JPS6139338B2 - - Google Patents

Info

Publication number
JPS6139338B2
JPS6139338B2 JP52027938A JP2793877A JPS6139338B2 JP S6139338 B2 JPS6139338 B2 JP S6139338B2 JP 52027938 A JP52027938 A JP 52027938A JP 2793877 A JP2793877 A JP 2793877A JP S6139338 B2 JPS6139338 B2 JP S6139338B2
Authority
JP
Japan
Prior art keywords
calcium sulfate
strength
fine fibers
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52027938A
Other languages
Japanese (ja)
Other versions
JPS53113851A (en
Inventor
Hideki Asano
Hiroyoshi Kokado
Shoji Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2793877A priority Critical patent/JPS53113851A/en
Publication of JPS53113851A publication Critical patent/JPS53113851A/en
Publication of JPS6139338B2 publication Critical patent/JPS6139338B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリオレフイン系樹脂組成物に係り、
特に、ポリオレフイン系樹脂にタルク粉末と結晶
水を含有しない硫酸カルシウム微細繊維を配合し
た剛性の高いポリオレフイン系樹脂組成物に関す
る。 ポリオレフイン系樹脂に炭酸カルシウム、タル
クなどの無機充填剤粉末を配合することにより、
耐熱変形性、剛性等を改善できることは良く知ら
れている。 しかし、上記特性は改善できるが、一方、引張
り強さ、曲げ強さなどの静的強度、疲労強度、ク
リープ強度など、強度が低下すると言う問題があ
る。また、ポリオレフイン系樹脂の強度および剛
性を向上させる手法としては、ガラス繊維を配合
する方法が良く知られている。しかし、この方法
では、成形時にガラス繊維が一方向に配列するた
め、強度、弾性率などの異方性が生ずるため、ガ
ラス繊維の配列方向に対しては、高い強度、弾性
率を示すが、配列に直角な方向に対しては、強度
はさほど向上しない。また、このような異方性が
存在すると、落下衝撃試験では、むしろ、ガラス
繊維の配列している方向に沿つてのクラツクが発
生しやすくなる。一方、ガラス繊維を配合する
と、成形時の混練により、ガラス繊維が破損し、
強化効果が減少するほか、成形機械の摩耗が激し
くなる。また、無機充填剤粉末とガラス繊維を配
合した場合にも、やはり、ガラス繊維による機械
の摩耗が大きく、成形時のガラス繊維の破損は無
機充填剤の配合によりさらに促進される。 本発明の目的は、上記のような従来技術の欠点
を改善し、耐熱変形性、剛性、強度が良好で、成
形時の繊維の破損や成形機械の摩耗が少ないポリ
オレフイン系樹脂組成物を提供することにある。 本発明のポリオレフイン系樹脂組成物は、ポリ
オレフイン系樹脂100重量部、タルク粉末5〜70
重量部、直径0.5〜5μ、長さ10〜300μの結晶水
を含有しない硫酸カルシウム微細繊維5〜70重量
部よりなることを特徴とする。 ポリオレフイン系樹脂を用いる理由は、この樹
脂が延性材料であり、無機充填剤粉末、繊維状充
填剤を配合した場合の脆化が少ないためである。
ポリオレフイン系樹脂とは、ポリプロピレン、ポ
リエチレン、エチレンとプロピレンの共重合体、
あるいはこれらの2種以上のブレンド物をさす。
とくに、ポリプロピレンの場合には、ポリオレフ
イン系樹脂の中では剛性が高く、無機充填剤粉
末、繊維状充填剤を配合することにより、実用上
適正な延性と剛性が得やすい。また、ポリプロピ
レンは結晶性であり、繊維に沿つて、結晶化が進
み、強化効果が大きい。 タルクを用いる理由は、ポリプロピレンとの親
和性が良好であり、他の無機充填剤粉末を用いた
場合に比べて、剛性の向上率が高い。とくに、直
径0.05〜0.5μの粒子を80%以上含有するものの
剛性向上率が高くなる。なお、ここで比率は全粒
子数に対するものである。そして、直径0.05〜
0.5μの粒子を80%以上含有するもののうち、直
径1μ以上の粒子を10%以上含有するものは、後
述する硫酸カルシウム微細繊維の強化効果が阻害
され、強度の向上が多少低くなる。しかし、強化
効果が全面的に損われることなく、タルク粉末の
みを配合したものに比べて、強度が著しく向上す
る。また、配合量をポリオレフイン系樹脂100重
量部に対して、5〜70重量部とした理由は、5重
量部以下では、剛性の改善効果がほとんど得られ
ず、本発明の目的を達成することができないため
であり、70重量部以上では、強度の低下が著し
く、やはり、本発明の目的を達成することができ
ないためである。 硫酸カルシウム微細繊維を配合する理由は、タ
ルク粉末の配合による強度の低下を防止するため
である。しかし、単なる強度の低下を防止するだ
けの目的であれば、ガラス繊維を配合しても良い
ことになるが、前述のような欠点がある。直径
0.5〜5μ、長さ10〜300μの硫酸カルシウム微細
繊維を用いれば、成形時の混練による破損がガラ
ス繊維に比べて少なく、硬度もガラスに比べると
低いので、成形機の摩耗も少なくなる。また、直
径5μ、長さ300μ以上になると、成形時の繊維
の破損が大きく、成形品内にも異方性が強く出て
くる。一方、直径0.5μ、長さ10μ以下では、タ
ルク粉末により強化効果が阻害されて、強度の向
上にあまり役立たず、また、2次凝集し易く、樹
脂中への分散性が悪くなる。なお、結晶水を含有
しない硫酸カルシウム微細繊維とした理由は、結
晶水を含有すると、結晶水が200℃以下で分離す
るため、成形品表面の銀条痕発生の原因となるの
で好ましくないためである。硫酸カルシウム微細
繊維の配合量を、ポリオレフイン系樹脂100重量
部に対して、5〜70重量部とした理由は、5重量
部以下では強度向上がほとんどなく、本発明の目
的を達成できないためであり、70重量部以上配合
すると、異方性が強くなり、やはり、本発明の目
的を達成できないためである。また、硫酸カルシ
ウム微細繊維による強度効果は、直径0.5〜1
μ、長さ10〜100μのものが最も良好となる。 上述では、タルク粉末と硫酸カルシウム微細繊
維の効果を、各々別途に述べた。しかし、本発明
の特徴は、この両者を併用することにある。タル
ク粉末と硫酸カルシウム微細繊維を併用すると、
微細繊維相互の間にタルク粉末が分散し、繊維間
のすべりを抑制するために、タルク粉末、硫酸カ
ルシウム微細繊維のそれぞれを単独で、両者の配
合量の和と同じ量配合したものに比べ、剛性が高
くなる。また、タルク粉末は成形時の樹脂の流れ
を乱すため、硫酸カルシウム微細繊維の一方向配
列を抑制するため、成形品内部の異方性が少なく
なる。 上記の効果は、タルク粉末と硫酸カルシウム微
細繊維の配合量がそれぞれ、5重量部以下ではき
わめて少なく、本発明の目的を達成できない。一
方、両者の配合量が、それぞれ70重量部以上で
は、衝撃強さの低下が著しく、やはり、本発明の
目的を達成できない。 なお、上述のタルク粉末と硫酸カルシウム微細
繊維の相乗効果による剛性の向上と異方性の緩和
は、硫酸カルシウム微細繊維の大きさに比べて、
タルク粉末粒子が大きすぎても、また、逆にタル
ク粉末の大きさに比べて硫酸カルシウム微細繊維
が大きすぎても、小さくなる。その両者の粒子寸
法に関しては、タルク粉末は直径0.05〜0.5μの
粒子を80%以上含有し、直径1μ以上の粒子を10
%以下しか含有しないものを用い、硫酸カルシウ
ム微細繊維は直径0.5〜1μ、長さ10〜100μのも
のを用いると、剛性、強度の向上が大きく、異方
性が少なくなる。これは、非常に微細なタルク粉
末が繊維の間に均一に分散し、見掛上の樹脂マト
リツクスの弾性率が向上し、高分子相互間のすべ
りが生じにくくなり、しかも、タルク粉末が結晶
生長の核となるため、タルク粉末、硫酸カルシウ
ム微細繊維を含め、全体が結晶でおおわれるた
め、剛性、強度がとくに高くなる。そして、結晶
生長の方向も、単に成形時の分子配向や繊維の配
列がタルク粉末の存在により乱されて、均一化さ
れるのみならず、タルク粉末周辺での結晶生長方
向がランダムになるので、成形品の異方性はほと
んどなくなる。 以上で述べたように、タルク粉末と硫酸カルシ
ウムを併用すると、各々単独で用いた場合と異な
る別途な効果が得られる。 本発明の組成物は、タルク粉末、硫酸カルシウ
ム微細繊維を、各々単独で等量用いた場合に比べ
て、剛性、強度、耐熱変形性の改善効果が大き
く、繊維の配列による成形品内部の異方性もほと
んどなくなる。すなわち、タルク単独で用いた場
合より、剛性、熱変形温度が高く、また、タルク
単独で用いた場合に生ずる強度の低下が防止され
る。また、硫酸カルシウム微細繊維を単独で用い
た場合よりも剛性、熱変形温度が高くなり、強度
は同等に得られ、異方性はほとんど見られなくな
る。さらに、硫酸カルシウム微細繊維を用いる
と、ガラス繊維を用いた場合のように、成形時に
破損することが少ないので、あらかじめ、強化効
果を予測することができ、しかも、ガラス繊維よ
り硬度が低く、成形機械を摩耗することも少な
い。 なお、硫酸カルシウムは石油燃焼時に生ずる亜
硫酸ガスの除去の際に多く得られる公害対策の副
産物であり、現在過剰供給となつているものであ
る。それゆえ、これを有効活用することができ
る。 また、そのほか、材料を使用後に焼却廃棄する
時の発熱量やススが少なく、焼却炉の損傷が少な
く、焼却残渣を再度充填剤として使用することも
可能である。 以上で述べたように、本発明の組成物は、従来
の無機充填剤配合ポリオレフイン系樹脂組成物に
比べて、すぐれた特性を有している。この組成物
について、以下で実施例により詳細に説明する。 実施例 1 ポリプロピレン100重量部、平均直径1μのタ
ルク粉末を50重量部、平均直径0.5μ、長さ10〜
50μの結晶水を含有しない硫酸カルシウム微細繊
維50重量部をミキシングロール(桜井電熱式ロー
ル)を用いて、190℃で15分間混練した後、粉砕
した。そして、東洋機械金属製の4.5オンスの射
出成形機で、JISK6871に従つた試験片を成形
し、JISK9871に従つて引張り試験を行なつた。
また、JISK6911に従つてアイゾツト衝撃試験を
行なつた。その結果は表2に示す。 実施例 2〜22 組成を表1に、特性を表2に示す。材料の製造
および材料特性の測定は実施例1の場合と同様の
方法によつた。 比較例 1〜22 材料の製造および材料特性の測定は、実施例1
の場合と同様の方法によつた。比較例の組成を表
3に、特性を表4に示す。 比較例 23〜27 比較例23〜27は、ガラス繊維とタルク粉末を併
した場合であり、組成を表5に、特性を表6に示
す。 表2と表4の比較により、本発明の組成物は従
来の組成物に比べて、特性がすぐれていることが
わかる。
The present invention relates to a polyolefin resin composition,
In particular, the present invention relates to a highly rigid polyolefin resin composition in which talc powder and calcium sulfate fine fibers containing no crystal water are blended into a polyolefin resin. By blending inorganic filler powder such as calcium carbonate and talc with polyolefin resin,
It is well known that heat deformation resistance, rigidity, etc. can be improved. However, although the above properties can be improved, there is a problem in that the static strength such as tensile strength and bending strength, fatigue strength, and creep strength are reduced. Further, as a method for improving the strength and rigidity of polyolefin resin, a method of blending glass fiber is well known. However, in this method, the glass fibers are arranged in one direction during molding, resulting in anisotropy in strength and elastic modulus. In the direction perpendicular to the alignment, the strength does not improve much. Further, if such anisotropy exists, cracks are more likely to occur in the drop impact test in the direction in which the glass fibers are arranged. On the other hand, when glass fiber is mixed, the glass fiber is damaged during kneading during molding.
In addition to reducing the reinforcing effect, the molding machine becomes more abrasive. Further, even when inorganic filler powder and glass fiber are blended, the glass fiber still causes a large amount of wear on the machine, and the breakage of the glass fiber during molding is further accelerated by the blend of the inorganic filler. The purpose of the present invention is to improve the drawbacks of the prior art as described above, and to provide a polyolefin resin composition that has good heat deformation resistance, rigidity, and strength, and has less fiber breakage during molding and less wear on molding machines. There is a particular thing. The polyolefin resin composition of the present invention includes 100 parts by weight of polyolefin resin and 5 to 70 parts by weight of talc powder.
It is characterized by consisting of 5 to 70 parts by weight of crystallized water-free calcium sulfate fine fibers having a diameter of 0.5 to 5 μm and a length of 10 to 300 μm. The reason for using a polyolefin resin is that this resin is a ductile material and is less susceptible to embrittlement when inorganic filler powder and fibrous filler are blended.
Polyolefin resins include polypropylene, polyethylene, copolymers of ethylene and propylene,
Or it refers to a blend of two or more of these.
In particular, polypropylene has high rigidity among polyolefin resins, and by blending inorganic filler powder and fibrous filler, it is easy to obtain practically appropriate ductility and rigidity. Further, polypropylene is crystalline, and crystallization progresses along the fibers, resulting in a large reinforcing effect. The reason for using talc is that it has good affinity with polypropylene, and the rate of improvement in rigidity is higher than when other inorganic filler powders are used. In particular, the stiffness improvement rate is high for those containing 80% or more of particles with a diameter of 0.05 to 0.5 μ. Note that the ratio here is based on the total number of particles. And diameter 0.05~
Among those containing 80% or more of particles with a diameter of 0.5μ, those containing 10% or more of particles with a diameter of 1μ or more inhibit the reinforcing effect of the calcium sulfate fine fibers described later, and the improvement in strength is somewhat reduced. However, the strength is significantly improved compared to the case where only talc powder is blended without completely impairing the reinforcing effect. Furthermore, the reason why the blending amount is set to 5 to 70 parts by weight per 100 parts by weight of the polyolefin resin is that if the amount is less than 5 parts by weight, the effect of improving the stiffness will hardly be obtained and the objective of the present invention cannot be achieved. This is because if it exceeds 70 parts by weight, the strength decreases significantly and the object of the present invention cannot be achieved. The reason for blending calcium sulfate fine fibers is to prevent a decrease in strength due to blending of talc powder. However, if the purpose is simply to prevent a decrease in strength, glass fiber may be added, but this has the drawbacks mentioned above. diameter
If calcium sulfate fine fibers with a size of 0.5 to 5 μm and a length of 10 to 300 μm are used, there will be less damage due to kneading during molding compared to glass fibers, and since the hardness is lower than that of glass, there will be less wear on the molding machine. Furthermore, if the diameter is 5 μm or more and the length is 300 μm or more, the fibers will be significantly damaged during molding, and strong anisotropy will appear in the molded product. On the other hand, if the diameter is 0.5 μm or less and the length is less than 10 μm, the reinforcing effect is inhibited by the talc powder, so it is not very useful for improving the strength, and it is also likely to cause secondary aggregation, resulting in poor dispersibility in the resin. The reason for using calcium sulfate fine fibers that do not contain water of crystallization is that if water of crystallization is contained, the water of crystallization will separate at temperatures below 200°C, which is undesirable as it will cause silver streaks on the surface of the molded product. be. The reason why the amount of calcium sulfate fine fibers is set to 5 to 70 parts by weight per 100 parts by weight of the polyolefin resin is that if it is less than 5 parts by weight, there is little improvement in strength and the purpose of the present invention cannot be achieved. This is because if 70 parts by weight or more is added, the anisotropy becomes strong and the object of the present invention cannot be achieved. In addition, the strength effect of calcium sulfate fine fibers is 0.5 to 1 mm in diameter.
μ, a length of 10 to 100 μ is best. In the above, the effects of talcum powder and calcium sulfate fine fibers were separately described. However, the feature of the present invention lies in the combined use of both. When talc powder and calcium sulfate fine fibers are used together,
In order to disperse the talc powder between the fine fibers and suppress the slippage between the fibers, compared to the case where the talc powder and the calcium sulfate fine fibers were individually blended in the same amount as the sum of the amounts of both, Increased rigidity. Furthermore, since talc powder disturbs the flow of resin during molding, it suppresses the unidirectional alignment of calcium sulfate fine fibers, thereby reducing the anisotropy inside the molded product. The above effects are extremely small when the amounts of talc powder and calcium sulfate fine fibers are each less than 5 parts by weight, and the object of the present invention cannot be achieved. On the other hand, if the blending amount of both is 70 parts by weight or more, the impact strength is significantly reduced, and the object of the present invention cannot be achieved. In addition, the improvement in rigidity and relaxation of anisotropy due to the synergistic effect of the talc powder and calcium sulfate fine fibers mentioned above is due to the size of the calcium sulfate fine fibers.
Even if the talc powder particles are too large, or conversely, the calcium sulfate fine fibers are too large compared to the size of the talc powder, they will become smaller. Regarding the particle size of both, talc powder contains more than 80% of particles with a diameter of 0.05 to 0.5μ, and 10% of particles with a diameter of 1μ or more.
If calcium sulfate fine fibers with a diameter of 0.5 to 1 μm and a length of 10 to 100 μm are used, the rigidity and strength will be greatly improved and the anisotropy will be reduced. This is because extremely fine talc powder is uniformly dispersed between the fibers, improving the apparent elastic modulus of the resin matrix and making it difficult for the polymers to slip between each other. The entire structure, including talc powder and calcium sulfate fine fibers, is covered with crystals, resulting in particularly high rigidity and strength. In addition, the direction of crystal growth is not only uniform because the molecular orientation and fiber arrangement during molding are disturbed by the presence of talc powder, but also because the direction of crystal growth around the talc powder becomes random. The anisotropy of the molded product is almost eliminated. As mentioned above, when talcum powder and calcium sulfate are used together, different effects can be obtained than when each is used alone. The composition of the present invention has a greater effect of improving rigidity, strength, and heat deformation resistance than when using equal amounts of each of talc powder and calcium sulfate fine fibers alone, and the composition has a greater effect on improving the stiffness, strength, and heat deformation resistance, and the inner structure of the molded product differs due to the fiber arrangement. There is almost no directionality. That is, the rigidity and heat deformation temperature are higher than when talc is used alone, and the decrease in strength that occurs when talc is used alone is prevented. Furthermore, the rigidity and heat deformation temperature are higher than when calcium sulfate fine fibers are used alone, the strength is the same, and anisotropy is hardly observed. Furthermore, when calcium sulfate fine fibers are used, unlike glass fibers, they are less likely to break during molding, so the reinforcing effect can be predicted in advance. There is also less wear on the machine. Calcium sulfate is a byproduct of anti-pollution measures that is often obtained when removing sulfur dioxide gas produced during oil combustion, and is currently in excess supply. Therefore, this can be effectively utilized. In addition, when the material is disposed of by incineration after use, the calorific value and soot are small, there is little damage to the incinerator, and the incineration residue can be used again as a filler. As described above, the composition of the present invention has superior properties compared to conventional polyolefin resin compositions containing inorganic fillers. This composition will be explained in detail in the following examples. Example 1 100 parts by weight of polypropylene, 50 parts by weight of talc powder with an average diameter of 1μ, an average diameter of 0.5μ, and a length of 10~
50 parts by weight of calcium sulfate fine fibers containing no crystal water of 50 μm were kneaded at 190° C. for 15 minutes using a mixing roll (Sakurai electric heating roll), and then pulverized. Then, a test piece was molded in accordance with JISK6871 using a 4.5-ounce injection molding machine manufactured by Toyo Kikai Kinzoku, and a tensile test was conducted in accordance with JISK9871.
In addition, an Izot impact test was conducted in accordance with JISK6911. The results are shown in Table 2. Examples 2 to 22 The compositions are shown in Table 1, and the properties are shown in Table 2. The production of the material and the measurement of material properties were carried out in the same manner as in Example 1. Comparative Examples 1 to 22 Material production and measurement of material properties were carried out in Example 1.
The same method was used as in the case of . The composition of the comparative example is shown in Table 3, and the characteristics are shown in Table 4. Comparative Examples 23 to 27 Comparative Examples 23 to 27 are cases where glass fiber and talc powder were combined, and the compositions are shown in Table 5 and the characteristics are shown in Table 6. A comparison between Tables 2 and 4 shows that the compositions of the present invention have superior properties compared to conventional compositions.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 なお、実際の材料の混練製造は、バリバリミキ
サ、ミキシングロール、ニーダ、押出機などを用
いて行なうが、これに限定されるものではない。
[Table] Note that the actual kneading and production of materials is carried out using a crunching mixer, mixing roll, kneader, extruder, etc., but is not limited thereto.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリオレフイン系樹脂(A)100重量部、タルク
粉末(B)5〜70重量部、直径0.5〜5μ、長さ10〜
300μの結晶水を含有しない硫酸カルシウム微細
繊維(C)5〜70重量部を配合してなることを特徴と
するポリオレフイン系樹脂組成物。
1 Polyolefin resin (A) 100 parts by weight, talc powder (B) 5-70 parts by weight, diameter 0.5-5μ, length 10-
A polyolefin resin composition comprising 5 to 70 parts by weight of calcium sulfate fine fibers (C) that do not contain 300 μm of water of crystallization.
JP2793877A 1977-03-16 1977-03-16 Polyolefin resin composition Granted JPS53113851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2793877A JPS53113851A (en) 1977-03-16 1977-03-16 Polyolefin resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2793877A JPS53113851A (en) 1977-03-16 1977-03-16 Polyolefin resin composition

Publications (2)

Publication Number Publication Date
JPS53113851A JPS53113851A (en) 1978-10-04
JPS6139338B2 true JPS6139338B2 (en) 1986-09-03

Family

ID=12234830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2793877A Granted JPS53113851A (en) 1977-03-16 1977-03-16 Polyolefin resin composition

Country Status (1)

Country Link
JP (1) JPS53113851A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140347U (en) * 1987-03-06 1988-09-14
JPS63182845U (en) * 1987-05-15 1988-11-25
JPH0187843U (en) * 1987-11-30 1989-06-09
JPH0231641U (en) * 1988-08-22 1990-02-28
JPH0235651U (en) * 1988-08-30 1990-03-07
JPH0513475Y2 (en) * 1987-11-10 1993-04-09

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136736A (en) * 1975-05-22 1976-11-26 Mitsui Toatsu Chem Inc Polyolefin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136736A (en) * 1975-05-22 1976-11-26 Mitsui Toatsu Chem Inc Polyolefin composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140347U (en) * 1987-03-06 1988-09-14
JPS63182845U (en) * 1987-05-15 1988-11-25
JPH0513475Y2 (en) * 1987-11-10 1993-04-09
JPH0187843U (en) * 1987-11-30 1989-06-09
JPH0231641U (en) * 1988-08-22 1990-02-28
JPH0235651U (en) * 1988-08-30 1990-03-07

Also Published As

Publication number Publication date
JPS53113851A (en) 1978-10-04

Similar Documents

Publication Publication Date Title
CA1156787A (en) Polybutylene modified masterbatches for impact resistant polypropylene
KR920010613B1 (en) Reinforced molding resin composition
US5145892A (en) Polypropylene resin composition
JPH02279745A (en) Reinforced polypropylene rein composition
JP2021011562A (en) Resin composition and molded article
KR100196682B1 (en) Polyacetal resin composition
WO2021002314A1 (en) Resin composition and molded article
JPS6139338B2 (en)
JPH0124815B2 (en)
JP3362791B2 (en) Polyolefin resin composition
JP7071842B2 (en) Organic fiber reinforced resin composition and its manufacturing method
JP2021011563A (en) Resin composition and molded article
JPH02124956A (en) Production of composite material composition
CN111704767A (en) High-rigidity high-toughness polypropylene composite material and preparation method thereof
JPH10168240A (en) Master batch pellet and preparation thereof
WO2017064778A1 (en) Polyacetal resin composition, fastening member and slide fastener
JPS6411219B2 (en)
JPS59172533A (en) Production of reinforced resin composition
JP5111694B2 (en) Fiber reinforced polyolefin resin composition
JPS5861149A (en) Reinforced thermoplastic resin composition
JP2616877B2 (en) Organic fiber-based propylene resin composition
JPH0144251B2 (en)
JPS62146947A (en) Polypropylene resin composition
WO2018193893A1 (en) Polyolefin resin composition and molded polyolefin resin composition
JPH03290453A (en) Polypropylene resin composition