP 17335079 A JP17335079 A JP 17335079A JP 17335079 A JP17335079 A JP 17335079A JP S6026421 B2 JPS6026421 B2 JP S6026421B2
Authority
JP
Japan
Prior art keywords
talc
polyvinyl chloride
chloride resin
present
thermal stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17335079A
Other languages
Japanese (ja)
Other versions
JPS5695944A (en
Inventor
善久 大和田
実 潮田
哲郎 山本
至 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP17335079A priority Critical patent/JPS6026421B2/en
Publication of JPS5695944A publication Critical patent/JPS5695944A/en
Publication of JPS6026421B2 publication Critical patent/JPS6026421B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明はタルクによって強化されたポリ塩化ビニル系樹
脂組成物の熱安定性と熱安定性の低下による耐衝撃性の
低下を改良することを目的とする強化ポリ塩化ビニル系
樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to improve the thermal stability of polyvinyl chloride resin compositions reinforced with talc and the decrease in impact resistance caused by the decrease in thermal stability. The present invention relates to a resin composition.

近年、熱可塑性樹脂を無機の充填剤と複合して機械的強
度、耐熱性を附与する研究が各方面でなされ、一部では
既に実用化されている。
In recent years, research has been conducted in various fields on combining thermoplastic resins with inorganic fillers to impart mechanical strength and heat resistance, and some have already been put into practical use.

ボリ塩化ビニルに関しては、ガラス繊維による強化が知
られている。その他、充填剤として、アスベスト、ワラ
ストナィト、石膏繊維等が研究されている。これらの繊
維状充填剤は成形時の流れ方向に配向する為に物性の異
方性を生じ、流れと直角方向の物性が著しく低いという
欠点がある。異方性の少ない充填剤としてマィカやタル
クがあるが、マィカをポリ塩化ビニルに充填すると、成
形加工時の切断力によってアスペクト比(長さと厚みの
比)が低下し物性の強化性において劣る。また、タルク
はマィカに比較すると物性の強化性があり、異方性は小
さいものの、ポリ塩化ビニルの劣化を著しく促進し、そ
の為に成形加工時に所謂ャケを生じたり、成形品が黒く
着色しやすく、更にタルクとポリ塩化ビニルとの混合時
間が長くなると、さらに熱安定性が低下し、その結果耐
衝撃性が大中に低下するという数々の欠点があつた。
Regarding polyvinyl chloride, reinforcement with glass fibers is known. Other fillers being studied include asbestos, wollastonite, and gypsum fiber. These fibrous fillers are oriented in the flow direction during molding, resulting in anisotropy in physical properties, and have the disadvantage that physical properties in the direction perpendicular to the flow are extremely low. Mica and talc are examples of fillers with low anisotropy, but when mica is filled into polyvinyl chloride, the aspect ratio (ratio of length to thickness) decreases due to the cutting force during molding, resulting in poor reinforcement of physical properties. Furthermore, although talc has stronger physical properties and less anisotropy than mica, it significantly accelerates the deterioration of polyvinyl chloride, causing so-called fading during molding and causing molded products to turn black. Furthermore, when the mixing time of talc and polyvinyl chloride is increased, the thermal stability is further reduced, and as a result, the impact resistance is significantly reduced.

一般に無機充填剤をポリ塩化ピニルに配合するとポリ塩
化ビニルの劣化を促進する事が知られており、その原因
は不純物として含まれる鉄イオン等がポリ塩化ビニルの
脱塩化水素を促進する為といわれている。
It is generally known that blending inorganic fillers with polyvinyl chloride accelerates the deterioration of the polyvinyl chloride, and the reason for this is said to be that iron ions, etc. contained as impurities accelerate dehydrochlorination of the polyvinyl chloride. ing.

アスベストーポリ塩化ピニルはいわゆる塩ビタイルとし
て多用されているが、この場合、熱安定性の改良研究が
種々行なわれ、例えば、プラスチックおよびゴム用添加
剤実用便寛(化学工業社、昭和43王)によると、ジシ
アンジアミドやメラミンが熱安定性の改良効果が大きい
とされているが、タルクを含むポリ塩化ビニルコンパウ
ンド10碇熱こ、ジシアンジアミドやメラミンを1部添
加しても前者は、さらに熱安定性を低下させ、後者はほ
とんど効果がない事が本発明者により解明された。
Asbestos-polyvinyl chloride is often used as so-called PVC tiles, but in this case, various studies have been conducted to improve its thermal stability. It is said that dicyandiamide and melamine have a great effect on improving thermal stability. However, even if one part of dicyandiamide or melamine is added to a polyvinyl chloride compound containing talc, the former will not have any further improvement in thermal stability. The inventors have found that the latter has almost no effect.

又、ポリ塩化ビニルの安定剤として優れた効果を有する
三塩基性硫酸塩や、ブチル錫マレートを添加しても、そ
の効果はほとんどみられない。またタルクを含むポリ塩
化ビニル系樹脂組成物の熱安定性の改良には融点又は軟
化点が約200℃以下のポリァミドが有効であるが、そ
れらの熱安定性を改良した場合でも、タルクとボリ塩化
ビニルとを混合するとき、タルクの分散をよくするため
に混合時間を長くしたり、大型のミキサーを使用すると
、熱安定性が低下し、そのために衝撃強度が著しく低下
することが判った。
Further, even if tribasic sulfate or butyltin malate, which has excellent effects as a stabilizer for polyvinyl chloride, is added, the effect is hardly seen. Furthermore, polyamides with a melting point or softening point of about 200°C or less are effective for improving the thermal stability of polyvinyl chloride resin compositions containing talc, but even when their thermal stability is improved, talc and polyamide It has been found that when mixing with vinyl chloride, if the mixing time is increased or a large mixer is used to improve the dispersion of talc, the thermal stability decreases, resulting in a significant decrease in impact strength.

本発明者は、タルクを含有した塩化ビニル系樹脂組成物
の熱安定性と熱安定性低下による耐衝撃性の低下を改良
する前記の目的を達成するために、鋭意研究した結果、
R,CONHR2で示されるアミド化合物を10仏以上
の粒子の15%以下の夕ルクを含む塩化ビニル系樹脂に
加えると、熱安定性が向上し、混合時間を長くしても熱
安定性、耐衝撃性の低下が小さいことを見出し、本発明
に到達したのである。
As a result of intensive research, the present inventor has conducted extensive research in order to achieve the above-mentioned objective of improving the thermal stability of a vinyl chloride resin composition containing talc and the decrease in impact resistance caused by the decrease in thermal stability.
When an amide compound represented by R, CONHR2 is added to a vinyl chloride resin containing 15% or less of tungsten in particles of 10 or more, the thermal stability improves, and even if the mixing time is increased, the thermal stability and resistance are improved. They discovered that the decrease in impact resistance was small and arrived at the present invention.

ここにR,は飽和又は不飽和の脂肪族炭化水素、R2は
日を除く−C&OR5又は一R3NHCOR4(R3,
R4,R5は夫々水素又は同一或は異なる飽和又は不飽
和脂肪族炭化水素)である。
where R, is a saturated or unsaturated aliphatic hydrocarbon, R2 is -C&OR5 or -R3NHCOR4 (R3,
R4 and R5 are each hydrogen or the same or different saturated or unsaturated aliphatic hydrocarbons.

以下本発明を詳細に説明する。The present invention will be explained in detail below.

本発明に使用されるタルク(糟石)は、鉱物組成M&(
Si40,o)(OH)2で示される単斜晶系の鉱物で
、鉱石を粉砕した薄片状のものが使用される。
Talc used in the present invention has a mineral composition of M&(
A monoclinic mineral represented by Si40,o)(OH)2, which is used in the form of flakes obtained by crushing ore.

本発明のように熱安定性だけでな〈耐衝撃性をも改良し
たい場合には、タルクは10山以上の粒子が15%以下
のものを使用するとその効果が充分発揮される。
When it is desired to improve not only the thermal stability but also the impact resistance as in the present invention, the effect can be fully exhibited by using talc containing 15% or less of particles having 10 or more peaks.

必要によって、タルクはシラン・カップリング剤、有機
チタネート、脂肪酸等で表面処理して使用してもよい。
ポリ塩化ビニル系樹脂に充填する10仏以上の粒子が1
5%以下のタルクの塁は任意であるが、1重量%(以後
すべて%は重量%である。
If necessary, talc may be surface-treated with a silane coupling agent, an organic titanate, a fatty acid, etc. before use.
Particles of 10 or more sizes filled in polyvinyl chloride resin are 1
A base of 5% or less talc is optional, but 1% by weight (all percentages hereinafter are by weight).

)以上好ましくは5%以上、40%以下が好適である。
充填童が40%を超過しても又は1%未満でも耐衝撃性
が低く本発明の効果が充分発揮されない。本発明にいう
ポリ塩化ビニル系樹脂とは、ポリ塩化ビニル樹脂、ポリ
塩化ピニリデン樹脂、塩化ビニル、塩化ビニリデン共重
合体、塩化ピニルと酢酸ビニル、無水マレィン酸、エチ
レン、プロピレン等との共重合体、塩素化ポリ塩化ビニ
ル樹脂のような変性樹脂を含み、これを単独又は混合し
て使用することも可能である。
) or more, preferably 5% or more and 40% or less.
Even if the filler content exceeds 40% or is less than 1%, the impact resistance will be low and the effects of the present invention will not be fully exhibited. The polyvinyl chloride resin referred to in the present invention refers to polyvinyl chloride resin, polypinylidene chloride resin, vinyl chloride, vinylidene chloride copolymer, copolymer of pinyl chloride and vinyl acetate, maleic anhydride, ethylene, propylene, etc. , modified resins such as chlorinated polyvinyl chloride resins, which can be used alone or in combination.

またABC,M茂、塩素化ポリエチレン等の耐衝撃性改
良用の樹脂を混合することもできる。
It is also possible to mix resins for improving impact resistance such as ABC, M-silver, and chlorinated polyethylene.

配合剤として鉛系、錫系、Ca−Zn系等の安定剤、糟
剤、加工性改良剤を添加することができる。必要によっ
て他の充填剤例えば炭酸カルシウム、石膏、石膏繊維、
アスベスト、マィカ、珪酸カルシウム、ガラス繊維等を
併用してもよい。本発明のアミド化合物はR,CONH
R2で示されるN魔挨アミド化合物でR,は飽和又は不
飽和脂肪族炭化水素で好ましくはC,。以上の飽和又は
不飽和脂肪族炭化水素である。R2は日を除く−C比O
R5、又は一R3NHCOR4で示され、R3は脂肪族
炭化水素例えばメチレン、エチレン等で、R4,R5は
H又は同一又は異なる飽和又は不飽和脂肪族炭化水素で
、好ましくはC,J〆上の同一又は異なる飽和又は不飽
和脂肪族炭化水素である。
As compounding agents, stabilizers such as lead-based, tin-based, Ca-Zn-based stabilizers, thickeners, and processability improvers can be added. Other fillers as necessary, such as calcium carbonate, gypsum, gypsum fiber,
Asbestos, mica, calcium silicate, glass fiber, etc. may be used in combination. The amide compound of the present invention is R,CONH
In the N amide compound represented by R2, R is a saturated or unsaturated aliphatic hydrocarbon, preferably C. The above saturated or unsaturated aliphatic hydrocarbons. R2 excludes the day -C ratio O
R5 or -R3NHCOR4, R3 is an aliphatic hydrocarbon such as methylene, ethylene, etc., R4, R5 are H or the same or different saturated or unsaturated aliphatic hydrocarbons, preferably the same on C, J〆 or different saturated or unsaturated aliphatic hydrocarbons.

R.CONHCH20R5で例示すると、メチロール化
ラウリン酸アミドCH3キCQナ,oCONHCH20
日、メチロール化バルミチン酸アミドCH3キCH2ナ
,4CONHCH20日、メチロール化べへン酸アミド
CH3キCH2ナ2。
R. To illustrate with CONHCH20R5, methylolated lauric acid amide CH3kiCQna,oCONHCH20
day, methylolated balmitic acid amide CH3 x CH2 na, 4CONHCH20 days, methylolated behenic acid amide CH3 x CH2 na 2.

CONHCH20日、メチロール化ステアリン酸アミド
CH2キCH2ナ,6CONHCH20日、メチロール
化オレイン酸アミド△℃,7日8CONHCH20日、
メチ。
CONHCH 20 days, methylolated stearic acid amide CH2 x CH2 na, 6CONHCH 20 days, methylolated oleic acid amide △℃, 7 days 8CONHCH 20 days,
Methi.

ール化ェルカ酸アミド△13C2.日,CONHC馬O
H等である。R,CONHR3NHCOR4で例示する
とメチレンビスラウリン酸アミドC,.日23CONH
CH2NHCOC,.H凶、メチレンビスバルミチン酸
アミドC,虹3,CONHCH2NHCOC,5日の、
メチレンビスステアリン酸アミドC,7日35CONH
CH2NHC○C,7H$、エチレンピスラウリン酸ア
ミドC,.日23CONHCH2CはNHCOC,.比
3、エチレンピスバルミチン酸アミド、C,虹3,CO
NHCH2C比NHCOC,5瓜,、エチレンビスステ
アリソ酸アミドC,7日35CONHCH2C4NHC
OC,7馬5、エチレンビスべへン酸アミドC2,日4
3CONHCH2CMNHCOC2,伍3、エチレンビ
スオレィン酸アミド△9C,7&3CONHC比一C比
NHCOC△9C,7日33等である。
conjugated erucic acid amide △13C2. day, CONHC horse O
H etc. R, CONHR3NHCOR4 is an example of methylene bislauric acid amide C, . Sun 23 CONH
CH2NHCOC,. H, methylene bisbalmitic acid amide C, rainbow 3, CONHCH2NHCOC, 5th,
Methylene bisstearamide C, 7 days 35CONH
CH2NHC○C, 7H$, ethylene pithlauric acid amide C,. 23rd CONHCH2C is NHCOC,. ratio 3, ethylene pisbalmitic acid amide, C, rainbow 3, CO
NHCH2C ratio NHCOC, 5 melon, ethylene bisstearisoamide C, 7 days 35CONHCH2C4NHC
OC, 7 horses 5, ethylene bisbehenic acid amide C2, day 4
3CONHCH2CMNHCOC2, 53, ethylenebisoleic acid amide △9C, 7 & 3CONHC ratio - C ratio NHCOC△9C, 7 days 33, etc.

本発明のアミド化合物を混入する方法は任意であるが、
例えば本発明のアミド化合物をポリ塩化ビニルの重合時
に混入する方法、タルクを含んだ塩化ビニル系樹脂コン
パウンドに添加混合する方法、又はあらかじめタルクに
本発明のアミド化合物を添加し加熱混合した後、塩化ビ
ニル系樹脂コンパウンドに添加する方法がある。更にタ
ルクを表面処理しても良い。
Although the method of mixing the amide compound of the present invention is arbitrary,
For example, the amide compound of the present invention may be mixed into polyvinyl chloride during polymerization, the amide compound of the present invention may be added to and mixed with a vinyl chloride resin compound containing talc, or the amide compound of the present invention may be added to talc in advance and mixed with heat, followed by chlorination. There is a method of adding it to vinyl resin compounds. Furthermore, the talc may be surface-treated.

本発明のアミド化合物の使用量については、10山以上
の粒子が15%以下のタルク10の重量部に対し約0.
5重量部〜1の重量部が好ましい。
The amount of the amide compound of the present invention to be used is approximately 0.00 parts by weight of 10 parts by weight of talc containing 15% or less of particles with 10 or more peaks.
5 parts by weight to 1 part by weight are preferred.

本発明の効果については、10山以上の粒子が15%以
下のタルクとポリ塩化ビニル系樹脂を高速で混合する時
間(予備混合という)を0,5,1び分と変え、次いで
安定剤、糟剤等を加えて110%まで高速混合し次いで
冷却して得たコンパウンドのプラストグラフによる熱安
定性とそのコンパウンドをべレット化し、次いで成形し
て得られた試験片のデュポン衝撃強度(以下デュポンと
略称)でみると、本発明のアミド化合物を加えない場合
熱安定性、デュポンは共に急激に低下する。この急激な
低下は成形品の予備混合時間を長くすると赤外線吸収ス
ペクトルの〜1600UIの吸収が大きくなる事からポ
リェン(poそ舵n)の生成が原因である事が判る。
Regarding the effects of the present invention, the time for mixing talc and polyvinyl chloride resin at high speed (referred to as premixing) with 15% or less of particles having 10 or more peaks was varied from 0, 5, and 1 minutes, and then the stabilizer, Thermal stability is measured by plastograph of a compound obtained by adding a thickening agent, etc., high-speed mixing to 110%, and then cooling, and the DuPont impact strength (hereinafter referred to as DuPont (abbreviated as ), when the amide compound of the present invention is not added, both thermal stability and DuPont value rapidly decrease. It can be seen that this rapid decrease is caused by the formation of polyenes, as the absorption in the infrared absorption spectrum of ~1600 UI increases as the premixing time of the molded product increases.

本発明のアミド化合物を添加した場合、化合物の種類と
その使用量によって異なるが、予備混合時間が長くなっ
ても熱安定性、デュポンの低下が少なくなり、最適量を
用いた場合は10分の予備混合でも袷んど低下がみられ
ない。
When the amide compound of the present invention is added, although it depends on the type of compound and the amount used, the decrease in thermal stability and DuPont is small even if the premixing time becomes long, and when the optimum amount is used, the Even with pre-mixing, no decrease in thickness was observed.

赤外線吸収スペクトルから1650ひ‐1の吸収(非共
役二重結合)はみられるが1600ひ‐1の吸収が少な
いことから本発鯛のアミド化合物はタルクを含むボリ塩
化ビニル系樹脂の共役ポリェンの生成を防いでいるので
ある。即ち本発明のアミド化合物は脱塩酸は防止できな
いが、脱HCそで生成する二重結合の共役化を防止して
いるという特異な効果が、タルクの存在下でみられた。
In the infrared absorption spectrum, absorption at 1650 h-1 (non-conjugated double bond) is seen, but absorption at 1600 h-1 is small, so the amide compound of this sea bream is a compound of conjugated polyene of polyvinyl chloride resin containing talc. It prevents the generation. That is, although the amide compound of the present invention cannot prevent dehydrochlorination, a unique effect was observed in the presence of talc in that it prevented the conjugation of double bonds generated by dehydrochlorination.

ポリ塩化ビニル系樹脂の安定剤として知られる鉛化合物
、錫化合物、その他の金属塩にはこのような効果がみら
れないので従釆の安定剤とは異なった作用をしているの
である。
Lead compounds, tin compounds, and other metal salts, which are known as stabilizers for polyvinyl chloride resins, do not have this effect, so they act differently from other stabilizers.

このような効果は使用するタルクの粒度分布で10ム以
上の粒子が15%以下のときに特に著しく発揮される。
Such an effect is particularly remarkable when the particle size distribution of the talc used is such that particles of 10 μm or more are 15% or less.

10ム以上の粒子が15%を超過した場合、得られた成
形品の衝撃強度が元来低いために本発明の効果は充分発
揮されない。本発明のアミド化合物のうち R,CONHR3NHCOR4で示されるビスアミドは
、タルクを含むポリ塩化ビニル系樹脂の熱安定性を著し
く改良するが、R,CONHC比OR5で示される化合
物は熱安定性が予備混合時間を長くしても低下しなくな
る効果はあるが、更に熱安定性を増大させる効果を発揮
させるために本発明のR,CONHR3NHCOR4で
示されるビスアミド又は融点又は軟化点が20ぴ○以下
のポリアミドを併用するのが好ましい。
If the proportion of particles of 10 μm or more exceeds 15%, the effects of the present invention cannot be sufficiently exhibited because the impact strength of the resulting molded product is inherently low. Among the amide compounds of the present invention, the bisamide represented by R,CONHR3NHCOR4 significantly improves the thermal stability of polyvinyl chloride resin containing talc, but the thermal stability of the compound represented by R,CONHC ratio OR5 is Although it has the effect of not decreasing even if the time is prolonged, in order to further exhibit the effect of increasing thermal stability, the bisamide represented by R, CONHR3NHCOR4 of the present invention or a polyamide with a melting point or softening point of 20 pi○ or less is used. It is preferable to use them together.

本発明の塩化ビニル系樹脂組成物の成形加工は、必要な
添加剤を添加した後、通常の方法で実施できるが、タル
クと塩化ピニル系樹脂とが充分に混合するのが望ましい
The vinyl chloride resin composition of the present invention can be molded by a conventional method after adding necessary additives, but it is preferable that the talc and the pinyl chloride resin are thoroughly mixed.

例えば機械により異るが高速ミキサー(ヘンシェル・ミ
キサー)等で充分混合するとか、バンバリミキサーであ
らかじめ混合して形成に供する方法がとられる。成形に
ついては二本ロール、単軸押出機、二軸押出機、特殊な
複合混練機によって直接成形する方法、あるいは、二本
ロール、バンバリーミキサー、単軸押出機、二軸押出機
あるいは特殊な複合渡練機によってべレットを製造し、
射出成形、吹き込み成形、押出成形、カレンダー成形、
溶融紡糸加工等によって成形材料を得てもよい。
For example, depending on the machine, the ingredients may be thoroughly mixed using a high-speed mixer (Henschel mixer), or they may be mixed in advance using a Banbury mixer before forming. For molding, there is a method of direct molding using a two-roll, single-screw extruder, twin-screw extruder, special compound kneader, or a method of direct molding using a two-roll, Banbury mixer, single-screw extruder, twin-screw extruder, or special compound kneading machine. Manufacture pellets using a rolling mill,
Injection molding, blow molding, extrusion molding, calendar molding,
The molding material may be obtained by melt spinning processing or the like.

タルクは従来よりポリスチレンやポリオレフィン用の充
填剤として使われていたが、塩化ピニル系樹脂では、塗
料のように熱安定性の不用な用途、又は軟貿のように多
量に可塑剤を使用する用途以外ほとんど実用化されてい
なかった。その理由の1つは熱安定性が極めて悪くその
為に衝撃強度がバラッキやすく、工業的に実施するのが
困難であったが、本発明のアミド化合物は安定剤でもな
いのに、しかもアミド基はポリ塩化ビニルの耐熱性を低
下させると考えるのが常識であるにもかかわらず、タル
クの存在下においては熱安定性の改良効果がある事と、
さらには混合条件によって熱安定性が影響を受けにくく
衝撃強度の低下が少なくなるという効果があることは本
発明に独自な新規な効果であり、工業上の利用価値は極
めて大きい。
Talc has traditionally been used as a filler for polystyrene and polyolefins, but for pinyl chloride resins, it is used in applications that do not require heat stability, such as in paints, or applications that use large amounts of plasticizers, such as in soft trade. It was hardly ever put into practical use. One of the reasons for this is that the thermal stability is extremely poor, and therefore the impact strength tends to vary, making it difficult to implement industrially.However, the amide compound of the present invention is not a stabilizer, and moreover, Although it is common knowledge that talc decreases the heat resistance of polyvinyl chloride, it has the effect of improving thermal stability in the presence of talc.
Furthermore, it is a novel effect unique to the present invention that thermal stability is less affected by mixing conditions and impact strength decreases less, and its industrial utility value is extremely high.

以下実施例によって本発明を詳細に説明する。The present invention will be explained in detail below with reference to Examples.

実施例 1中国産タルクをスーパーミクロンミルで粉砕
分級し、10一以上が9.6%のタルクを調製した。
Example 1 Talc produced in China was crushed and classified using a super micron mill to prepare talc containing 9.6% of 101 or more.

(第2表)ポリ塩化ビニル(商品名、カネピニールS−
1001)10碇部‘こ対し、三塩基性硫酸鉛1部、二
塩基性ステアリン酸塩0.5部、ステアリン酸塩1.5
部、ステアリン酸カルシウム0.5部、ステァリン酸バ
リウム0.5部、ポリエチレンワックス0.2部を基本
配合として、タルクとポリ塩化ビニルをあらかじめ20
そのスーパーミキサーで水冷下に高速混合(以下予備混
合という)し、次いで安定剤、糟剤を入れ、加熱しなが
ら高速混合し、110午0になったらただちに70q0
まで冷却し、払い出して鉛配合のコンパウンドを得る。
タルクの含有量はコンパウンド中に15になるように計
量する。
(Table 2) Polyvinyl chloride (trade name, Kanepinil S-
1001) 10 parts of anchor, 1 part of tribasic lead sulfate, 0.5 parts of dibasic stearate, 1.5 parts of stearate
The basic composition is 0.5 parts of calcium stearate, 0.5 parts of barium stearate, and 0.2 parts of polyethylene wax, and 20 parts of talc and polyvinyl chloride are mixed in advance.
Using the super mixer, mix at high speed under water cooling (hereinafter referred to as premixing), then add stabilizers and thickeners, mix at high speed while heating, and as soon as it reaches 110 o'clock, mix at 70 q0.
It is cooled to a temperature of 50% and then discharged to obtain a lead-containing compound.
The content of talc is measured to be 15% in the compound.

予備混合の時間は0分、5分、10分の3条件を用いた
。得られたコンパウンドの熱安定性の測定には、内容積
55ccのニーダー型のプラストグラフ(ブラベンダ一
社製)を用い、73夕のコンパウンドを仕込んで子熱時
間4分、ローター回転数3比pm、チャンバ−温度18
ぴ○でプラストグラムをとった。
Three conditions were used for the premixing time: 0 minutes, 5 minutes, and 10 minutes. To measure the thermal stability of the obtained compound, a kneader-type Plastograph (manufactured by Brabender) with an internal volume of 55 cc was used, and a 73-day compound was charged, the heating time was 4 minutes, and the rotor rotation speed was 3 pm. , chamber temperature 18
I took a plastogram at Pi○.

第1図に示す代表的なブラストグラムで説明すると最低
トルクより0.1k9一m高い時間を夫々(Tc),T
cとして、又最大トルク発生時間をTB、最大トルクに
近い方を(Tc)、遼し、方を(Tc)とし、△T,=
Tc−(Tc),△T2=Tc−TBと定義した。△T
,は定常トルク保持時間、△T2は最大トルクを示して
から分解を始める迄の時間で、共に熱安定性を表すパラ
メーターである。耐衝撃性の評価については得られたコ
ンパウンドを4W舷ぐの単軸押出機でべレット化した後
4伍舷◇の押出機で中60舷、厚さ3凧のベルトを成形
し、次いで30×3仇岬こ切断し、180℃で5分子熱
、5分プレスして厚み約2.3凧の試験片を作成・デュ
ポン式鱗織豚善・ノッチ付き30M換算の半数破壊高さ
日5o(仇)を求めデュポン衝撃強度(前記した如くデ
ュポンと略称)とした。
To explain this using a typical blastogram shown in Figure 1, the times when the torque is 0.1k91m higher than the minimum torque are (Tc) and Tc, respectively.
Let c be the maximum torque generation time TB, the one closest to the maximum torque be (Tc), and the one closest to the maximum torque be (Tc), △T,=
It was defined as Tc-(Tc), ΔT2=Tc-TB. △T
, is the steady torque holding time, and ΔT2 is the time from when the maximum torque is reached until the start of decomposition, both of which are parameters representing thermal stability. For evaluation of impact resistance, the obtained compound was made into pellets using a single screw extruder with a 4W port, and then a belt with a medium length of 60 ships and a thickness of 3 kites was formed using an extruder with a 4 ship rating. Cut x 3 pieces, heat 5 molecules at 180℃, and press for 5 minutes to create a test piece with a thickness of about 2.3cm.・Dupont style scale-ori butazen.Half fracture height in 30M equivalent with notch: 5o (abbreviated as DuPont as mentioned above).

本発明の実施例としてエチレンビスステアリルァミド(
以下E斑という)、メチロール化ステァリルアミド(以
下MSAという)を上記配合にそれぞれ対タルク0.5
%,1.0%,1.5%,5.0%,10%添加した場
合の△T,,△L、デュポンを求め、第1表に示す。第
1表の実施例‘1’の曲線はE既1.25%添加、対照
例‘21の曲線は無添加の場合を示す。
As an example of the present invention, ethylene bisstearylamide (
(hereinafter referred to as E spots) and methylolated stearylamide (hereinafter referred to as MSA) to the above formulation, respectively, at a rate of 0.5 to talc.
%, 1.0%, 1.5%, 5.0%, 10%, ΔT, ΔL, and DuPont were determined and shown in Table 1. The curve of Example '1' in Table 1 shows the case where 1.25% of E was added, and the curve of Control Example '21 shows the case where E was not added.

第1表の結果からEBSやMSAはタルクを含むポリ塩
化ビニルコンパウンドの熱安定性のみならず、予備混合
時間を長くしたときに、対照例では衝撃強度が急激に低
下するのに本発明のアミド化合物を含む場合には、予備
混合の影響を受けにくい事が判る。
The results in Table 1 show that EBS and MSA not only improve the thermal stability of polyvinyl chloride compounds containing talc, but also that when the premixing time is increased, the impact strength of the control example decreases rapidly, whereas the amide of the present invention It can be seen that when compounds are included, they are less affected by premixing.

第1表 又第1表から判るように△T,,△Lが低下しにくいも
の程衝撃強度の低下は小さく、△T,,△Lの時間の長
さとは直接関係はしない。
As can be seen from Table 1 and Table 1, the less ΔT, .DELTA.L decreases, the smaller the drop in impact strength is, and there is no direct relationship with the length of time for ΔT, .DELTA.L.

△T,,△T2値だけでみるとMSAよりEBSの方が
良いが、MSAをタルク1.25%加えた場合はE茂3
.75%加えた場合と衝撃強度の低下は同じくらいに小
さい。
EBS is better than MSA when looking only at △T,,△T2 value, but when MSA is added with 1.25% talc, EBS is better than MSA.
.. The drop in impact strength is as small as when adding 75%.

融点が20び○以下のポリアミドは△T,,△T2を大
中に改良する効果を持っているがメタノール可溶性ナイ
ロン(商品名、東洋レーヨン、CM−8000)につい
て予備混合の影響を調べてみると第1表の対照例に示す
ように、予備混合時間が長くなると衝撃強度の低下が大
きい事からも、予備混合0分の熱安定性を改良すれば必
ず衝撃強度の低下が小さいとは言えない事が判る。
Polyamide with a melting point of 20° or less has the effect of improving △T, △T2 in large quantities, but let's examine the effect of premixing on methanol-soluble nylon (trade name, Toyo Rayon, CM-8000). As shown in the comparative example in Table 1, the longer the premixing time is, the greater the drop in impact strength is.If the thermal stability is improved at 0 premixing, the drop in impact strength will always be small. It turns out there isn't.

実施例 2 実施例1の方法で第2表の粒度分布を有するタルクを調
製した。
Example 2 Talc having the particle size distribution shown in Table 2 was prepared by the method of Example 1.

10〆以上25.3%タルク、14.3%タルク、9.
6%タルク(実施例1と同じ)4.8%タルクを用いて
実施例1の配合でタルク15%含有のコンパウンドを得
る。
10 or more 25.3% talc, 14.3% talc, 9.
A compound containing 15% talc is obtained using the formulation of Example 1 using 6% talc (same as in Example 1) and 4.8% talc.

本発明の実施例として、EBSを対タルク2.5%用い
、予備混合0分と10分で△T,,△T2デュポンを測
定した。
As an example of the present invention, ΔT, ΔT2 DuPont was measured using 2.5% EBS to talc and premixing for 0 minutes and 10 minutes.

対照例としてE斑を添加しないものを同様に測定した。
第3表に示すように何れのタルクを用いても本発明のE
斑は△T,,△T2については予備混合の影響が少なく
、かつ対照例に比べると大中に改良されている。
As a control example, a sample without E spots was similarly measured.
As shown in Table 3, no matter which talc is used, the E of the present invention
The influence of pre-mixing on ΔT, ΔT2 is small, and the spots are improved in comparison with the control example.

デュポンについても同様であり、本発明では予備混合し
ても、ほとんど低下してない事が判る。一方デュポンの
値はタルクの粒度が大きく影響し10r以上の粒子が少
ない方が高い値を示し、実用的には10r以上の粒子が
15%以下を必要とするが、この場合には特に顕著に作
用している事が判る。
The same is true for DuPont, and it can be seen that in the present invention, even if premixed, there is almost no decrease. On the other hand, the DuPont value is greatly influenced by the particle size of the talc, and the smaller the number of particles of 10r or more, the higher the value.Practically speaking, particles of 10r or more need to be 15% or less, but in this case it is particularly noticeable. I can see that it is working.

第2表 (註)島津遠心沈降式粒度測定装置 OP−50を使用 使用溶媒:蒸留水 分散剤:0.2多くNaP02)6 測定温度 29℃ 実施例 3 実施例1と同じ方法で予備混合0分と10のコンパウン
ドを作る。
Table 2 (Note) Shimadzu centrifugal sedimentation type particle size analyzer OP-50 used Solvent used: Distilled water Dispersant: 0.2% NaP02) 6 Measurement temperature 29°C Example 3 Premixed in the same manner as Example 1 for 0 minutes and make 10 compounds.

この場合本発明の化合物として〆チレンビスステアリン
酸アミド(MBS)、メチレンビスパルミチン酸アド(
MBP)、エチレンビスパルミチン酸アミド(EBP)
、エチレンビスオレィン酸アミド(EBO)をそれぞれ
タルクに対し3.75%を添加、又メチロール化パルミ
チン酸アミド(MPA)、メチロール化べへン酸アミド
(M旧A)、メチロール化オレイン酸アミド(MOA)
をそれぞれタルクに対し1.25%を添加、又MSAを
対タルク1.25%、融点(mp)が200qo以下の
ポリアミドとしてCM−8000(東洋レーヨン株式会
社製)を対タルク1%加えたもので実施例1を同じよう
にプラストグラムでの△T,,△T2、成形品でのデュ
ポンの測定結果についてみるといずれも予備浪合の影響
が少なく、本発明の効果が充分発揮されている事が判る
(第4表)。メチロール化脂肪酸アミドの場合△T,,
△T2の値そのものがあまり改良されていないが、これ
にCM−8000を併用すると△T,,△T2それぞれ
が著しく改良され又CM−800山単独では予備混合の
影響を受けやすかったが併用によって両者の特徴が発揮
されることがわかる。尚、本発明のコンパウンド中のタ
ルクの含有量を15%以外の例えばコンパウンド中のタ
ルク含有量を1%,10%,20%,40%になるよう
に計量して添加した場合も同様に本発明のアミド化合物
添加の効果は著しく大であり、上記実施例の場合と大き
な差は認められなかった。
In this case, the compounds of the present invention include ethylene bisstearamide (MBS), methylene bispalmitic acid ad(
MBP), ethylene bispalmitic acid amide (EBP)
, ethylene bisoleic acid amide (EBO) was added at a concentration of 3.75% based on talc, and methylolated palmitic acid amide (MPA), methylolated behenic acid amide (M old A), and methylolated oleic acid were added. Amide (MOA)
were added in an amount of 1.25% based on talc, MSA was added at 1.25% based on talc, and CM-8000 (manufactured by Toyo Rayon Co., Ltd.) was added as a polyamide with a melting point (mp) of 200 qo or less at 1% based on talc. Similarly, in Example 1, when looking at the plastogram △T, △T2 and the DuPont measurement results for the molded product, it can be seen that the influence of preliminary loss is small in both cases, and the effects of the present invention are fully demonstrated. (Table 4). In the case of methylolated fatty acid amide △T,,
The value of △T2 itself has not been improved much, but when CM-8000 is used in combination with this, △T, and △T2 are each significantly improved. Also, CM-800 alone was easily affected by premixing, but when used in combination, It can be seen that the characteristics of both are exhibited. Furthermore, even if the talc content in the compound of the present invention is other than 15%, for example, when the talc content in the compound is measured and added to 1%, 10%, 20%, or 40%, the same applies. The effect of adding the amide compound of the invention was extremely large, and no major difference was observed from the case of the above example.

第4表 実施例 4 実施例1のタルク配合で20そのスパーミキサーと10
0そのスパーミキサーを用いて実施例1の方法(予備混
合時間0分)で△T,,△Lデュポンを測定した。
Table 4 Example 4 With the talc formulation of Example 1, the spar mixer and 10
△T, △L DuPont was measured using the same spar mixer according to the method of Example 1 (premixing time: 0 minutes).

本発明の実施例として、EBSを対タルク2.5%、M
SAを対タルク1.25%、EBS対タルク2.5%、
とCM−8000を対タルク1%添加した場合を用い、
対照例として、添加しない場合とCM−8000を対タ
ルク1%添加した場合とを用いた。
As an example of the present invention, EBS was added to talc at 2.5% and M
SA to talc 1.25%, EBS to talc 2.5%,
Using the case where CM-8000 and 1% of talc were added,
As control examples, a case where no addition was made and a case where CM-8000 was added at 1% based on talc were used.

第5表に示すように、添加しなかった場合に100その
ミキサーを使用するとデュポンは大中に低下し、熱安定
性も悪くなる。CM−8000を加えた場合は、熱安定
性は添加しない場合に比して大中に改善されているが1
00そのミキサーを用いるとデュポンは低くなり、△T
,,△T2ともに20そミキサーを用いたときよりも低
下している。第5表の実施例では△T,,△T2、デュ
ポンとも100〆ミキサーを用いてもほとんど変らず、
安定した物性の得られることが判る。第5表
As shown in Table 5, when the mixer is used without addition of 100%, the DuPont strength decreases to medium and the thermal stability also deteriorates. When CM-8000 was added, the thermal stability was improved compared to when it was not added, but 1
00 Using that mixer, DuPont will be lower and △T
, , ΔT2 are both lower than when using a 20-so mixer. In the examples shown in Table 5, there is almost no difference between △T, △T2 and DuPont even if a 100 mm mixer is used.
It can be seen that stable physical properties can be obtained. Table 5

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1記載のEBSを1.25%加えた場合
(実施例)と無添加(対照例)の予備混合時間、0分に
おけるプラストグラムを示す。 技大トルクを示す時間をTB(分)として、最少トルク
から0.1k9一m高い時間で最大トルクに近い方を(
Tc)、遠い方をTcとして△T,=Tc−(Tc) △T2=Tc−TB d=0.1k9一m である。 △T,は定常トルク保持時間、△T2は最大トルクを示
してから分解を始めるまでの時間を示す。 1・・・実施例曲線、2・・・対照例曲線。 図船
FIG. 1 shows plastograms when 1.25% of EBS described in Example 1 was added (Example) and when no EBS was added (Control example) at a premixing time of 0 minutes. The time showing the technical torque is TB (minutes), and the time 0.1k91m higher than the minimum torque is the one closest to the maximum torque (
Tc), with the far one being Tc, ΔT,=Tc-(Tc) ΔT2=Tc-TB d=0.1k91m. ΔT, is the steady torque holding time, and ΔT2 is the time from when the maximum torque is reached until the start of disassembly. 1... Example curve, 2... Control example curve. illustration ship

Claims (1)

【特許請求の範囲】 1 R_1CONHR_2で示されるアミド化合物と1
0μ以上の粒子が15%以下のタルクを含むことを特徴
とする強化ポリ塩化ビニル系樹脂組成物。 但しR_1は飽和又は不飽和脂肪族炭化水素でR_2
はHを除く−CH_2OR_5又は−R_3NH−CO
R_4(但しR_3,R_4,R_5はそれぞれH又は
同一又は異なる飽和又は不飽和脂肪族炭化水素で示され
るアミド化合物)である。 2 R_1CONHR_2で示されるアミド化合物が1
0μ以上の粒子が15%以下のタルク100重量部に対
し0.5〜10重量部である特許請求の範囲第1項記載
の強化ポリ塩化ビニル系樹脂組成物。 但しR_1,R_2は第1項記載の通りである。 3 10μ以上の粒子が15%以上のタルク含有量が1
重量%以上、40重量%以下である特許請求の範囲第1
項又は第2項記載の強化ポリ塩化ビニル系樹脂組成物。
[Claims] 1 An amide compound represented by R_1CONHR_2 and 1
A reinforced polyvinyl chloride resin composition characterized in that particles having a size of 0μ or more contain 15% or less of talc. However, R_1 is a saturated or unsaturated aliphatic hydrocarbon, and R_2
excludes H -CH_2OR_5 or -R_3NH-CO
R_4 (where R_3, R_4, and R_5 are each represented by H or the same or different saturated or unsaturated aliphatic hydrocarbons). 2 The amide compound represented by R_1CONHR_2 is 1
The reinforced polyvinyl chloride resin composition according to claim 1, wherein the particles having a size of 0 μ or more are present in an amount of 0.5 to 10 parts by weight based on 100 parts by weight of 15% or less of talc. However, R_1 and R_2 are as described in Section 1. 3 Talc content of 15% or more with particles of 10μ or more is 1
Claim 1: % by weight or more and 40% by weight or less
The reinforced polyvinyl chloride resin composition according to item 1 or 2.
JP17335079A 1979-12-28 1979-12-28 Reinforced polyvinyl chloride resin composition Expired JPS6026421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17335079A JPS6026421B2 (en) 1979-12-28 1979-12-28 Reinforced polyvinyl chloride resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17335079A JPS6026421B2 (en) 1979-12-28 1979-12-28 Reinforced polyvinyl chloride resin composition

Publications (2)

Publication Number Publication Date
JPS5695944A JPS5695944A (en) 1981-08-03
JPS6026421B2 true JPS6026421B2 (en) 1985-06-24

Family

ID=15958779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17335079A Expired JPS6026421B2 (en) 1979-12-28 1979-12-28 Reinforced polyvinyl chloride resin composition

Country Status (1)

Country Link
JP (1) JPS6026421B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869240A (en) * 1981-10-22 1983-04-25 Mitsubishi Monsanto Chem Co Agricultural vinyl chloride resin film
JPS5945345A (en) * 1982-09-07 1984-03-14 Achilles Corp Non-rigid vinyl chloride film for agriculture
JPS63270757A (en) * 1988-03-25 1988-11-08 Achilles Corp Flexible vinyl chloride sheet feed from adhesion of printing ink of electrostatic copying machine
JPH03152147A (en) * 1989-11-07 1991-06-28 Sekisui Chem Co Ltd Rigid chlorinated vinyl chloride-based resin composition for injection molding
US5487522A (en) * 1993-11-30 1996-01-30 Donnelly Corporation Mirror support bracket

Also Published As

Publication number Publication date
JPS5695944A (en) 1981-08-03

Similar Documents

Publication Publication Date Title
TWI363076B (en) Flame retardant composition having improved fluidity, resin composition thereof, and molded article therefrom
JPS647098B2 (en)
JPS63207617A (en) Manufacture of polyolefin resin composition containing inorganic filler
JPH0819320B2 (en) Reinforcing resin composition for molding
US4448913A (en) Fast crystallizing polyethylene terephthalate compositions
JPS6026421B2 (en) Reinforced polyvinyl chloride resin composition
US6114454A (en) Use of styrene and maleic anhydride copolymers as dispersing agents and/or for treatment of mineral fillers and thermoplastic compounds containing same
EP0012990B1 (en) Talc containing moulding compositions on the basis of vinyl chloride polymers
JPS5939465B2 (en) thermoplastic composition
JP2858472B2 (en) Stabilizer dispersion
US4014849A (en) Self-extinguishing reinforced polycarbonate molding compositions
JPS591741B2 (en) Polypropylene horns
DE112017003897T5 (en) Flame retardant polyester composition
JPH0616935A (en) Polyphenylene sulfide resin composition
US4356281A (en) Polyethylene terephthalate molding composition having reduced flammability, and molded products made therefrom
JPH01131262A (en) Plastic magnet composition
JPS6242936B2 (en)
JPS58152052A (en) Formation composition and manufacture
JPS60245654A (en) Surface-treated filler for polyolefin resin
JPS6244574B2 (en)
JPH01131261A (en) Plastic magnet composition
JPH0657774B2 (en) Flame-retardant polypropylene resin composition
JPS6139338B2 (en)
JPH03223354A (en) Polyolefin composition containing inorganic filler
JP3190362B2 (en) Polyamide resin composition