JP7071842B2 - Organic fiber reinforced resin composition and its manufacturing method - Google Patents
Organic fiber reinforced resin composition and its manufacturing method Download PDFInfo
- Publication number
- JP7071842B2 JP7071842B2 JP2018036270A JP2018036270A JP7071842B2 JP 7071842 B2 JP7071842 B2 JP 7071842B2 JP 2018036270 A JP2018036270 A JP 2018036270A JP 2018036270 A JP2018036270 A JP 2018036270A JP 7071842 B2 JP7071842 B2 JP 7071842B2
- Authority
- JP
- Japan
- Prior art keywords
- organic fiber
- olefin
- resin composition
- olefin resin
- fiber reinforced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、有機繊維強化樹脂組成物及びその製造方法に関し、より詳しくは、オレフィン系樹脂を含有する有機繊維強化樹脂組成物及びその製造方法に関する。 The present invention relates to an organic fiber reinforced resin composition and a method for producing the same, and more particularly to an organic fiber reinforced resin composition containing an olefin resin and a method for producing the same.
オレフィン系樹脂は汎用性が高く、安価でかつ機械的特性に優れているため、自動車の内装部品や外装部品等、様々な分野で幅広く用いられている。このようなオレフィン系樹脂においては、機械的特性を向上させるために、木粉、セルロース繊維、ポリエステル系繊維等の有機繊維やガラス繊維、炭素繊維等の無機繊維が配合されている。例えば、特開平7-62167号公報(特許文献1)には、メルトフローレートが0.2g/10分以上100g/10分以下の結晶性プロピレン重合体(A)100質量部と無機系充填剤含有ポリエチレンテレフタレート繊維等のポリエステル系繊維(B)10~100質量部とを含有する、耐熱性、剛性、成形性に優れた有機繊維系プロピレン樹脂組成物が記載されている。しかしながら、オレフィン系樹脂に有機繊維や無機繊維を配合した従来の繊維強化樹脂組成物は、脆性的な挙動を示し、引張荷重下において成形体が破断するという問題があった。 Olefin-based resins are widely used in various fields such as automobile interior parts and exterior parts because they are highly versatile, inexpensive, and have excellent mechanical properties. In such an olefin resin, organic fibers such as wood flour, cellulose fibers and polyester fibers and inorganic fibers such as glass fibers and carbon fibers are blended in order to improve mechanical properties. For example, Japanese Patent Application Laid-Open No. 7-62167 (Patent Document 1) describes 100 parts by mass of a crystalline propylene polymer (A) having a melt flow rate of 0.2 g / 10 minutes or more and 100 g / 10 minutes or less and an inorganic filler. Described is an organic fiber-based propylene resin composition having excellent heat resistance, rigidity, and moldability, which contains 10 to 100 parts by mass of a polyester fiber (B) such as a polyethylene terephthalate fiber. However, the conventional fiber-reinforced resin composition in which organic fibers and inorganic fibers are blended with an olefin resin exhibits brittle behavior, and has a problem that the molded body breaks under a tensile load.
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、引張荷重下において延性的な挙動を示し、成形体の破断が防止されたオレフィン系樹脂組成物及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and provides an olefin resin composition which exhibits ductile behavior under a tensile load and prevents breakage of a molded product, and a method for producing the same. The purpose is.
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、オレフィン系樹脂と有機繊維とを含有する有機繊維強化樹脂組成物において、前記オレフィン系樹脂として特定の大きいメルトマスフローレート(MFR)を有するオレフィン系樹脂と特定の小さいメルトマスフローレート(MFR)を有するオレフィン系樹脂とを組合せて用いることによって、引張荷重下において延性的な挙動が発現し、成形体の破断が抑制されることを見出し、本発明を完成するに至った。 As a result of diligent research to achieve the above object, the present inventors have made a large melt mass flow rate (MFR) specific as the olefin resin in the organic fiber reinforced resin composition containing the olefin resin and the organic fiber. ) In combination with an olefin resin having a specific small melt mass flow rate (MFR), a ductile behavior is exhibited under a tensile load, and breakage of the molded product is suppressed. And completed the present invention.
すなわち、本発明の有機繊維強化樹脂組成物は、メルトマスフローレートが10~200g/10minの第一のオレフィン系樹脂と、メルトマスフローレートが0.2~5g/10minであり、エチレンの単独重合体及びプロピレンの単独重合体からなる群から選択される少なくとも1種の第二のオレフィン系樹脂と、有機繊維とを含有し、
前記第一のオレフィン系樹脂と前記第二のオレフィン系樹脂の質量比が20:80~80:20であり、
前記有機繊維の含有量が、前記第一のオレフィン系樹脂と前記第二のオレフィン系樹脂との合計量100質量部に対して、5~100質量部である、
ことを特徴とするものである。
That is, the organic fiber reinforced resin composition of the present invention has a first olefin resin having a melt mass flow rate of 10 to 200 g / 10 min and a melt mass flow rate of 0.2 to 5 g / 10 min , and is a homopolymer of ethylene. And at least one second olefin resin selected from the group consisting of homopolymers of propylene and organic fibers.
The mass ratio of the first olefin resin to the second olefin resin is 20:80 to 80:20.
The content of the organic fiber is 5 to 100 parts by mass with respect to 100 parts by mass of the total amount of the first olefin resin and the second olefin resin.
It is characterized by that.
このような本発明の有機繊維強化樹脂組成物において、前記第一のオレフィン系樹脂はエチレンの単独重合体、プロピレンの単独重合体及びエチレンとプロピレンとの共重合体からなる群から選択される少なくとも1種であることが好ましく、また、前記第二のオレフィン系樹脂はプロピレンの単独重合体であることが好ましい。さらに、有機繊維は植物繊維であることが好ましい。 In such an organic fiber reinforced resin composition of the present invention, the first olefin resin is selected from at least a group consisting of a homopolymer of ethylene, a homopolymer of propylene, and a copolymer of ethylene and propylene. It is preferably one kind, and the second olefin resin is preferably a copolymer of propylene . Further, the organic fiber is preferably a plant fiber.
本発明の有機繊維強化樹脂組成物の製造方法は、メルトマスフローレートが10~200g/10minの第一のオレフィン系樹脂と有機繊維とを混合した後、メルトマスフローレートが0.2~5g/10minであり、エチレンの単独重合体及びプロピレンの単独重合体からなる群から選択される少なくとも1種の第二のオレフィン系樹脂を更に混合することを特徴とするものである。 In the method for producing an organic fiber reinforced resin composition of the present invention, after mixing an organic fiber with a first olefin resin having a melt mass flow rate of 10 to 200 g / 10 min, the melt mass flow rate is 0.2 to 5 g / 10 min. It is characterized in that at least one second olefin-based resin selected from the group consisting of a homopolymer of ethylene and a homopolymer of propylene is further mixed.
なお、本発明において、オレフィン系樹脂のメルトマスフローレート(MFR)は、JIS K7210に準拠して樹脂毎に設定された標準条件で測定される値である。前記標準条件としては、通常、ポリエチレンについては、温度:190℃、荷重:21.2Nに、ポリプロピレンについては、温度:230℃、荷重:21.2Nに、エチレン-プロピレン共重合体については、温度:230℃、荷重:21.2Nに、その他のエチレン系共重合体については、温度:190℃、荷重:21.2Nに、その他のプロピレン系共重合体については、温度:230℃、荷重:21.2Nに設定される。 In the present invention, the melt mass flow rate (MFR) of the olefin resin is a value measured under standard conditions set for each resin in accordance with JIS K7210. As the standard conditions, the temperature: 190 ° C. and load: 21.2N for polyethylene, the temperature: 230 ° C. and load: 21.2N for polypropylene, and the temperature for ethylene-propylene copolymers. : 230 ° C, load: 21.2N, temperature: 190 ° C for other ethylene-based copolymers, load: 21.2N, temperature: 230 ° C, load: for other propylene-based copolymers. It is set to 21.2N.
また、本発明の有機繊維強化樹脂組成物が引張荷重下において延性的な挙動を示し、成形体の破断が抑制される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の有機繊維強化樹脂組成物を製造する場合には、先ず、特定の大きいMFRを有する第一のオレフィン系樹脂と有機繊維とを混合する。特定の大きいMFRを有する第一のオレフィン系樹脂を用いることによって、混合時の有機繊維の破断や異常発熱が抑制され、有機繊維の劣化を防止することができる。次に、このようにして得られた混合物に特定の小さいMFRを有する第二のオレフィン系樹脂を混合する。特定の小さいMFRを有する第二のオレフィン系樹脂は分子量が大きいため、分子鎖同士が絡み合い、この絡み合いによって引張荷重下での前記第一のオレフィン系樹脂の亀裂の進展が抑制されるとともに、延性が付与され、成形体の破断が抑制されると推察される。 Further, the reason why the organic fiber reinforced resin composition of the present invention exhibits ductile behavior under a tensile load and the fracture of the molded body is suppressed is not always clear, but the present inventors infer as follows. .. That is, in the case of producing the organic fiber reinforced resin composition of the present invention, first, the first olefin resin having a specific large MFR and the organic fiber are mixed. By using the first olefin resin having a specific large MFR, breakage of organic fibers and abnormal heat generation during mixing can be suppressed, and deterioration of organic fibers can be prevented. Next, a second olefin resin having a specific small MFR is mixed with the mixture thus obtained. Since the second olefin resin having a specific small MFR has a large molecular weight, the molecular chains are entangled with each other, and this entanglement suppresses the growth of cracks in the first olefin resin under a tensile load and is ductile. Is given, and it is presumed that the breakage of the molded body is suppressed.
本発明によれば、引張荷重下において延性的な挙動を示し、成形体の破断が防止されたオレフィン系樹脂組成物を得ることが可能となる。 According to the present invention, it is possible to obtain an olefin-based resin composition that exhibits ductile behavior under a tensile load and prevents fracture of the molded body.
以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail according to the preferred embodiment thereof.
先ず、本発明の有機繊維強化樹脂組成物について説明する。本発明の有機繊維強化樹脂組成物は、メルトマスフローレート(MFR)が10~200g/10minの第一のオレフィン系樹脂と、メルトマスフローレート(MFR)が0.2~5g/10minの第二のオレフィン系樹脂と、有機繊維とを含有ものである。 First, the organic fiber reinforced resin composition of the present invention will be described. The organic fiber reinforced resin composition of the present invention has a first olefin resin having a melt mass flow rate (MFR) of 10 to 200 g / 10 min and a second melt mass flow rate (MFR) of 0.2 to 5 g / 10 min. It contains an olefin resin and an organic fiber.
(第一のオレフィン系樹脂)
本発明に用いられる第一のオレフィン系樹脂は、MFRが10~200g/10minの範囲内にあるオレフィン系樹脂である。このようなMFRが大きいオレフィン樹脂を用いることによって、樹脂組成物の良好な成形加工性を確保しつつ、有機繊維との混合時における有機繊維の破断や異常発熱を抑制し、有機繊維の劣化を防止することができる。一方、第一のオレフィン系樹脂のMFRが前記下限未満になると、流動性が低いため、樹脂組成物の成形加工性が低下するとともに、有機繊維との混合時における有機繊維の破断や異常発熱が発生しやすくなり、他方、前記上限を超えると、成形体の機械的強度が低下する。このような第一のオレフィン系樹脂のMFRとしては、樹脂組成物の成形加工性が向上するとともに、有機繊維との混合時における有機繊維の破断や異常発熱が十分に抑制されるという観点から、15g/10min以上が好ましく、20g/10min以上がより好ましく、また、成形体の機械的強度が向上するという観点から、100g/10min以下が好ましく、75g/10min以下がより好ましい。
(First olefin resin)
The first olefin-based resin used in the present invention is an olefin-based resin having an MFR in the range of 10 to 200 g / 10 min. By using such an olefin resin having a large MFR, while ensuring good molding processability of the resin composition, breakage and abnormal heat generation of the organic fiber at the time of mixing with the organic fiber are suppressed, and deterioration of the organic fiber is prevented. Can be prevented. On the other hand, when the MFR of the first olefin resin is less than the above lower limit, the fluidity is low, so that the molding processability of the resin composition is lowered, and the organic fibers are broken or abnormally heat is generated when mixed with the organic fibers. On the other hand, if the upper limit is exceeded, the mechanical strength of the molded body is lowered. The MFR of the first olefin-based resin is from the viewpoint of improving the molding processability of the resin composition and sufficiently suppressing the breakage and abnormal heat generation of the organic fiber when mixed with the organic fiber. 15 g / 10 min or more is preferable, 20 g / 10 min or more is more preferable, and 100 g / 10 min or less is preferable, and 75 g / 10 min or less is more preferable from the viewpoint of improving the mechanical strength of the molded product.
このような第一のオレフィン系樹脂としては、MFRが前記範囲内にあるものであれば特に制限はなく、例えば、エチレンの単独重合体(ポリエチレン)、プロピレンの単独重合体(ポリプロピレン)、エチレンとプロピレンとの共重合体、エチレンと炭素数4以上のα-オレフィンとの共重合体、プロピレンと炭素数4以上のα-オレフィンとの共重合体等が挙げられる。前記炭素数4以上のα-オレフィンとしては、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等が挙げられる。これらの第一のオレフィン系樹脂は1種を単独で使用しても2種以上を併用してもよい。また、このような第一のオレフィン系樹脂の中でも、成形性及び成形体の安定性の観点から、エチレンの単独重合体、プロピレンの単独重合体、エチレンとプロピレンとの共重合体、及びこれらの混合物が好ましい。 The first olefin-based resin is not particularly limited as long as the MFR is within the above range, and for example, ethylene homopolymer (polyethylene), propylene homopolymer (polyethylene), and ethylene. Examples thereof include a copolymer of propylene, a copolymer of ethylene and an α-olefin having 4 or more carbon atoms, and a copolymer of propylene and an α-olefin having 4 or more carbon atoms. Examples of the α-olefin having 4 or more carbon atoms include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and the like. These first olefin resins may be used alone or in combination of two or more. Among such first olefin resins, ethylene homopolymers, propylene homopolymers, ethylene and propylene copolymers, and theirs, from the viewpoint of moldability and stability of the molded product, are used. Mixtures are preferred.
(第二のオレフィン系樹脂)
本発明に用いられる第二のオレフィン系樹脂は、MFRが0.5~5g/10minの範囲内にあるオレフィン系樹脂である。このようなMFRが小さいオレフィン樹脂を用いることによって、引張荷重下での前記第一のオレフィン系樹脂の亀裂の進展が抑制されるとともに、延性が付与されるため、成形体の破断を抑制することができる。一方、第二のオレフィン系樹脂のMFRが前記下限未満になると、流動性が低いため、樹脂組成物の成形加工性が低下し、他方、前記上限を超えると、引張荷重下での前記第一のオレフィン系樹脂の亀裂の進展が抑制されず、延性も付与されないため、成形体の破断が発生する。このような第二のオレフィン系樹脂のMFRとしては、引張荷重下での前記第一のオレフィン系樹脂の亀裂の進展が十分に抑制されるとともに、延性も十分に付与され、成形体の破断を十分に防止できるという観点から、3g/10min以下が好ましく、1.5g/10min以下がより好ましい。
(Second olefin resin)
The second olefin-based resin used in the present invention is an olefin-based resin having an MFR in the range of 0.5 to 5 g / 10 min. By using such an olefin resin having a small MFR, the growth of cracks in the first olefin resin under a tensile load is suppressed, and ductility is imparted, so that the fracture of the molded product is suppressed. Can be done. On the other hand, when the MFR of the second olefin resin is less than the lower limit, the fluidity is low, so that the molding processability of the resin composition is lowered. On the other hand, when the MFR exceeds the upper limit, the first under a tensile load. Since the growth of cracks in the olefin-based resin is not suppressed and the ductility is not imparted, the molded product breaks. As the MFR of such a second olefin resin, the growth of cracks in the first olefin resin under a tensile load is sufficiently suppressed, and ductility is sufficiently imparted, so that the molded product breaks. From the viewpoint of sufficient prevention, 3 g / 10 min or less is preferable, and 1.5 g / 10 min or less is more preferable.
このような第二のオレフィン系樹脂としては、MFRが前記範囲内にあるものであれば特に制限はなく、例えば、エチレンの単独重合体(ポリエチレン)、プロピレンの単独重合体(ポリプロピレン)、エチレンとプロピレンとの共重合体、エチレンと炭素数4以上のα-オレフィンとの共重合体、プロピレンと炭素数4以上のα-オレフィンとの共重合体等が挙げられる。前記炭素数4以上のα-オレフィンとしては、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等が挙げられる。これらの第二のオレフィン系樹脂は1種を単独で使用しても2種以上を併用してもよい。また、このような第二のオレフィン系樹脂の中でも、成形性及び成形体の安定性の観点から、エチレンの単独重合体、プロピレンの単独重合体、エチレンとプロピレンとの共重合体、及びこれらの混合物が好ましい。 The second olefin resin is not particularly limited as long as the MFR is within the above range, and for example, ethylene homopolymer (polyethylene), propylene homopolymer (polyethylene), and ethylene. Examples thereof include a copolymer of propylene, a copolymer of ethylene and an α-olefin having 4 or more carbon atoms, and a copolymer of propylene and an α-olefin having 4 or more carbon atoms. Examples of the α-olefin having 4 or more carbon atoms include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and the like. These second olefin resins may be used alone or in combination of two or more. Among such second olefin resins, ethylene homopolymers, propylene homopolymers, ethylene and propylene copolymers, and their products, from the viewpoint of moldability and stability of the molded product, are used. Mixtures are preferred.
(有機繊維)
本発明においては、強化繊維として有機繊維が用いられる。これにより、機械的強度が向上するとともに、前記第一及び第二のオレフィン系樹脂との組合せによって、成形体の破断を防止することが可能となる。一方、強化繊維としてガラス繊維、炭素繊維等の無機繊維を用いた場合には、前記第一及び第二のオレフィン系樹脂との組合せによっても、成形体の破断を防止することは困難である。
(Organic fiber)
In the present invention, organic fiber is used as the reinforcing fiber. As a result, the mechanical strength is improved, and the combination with the first and second olefin resins makes it possible to prevent the molded product from breaking. On the other hand, when inorganic fibers such as glass fiber and carbon fiber are used as the reinforcing fibers, it is difficult to prevent the molded product from breaking even by combining with the first and second olefin resins.
このような有機繊維としては、例えば、木粉、パルプ、セルロースナノファイバー(パルプを微細化したもの)等の植物繊維;ポリエステル繊維、ポリアミド繊維等の合成繊維が挙げられる。これらの有機繊維は1種を単独で使用しても2種以上を併用してもよい。また、このような有機繊維の中でも、繊維の柔軟性の観点から、植物繊維が好ましく、特に、セルロースナノファイバーを用いた場合には、前記第二のオレフィン系樹脂を配合することによって、成形体の破断が防止されるだけでなく、引張強度及び引張弾性率が向上する傾向にある。 Examples of such organic fibers include plant fibers such as wood flour, pulp and cellulose nanofibers (finely divided pulp); synthetic fibers such as polyester fibers and polyamide fibers. These organic fibers may be used alone or in combination of two or more. Among such organic fibers, plant fibers are preferable from the viewpoint of fiber flexibility, and in particular, when cellulose nanofibers are used, a molded product is formed by blending the second olefin resin. Not only is it prevented from breaking, but also the tensile strength and tensile elastic modulus tend to be improved.
また、このような有機繊維の平均直径としては、10nm~100μmが好ましい。有機繊維の平均直径が前記下限未満になると、補強効果が得られにくくなる傾向にあり、他方、前記上限を超えると、成形体が脆化する傾向にある。また、平均繊維長としては1μm~50mmが好ましい。有機繊維の平均繊維長が前記下限未満になると、補強効果が得られにくくなる傾向にあり、他方、前記上限を超えると、繊維同士の絡み合いによる粘度上昇や外観不良が発生する傾向にある。 The average diameter of such organic fibers is preferably 10 nm to 100 μm. When the average diameter of the organic fibers is less than the lower limit, it tends to be difficult to obtain the reinforcing effect, while when the average diameter exceeds the upper limit, the molded product tends to be embrittled. The average fiber length is preferably 1 μm to 50 mm. When the average fiber length of the organic fiber is less than the lower limit, it tends to be difficult to obtain the reinforcing effect, while when the average fiber length exceeds the upper limit, the viscosity tends to increase due to the entanglement of the fibers and the appearance tends to be poor.
(その他の成分)
本発明の有機繊維強化樹脂組成物においては、本発明の効果を損なわない範囲において、難燃剤、帯電防止剤、造核剤、可塑剤、着色剤等の各種添加剤が含まれていてもよい。
(Other ingredients)
The organic fiber reinforced resin composition of the present invention may contain various additives such as flame retardants, antistatic agents, nucleating agents, plasticizers, and colorants as long as the effects of the present invention are not impaired. ..
<有機繊維強化樹脂組成物>
本発明の有機繊維強化樹脂組成物は、前記第一のオレフィン系樹脂と前記第二のオレフィン系樹脂とを、第一:第二=20:80~80:20の質量比で含有するものである。前記第一のオレフィン系樹脂と前記第二のオレフィン系樹脂との質量比が前記下限未満になると、樹脂組成物の流動性が低下するため、樹脂組成物の良好な成形加工性を確保できず、他方、前記上限を超えると、引張荷重下での前記第一のオレフィン系樹脂の亀裂の進展が抑制されず、延性も付与されないため、成形体の破断が発生する。また、このようなオレフィン系樹脂の質量比としては、樹脂組成物の良好な成形加工性を確保し、引張荷重下での前記第一のオレフィン系樹脂の亀裂の進展が十分に抑制されるとともに、延性も十分に付与され、成形体の破断を十分に防止できるという観点から、第一:第二=30:70~70:30が好ましく、35:65~65:35がより好ましい。
<Organic fiber reinforced resin composition>
The organic fiber reinforced resin composition of the present invention contains the first olefin resin and the second olefin resin in a mass ratio of first: second = 20: 80 to 80:20. be. When the mass ratio of the first olefin resin to the second olefin resin is less than the lower limit, the fluidity of the resin composition is lowered, so that good molding processability of the resin composition cannot be ensured. On the other hand, if the upper limit is exceeded, the growth of cracks in the first olefin resin under a tensile load is not suppressed and the ductility is not imparted, so that the molded product breaks. Further, as the mass ratio of such an olefin-based resin, good molding processability of the resin composition is ensured, and the growth of cracks in the first olefin-based resin under a tensile load is sufficiently suppressed. From the viewpoint that ductility is sufficiently imparted and breakage of the molded product can be sufficiently prevented, the first: second = 30:70 to 70:30 is preferable, and 35:65 to 65:35 is more preferable.
また、本発明の有機繊維強化樹脂組成物は、前記有機繊維を、前記第一のオレフィン系樹脂と前記第二のオレフィン系樹脂との合計量100質量部に対して5~100質量部含有するものである。有機繊維の含有量が前記下限未満になると、機械的強度が低下し、他方、前記上限を超えると、粘度上昇による成形性の悪化と成形体の破断が発生する。また、このような有機繊維の含有量としては、成形性と成形体の力学物性を両立するという観点から、5~50質量部が好ましく、10~25質量部がより好ましい。 Further, the organic fiber reinforced resin composition of the present invention contains the organic fiber in an amount of 5 to 100 parts by mass with respect to 100 parts by mass of the total amount of the first olefin resin and the second olefin resin. It is a thing. When the content of the organic fiber is less than the lower limit, the mechanical strength is lowered, while when the content exceeds the upper limit, the moldability is deteriorated due to the increase in viscosity and the molded product is broken. The content of such organic fibers is preferably 5 to 50 parts by mass, more preferably 10 to 25 parts by mass, from the viewpoint of achieving both moldability and mechanical properties of the molded product.
<有機繊維強化樹脂組成物の製造方法>
次に、本発明の有機繊維強化樹脂組成物の製造方法について説明する。本発明の有機繊維強化樹脂組成物の製造方法においては、先ず、前記第一のオレフィン系樹脂と有機繊維とを混合し、次に、得られた混合物と前記第二のオレフィン系樹脂とを混合する。前記第一のオレフィン系樹脂と有機繊維とを先に混合することによって、混合時における有機繊維の破断や異常発熱が抑制され、有機繊維の劣化を防止することができる。一方、前記第二のオレフィン系樹脂と有機繊維とを先に混合したり、前記第一のオレフィン系樹脂と前記第二のオレフィン系樹脂と有機繊維とを同時に混合したりした場合には、混合時における有機繊維の破断や異常発熱が十分に抑制されず、有機繊維が劣化し、有機繊維による強化効果が十分に得られない。
<Manufacturing method of organic fiber reinforced resin composition>
Next, a method for producing the organic fiber reinforced resin composition of the present invention will be described. In the method for producing an organic fiber reinforced resin composition of the present invention, first, the first olefin resin and the organic fiber are mixed, and then the obtained mixture and the second olefin resin are mixed. do. By first mixing the first olefin resin and the organic fiber, breakage of the organic fiber and abnormal heat generation at the time of mixing can be suppressed, and deterioration of the organic fiber can be prevented. On the other hand, when the second olefin resin and the organic fiber are mixed first, or when the first olefin resin, the second olefin resin and the organic fiber are mixed at the same time, they are mixed. Breaking of organic fibers and abnormal heat generation at times are not sufficiently suppressed, the organic fibers are deteriorated, and the strengthening effect of the organic fibers cannot be sufficiently obtained.
前記第一のオレフィン系樹脂と有機繊維との混合方法としては特に制限はなく、例えば、湿式混合(溶液混合)、乾式混合、溶融混合等の公知の混合方法を採用することができる。また、前記第一のオレフィン系樹脂と有機繊維との混合物と前記第二のオレフィン系樹脂との混合方法についても特に制限はなく、例えば、湿式混合(溶液混合)、乾式混合、溶融混合等の公知の混合方法を採用することができる。 The mixing method of the first olefin resin and the organic fiber is not particularly limited, and for example, known mixing methods such as wet mixing (solution mixing), dry mixing, and melt mixing can be adopted. Further, there is no particular limitation on the mixing method of the mixture of the first olefin resin and the organic fiber and the second olefin resin, for example, wet mixing (solution mixing), dry mixing, melt mixing and the like. A known mixing method can be adopted.
このようにして製造された本発明の有機繊維強化樹脂組成物は、用途に応じて所望の形状に成形される。成形方法としては特に制限はなく、押出成形、射出成形等の公知の成形方法を採用することができる。このようにして成形された有機繊維強化樹脂成形体は、機械的強度に優れているだけでなく、引張荷重下においても破断が発生しない。 The organic fiber reinforced resin composition of the present invention produced in this manner is molded into a desired shape according to the intended use. The molding method is not particularly limited, and known molding methods such as extrusion molding and injection molding can be adopted. The organic fiber reinforced resin molded body thus molded is not only excellent in mechanical strength, but also does not break even under a tensile load.
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
(実施例1)
先ず、JIS K7210に準拠して温度:230℃、荷重:21.2Nで測定したMFRが33g/10minのブロックポリプロピレン(bPP)(住友化学株式会社製「ノーブレンAZ864」)とスギ微細繊維(スギ木材をハンマーミルで物理的に粉砕したもの。平均直径:数μm~数十μm)とを二軸押出機(株式会社日本製鋼所製「TEX30」)を用いて質量比(bPP:スギ微細繊維)=70:30で溶融混練してスギ繊維強化ブロックポリプロピレン(bPP-スギ繊維)を調製した。
(Example 1)
First, block polypropylene (bPP) (“Nobren AZ864” manufactured by Sumitomo Chemical Co., Ltd.) with an MFR of 33 g / 10 min measured at a temperature of 230 ° C. and a load of 21.2 N in accordance with JIS K7210 and Sugi fine fibers (Sugi wood). Physically crushed with a hammer mill. Average diameter: several μm to several tens of μm) and mass ratio (bPP: Sugi fine fiber) using a twin-screw extruder (“TEX30” manufactured by Nippon Steel Co., Ltd.) Sugi fiber reinforced block polypropylene (bPP-Sugi fiber) was prepared by melt-kneading at 70:30.
次に、得られたbPP-スギ繊維とJIS K7210に準拠して温度:230℃、荷重:21.2Nで測定したMFRが0.5g/10minのポリプロピレン(PP)(株式会社プライムポリマー製「プライムポリプロE111G」)とを質量比(bPP-スギ繊維:PP)=50:50でドライブレンドした後、射出成形機(株式会社新興セルビック製「Mobile0813」)を用いてシリンダー温度220℃、金型温度50℃の条件で射出成形を行い、JIS 1BA形のダンベル状試験片(JIS K7162「附属書A 小形試験片」に記載のもの)を作製した。 Next, the obtained bPP-sugi fiber and polypropylene (PP) having an MFR of 0.5 g / 10 min measured at a temperature of 230 ° C. and a load of 21.2 N according to JIS K7210 (Prime Polymer Co., Ltd. "Prime" Polypro E111G ”) is dry-blended at a mass ratio (bPP-sugi fiber: PP) = 50: 50, and then a cylinder temperature 220 ° C. and a mold temperature are used using an injection molding machine (“Mobile 0813” manufactured by Shinko Selvik Co., Ltd.). Injection molding was performed under the condition of 50 ° C. to prepare a JIS 1BA type dumbbell-shaped test piece (described in JIS K7162 "Annex A small test piece").
(実施例2)
MFRが33g/10minの前記bPPの代わりにJIS K7210に準拠して温度:230℃、荷重:21.2Nで測定したMFRが45g/10minのポリプロピレン(PP)(株式会社プライムポリマー製「プライムポリプロJ108M」)を用い、前記スギ微細繊維の代わりに針葉樹パルプ(針葉樹クラフトパルプを叩解処理したもの)を用い、質量比をPP:針葉樹パルプ=80:20に変更した以外は、実施例1と同様にして針葉樹パルプ強化ポリプロピレン(PP-パルプ)を調製した。
(Example 2)
Instead of the bPP having an MFR of 33 g / 10 min, polypropylene (PP) having an MFR of 45 g / 10 min measured at a temperature of 230 ° C. and a load of 21.2 N according to JIS K7210 (Prime Polypro J108M manufactured by Prime Polymer Co., Ltd.) ”) Was used, and coniferous pulp (a beaten-treated coniferous kraft pulp) was used instead of the cedar fine fibers, and the mass ratio was changed to PP: coniferous pulp = 80:20, in the same manner as in Example 1. To prepare coniferous pulp-reinforced polypropylene (PP-pulp).
前記bPP-スギ繊維の代わりに前記PP-パルプを、MFR(230℃、21.2N荷重)が0.5g/10minのポリプロピレン(PP)(株式会社プライムポリマー製「プライムポリプロE111G」)とドライブレンドした以外は実施例1と同様にしてJIS1AB型のダンベル状試験片を作製した。 Instead of the bPP-sugi fiber, the PP-pulp is dry-blended with polypropylene (PP) having an MFR (230 ° C., 21.2 N load) of 0.5 g / 10 min ("Prime Polypro E111G" manufactured by Prime Polymer Co., Ltd.). A JIS1AB type dumbbell-shaped test piece was prepared in the same manner as in Example 1.
(比較例1)
MFRが0.5g/10minの前記PPの代わりにMFR(230℃、21.2N荷重)が33g/10minのブロックポリプロピレン(bPP)(住友化学株式会社製「ノーブレンAZ864」)を、前記bPP-スギ繊維とドライブレンドした以外は、実施例1と同様にしてJIS 1BA形のダンベル状試験片を作製した。
(Comparative Example 1)
Instead of the PP having an MFR of 0.5 g / 10 min, block polypropylene (bPP) having an MFR (230 ° C., 21.2 N load) of 33 g / 10 min (“Nobren AZ864” manufactured by Sumitomo Chemical Co., Ltd.) was used as the bPP-sugi. A JIS 1BA type dumbbell-shaped test piece was prepared in the same manner as in Example 1 except that it was dry-blended with the fiber.
(比較例2)
MFRが0.5g/10minの前記PPの代わりにJIS K7210に準拠して温度:230℃、荷重:21.2Nで測定したMFRが11g/10minのポリプロピレン(PP)(日本ポリプロ株式会社製「ノバテックMA3」)を、前記bPP-スギ繊維とドライブレンドした以外は、実施例1と同様にしてJIS 1BA形のダンベル状試験片を作製した。
(Comparative Example 2)
Instead of the PP having an MFR of 0.5 g / 10 min, polypropylene (PP) having an MFR of 11 g / 10 min measured at a temperature of 230 ° C. and a load of 21.2 N according to JIS K7210 (Novatec, manufactured by Japan Polypropylene Corporation) A JIS 1BA type dumbbell-shaped test piece was prepared in the same manner as in Example 1 except that MA3 ”) was dry-blended with the bPP-sugi fiber.
(比較例3)
MFRが0.5g/10minの前記PPの代わりにMFR(230℃、21.2N荷重)が45g/10minのポリプロピレン(PP)(株式会社プライムポリマー製「プライムポリプロJ108M」)を、前記PP-パルプとドライブレンドした以外は、実施例2と同様にしてJIS 1BA形のダンベル状試験片を作製した。
(Comparative Example 3)
Instead of the PP having an MFR of 0.5 g / 10 min, polypropylene (PP) having an MFR (230 ° C., 21.2 N load) of 45 g / 10 min (“Prime Polypro J108M” manufactured by Prime Polymer Co., Ltd.) is used as the PP-pulp. A JIS 1BA type dumbbell-shaped test piece was prepared in the same manner as in Example 2 except that it was dry-blended.
(比較例4)
MFRが0.5g/10minの前記PPの代わりにMFR(230℃、21.2N荷重)が11g/10minのポリプロピレン(PP)(日本ポリプロ株式会社製「ノバテックMA3」)を、前記PP-パルプとドライブレンドした以外は、実施例2と同様にしてJIS 1BA形のダンベル状試験片を作製した。
(Comparative Example 4)
Instead of the PP having an MFR of 0.5 g / 10 min, polypropylene (PP) having an MFR (230 ° C., 21.2 N load) of 11 g / 10 min (“Novatec MA3” manufactured by Japan Polypropylene Corporation) was used as the PP-pulp. A JIS 1BA type dumbbell-shaped test piece was prepared in the same manner as in Example 2 except that it was dry-blended.
(比較例5)
前記bPP-スギ繊維の代わりに炭素繊維強化ポリプロピレン(PP-CF)(ダイセルポリマー株式会社製「プラストロンPP-CF20」、繊維濃度:20質量%)を、MFR(230℃、21.2N荷重)が0.5g/10minのポリプロピレン(PP)(株式会社プライムポリマー製「プライムポリプロE111G」)とドライブレンドした以外は実施例1と同様にしてJIS 1BA形のダンベル状試験片を作製した。
(Comparative Example 5)
Instead of the bPP-sugi fiber, carbon fiber reinforced polypropylene (PP-CF) (“Plastron PP-CF20” manufactured by Daicel Polymer Co., Ltd., fiber concentration: 20% by mass) is used in MFR (230 ° C., 21.2 N load). A JIS 1BA type dumbbell-shaped test piece was prepared in the same manner as in Example 1 except that it was dry-blended with 0.5 g / 10 min polypropylene (PP) (“Prime Polypro E111G” manufactured by Prime Polymer Co., Ltd.).
<引張試験>
実施例及び比較例で得られた各ダンベル状試験片を、温度23℃、相対湿度50%に設定した恒温恒湿の部屋に48時間静置した後、万能試験機(インストロン社製「4302」)を用いて変位速度2mm/minで引張試験を行い、引張強度(最大引張応力)及び破断伸びを測定した。その結果(試験片数n=3の平均値)を表1に示す。また、図1~図3には、実施例1~2及び比較例1~5で得られた各ダンベル状試験片の応力-ひずみ曲線(代表値)を示す。
<Tensile test>
Each dumbbell-shaped test piece obtained in Examples and Comparative Examples was allowed to stand in a constant temperature and humidity room set at a temperature of 23 ° C. and a relative humidity of 50% for 48 hours, and then a universal testing machine (Instron's "4302"). A tensile test was performed at a displacement speed of 2 mm / min using the above), and the tensile strength (maximum tensile stress) and the elongation at break were measured. The results (mean value of the number of test pieces n = 3) are shown in Table 1. Further, FIGS. 1 to 3 show stress-strain curves (representative values) of the dumbbell-shaped test pieces obtained in Examples 1 and 2 and Comparative Examples 1 to 5.
図1及び表1に示した結果から明らかなように、所定の大きいMFRを有する第一のオレフィン系樹脂と所定の小さいMFRを有する第二のオレフィン系樹脂とスギ微細繊維とを含有する本発明の有機繊維強化樹脂組成物(実施例1)は、破断することなく伸び続け、優れた延性を示すことが確認された。一方、オレフィン系樹脂として所定の大きいMFRを有する第一のオレフィン系樹脂を1種又は2種含有し、所定の小さいMFRを有する第二のオレフィン系樹脂を含有しない有機繊維強化樹脂組成物(比較例1~2)は、実施例1の有機繊維強化樹脂組成物に比べて低い応力で降伏を開始し、延性を示すことなく、破断することがわかった。また、実施例1の有機繊維強化樹脂組成物は、比較例1~2の有機繊維強化樹脂組成物に比べて引張強度に優れており、特に、オレフィン系樹脂として1種類の所定の大きいMFRを有する第一のオレフィン系樹脂のみを含有する有機繊維強化樹脂組成物(比較例1)に比べて引張強度が極めて優れており、さらに引張弾性率にも優れていることがわかった。以上の結果から、オレフィン系樹脂とスギ微細繊維とを含有する有機繊維強化樹脂組成物において、前記オレフィン系樹脂として所定の大きいMFRを有する第一のオレフィン系樹脂と所定の小さいMFRを有する第二のオレフィン系樹脂とを組合せて用いることによって、延性が付与されるとともに、前記オレフィン系樹脂として1種又は2種以上の所定の大きいMFRを有する第一のオレフィン系樹脂のみを用いた場合に比べて引張強度が向上し、さらに、前記オレフィン系樹脂として1種類の所定の大きいMFRを有する第一のオレフィン系樹脂のみを用いた場合に比べて引張弾性率が向上することがわかった。 As is clear from the results shown in FIGS. 1 and 1, the present invention contains a first olefin resin having a predetermined large MFR, a second olefin resin having a predetermined small MFR, and cedar fine fibers. It was confirmed that the organic fiber reinforced resin composition (Example 1) of No. 1 continued to stretch without breaking and exhibited excellent ductility. On the other hand, an organic fiber reinforced resin composition containing one or two first olefin resins having a predetermined large MFR as olefin resins and not containing a second olefin resin having a predetermined small MFR (comparative). It was found that Examples 1 and 2) started yielding with a lower stress than the organic fiber reinforced resin composition of Example 1 and broke without showing ductility. Further, the organic fiber reinforced resin composition of Example 1 is superior in tensile strength to the organic fiber reinforced resin compositions of Comparative Examples 1 and 2, and in particular, one kind of predetermined large MFR as an olefin resin is used. It was found that the tensile strength was extremely excellent and the tensile elasticity was also excellent as compared with the organic fiber reinforced resin composition (Comparative Example 1) containing only the first olefin resin having. From the above results, in the organic fiber reinforced resin composition containing the olefin resin and the fine fiber of cedar, the first olefin resin having a predetermined large MFR and the second having a predetermined small MFR as the olefin resin. By using the above olefin-based resin in combination, ductility is imparted, and as compared with the case where only the first olefin-based resin having one or more predetermined large MFRs is used as the olefin-based resin. It was found that the tensile strength was improved, and further, the tensile elasticity was improved as compared with the case where only the first olefin-based resin having one kind of predetermined large MFR was used as the olefin-based resin.
また、図2及び表1に示した結果から明らかなように、所定の大きいMFRを有する第一のオレフィン系樹脂と所定の小さいMFRを有する第二のオレフィン系樹脂と針葉樹パルプとを含有する本発明の有機繊維強化樹脂組成物(実施例2)は、破断することなく伸び続け、優れた延性を示すことが確認された。一方、オレフィン系樹脂として所定の大きいMFRを有する第一のオレフィン系樹脂を1種又は2種含有し、所定の小さいMFRを有する第二のオレフィン系樹脂を含有しない有機繊維強化樹脂組成物(比較例3~4)は、延性を示すことなく、破断し、特に、オレフィン系樹脂として2種類の所定の大きいMFRを有する第一のオレフィン系樹脂のみを含有する有機繊維強化樹脂組成物(比較例4)は、実施例2の有機繊維強化樹脂組成物に比べて低い応力で降伏を開始することがわかった。また、実施例2の有機繊維強化樹脂組成物は、比較例4の有機繊維強化樹脂組成物に比べて引張強度に優れていることがわかった。以上の結果から、オレフィン系樹脂と針葉樹パルプとを含有する有機繊維強化樹脂組成物において、前記オレフィン系樹脂として所定の大きいMFRを有する第一のオレフィン系樹脂と所定の小さいMFRを有する第二のオレフィン系樹脂とを組合せて用いることによって、延性が付与されるとともに、前記オレフィン系樹脂として2種以上の所定の大きいMFRを有する第一のオレフィン系樹脂のみを用いた場合に比べて引張強度が向上することがわかった。 Further, as is clear from the results shown in FIGS. 2 and 1, a book containing a first olefin resin having a predetermined large MFR, a second olefin resin having a predetermined small MFR, and coniferous pulp. It was confirmed that the organic fiber reinforced resin composition of the present invention (Example 2) continued to stretch without breaking and exhibited excellent ductility. On the other hand, an organic fiber reinforced resin composition containing one or two kinds of a first olefin resin having a predetermined large MFR as an olefin resin and not containing a second olefin resin having a predetermined small MFR (comparative). In Examples 3 to 4), an organic fiber reinforced resin composition (Comparative Example) containing only a first olefin-based resin having two types of predetermined large MFRs as olefin-based resins, which breaks without showing ductility. It was found that 4) started yielding with a lower stress than that of the organic fiber reinforced resin composition of Example 2. Further, it was found that the organic fiber reinforced resin composition of Example 2 was superior in tensile strength to the organic fiber reinforced resin composition of Comparative Example 4. From the above results, in the organic fiber reinforced resin composition containing the olefin resin and the coniferous tree pulp, the first olefin resin having a predetermined large MFR and the second olefin resin having a predetermined small MFR as the olefin resin. By using it in combination with an olefin resin, ductility is imparted, and the tensile strength is higher than when only the first olefin resin having two or more predetermined large MFRs is used as the olefin resin. It turned out to improve.
さらに、図3及び表1に示した結果から明らかなように、強化繊維として炭素繊維を用いた場合(比較例5)には、所定の小さいMFRを有する第二のオレフィン系樹脂を配合しても、炭素繊維強化樹脂組成物は破断し、延性を付与することは困難であった。 Further, as is clear from the results shown in FIGS. 3 and 1, when carbon fiber is used as the reinforcing fiber (Comparative Example 5), a second olefin resin having a predetermined small MFR is blended. However, the carbon fiber reinforced resin composition broke and it was difficult to impart ductility.
以上説明したように、本発明によれば、オレフィン系樹脂と有機繊維とを含有する有機繊維強化樹脂組成物に、延性を付与することが可能となる。 As described above, according to the present invention, it is possible to impart ductility to an organic fiber reinforced resin composition containing an olefin resin and an organic fiber.
したがって、本発明の有機繊維強化樹脂組成物は、機械的強度に優れるだけでなく、引張荷重下においても成形体の破断が発生しないため、例えば、自動車の内装部品や外装部品等の各種用途における樹脂成形品の材料として有用である。 Therefore, the organic fiber reinforced resin composition of the present invention not only has excellent mechanical strength, but also does not break even under a tensile load. Therefore, for example, in various applications such as automobile interior parts and exterior parts. It is useful as a material for resin molded products.
Claims (5)
前記第一のオレフィン系樹脂と前記第二のオレフィン系樹脂の質量比が20:80~80:20であり、
前記有機繊維の含有量が、前記第一のオレフィン系樹脂と前記第二のオレフィン系樹脂との合計量100質量部に対して、5~100質量部である、
ことを特徴とする有機繊維強化樹脂組成物。 It is selected from the group consisting of a first olefin resin having a melt mass flow rate of 10 to 200 g / 10 min and a homopolymer of ethylene and a homopolymer of propylene having a melt mass flow rate of 0.2 to 5 g / 10 min. Containing at least one second olefin resin and organic fiber,
The mass ratio of the first olefin resin to the second olefin resin is 20:80 to 80:20.
The content of the organic fiber is 5 to 100 parts by mass with respect to 100 parts by mass of the total amount of the first olefin resin and the second olefin resin.
An organic fiber reinforced resin composition characterized by this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018036270A JP7071842B2 (en) | 2018-03-01 | 2018-03-01 | Organic fiber reinforced resin composition and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018036270A JP7071842B2 (en) | 2018-03-01 | 2018-03-01 | Organic fiber reinforced resin composition and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019151692A JP2019151692A (en) | 2019-09-12 |
JP7071842B2 true JP7071842B2 (en) | 2022-05-19 |
Family
ID=67948230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018036270A Active JP7071842B2 (en) | 2018-03-01 | 2018-03-01 | Organic fiber reinforced resin composition and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7071842B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006051658A1 (en) * | 2004-11-12 | 2006-05-18 | Toray Industries, Inc. | Biaxially oriented polyarylene sulfide film and laminated polyarylene sulfide sheets comprising the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022163187A1 (en) * | 2021-01-28 | 2022-08-04 | 花王株式会社 | Sheet for face masks |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010053341A (en) | 2008-07-31 | 2010-03-11 | Sumitomo Chemical Co Ltd | Polypropylene based resin composition, and film comprising it |
JP2011137077A (en) | 2009-12-28 | 2011-07-14 | Japan Polypropylene Corp | Lightweight automobile interior component |
JP2011231237A (en) | 2010-04-28 | 2011-11-17 | Daicel Polymer Ltd | Polypropylene composition and method for producing the same |
JP2014118525A (en) | 2012-12-19 | 2014-06-30 | Toyota Motor East Japan Inc | Resin for automotive member and automotive member |
JP2015183140A (en) | 2014-03-26 | 2015-10-22 | 日本ポリプロ株式会社 | Fiber reinforced polypropylene resin material |
-
2018
- 2018-03-01 JP JP2018036270A patent/JP7071842B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010053341A (en) | 2008-07-31 | 2010-03-11 | Sumitomo Chemical Co Ltd | Polypropylene based resin composition, and film comprising it |
JP2011137077A (en) | 2009-12-28 | 2011-07-14 | Japan Polypropylene Corp | Lightweight automobile interior component |
JP2011231237A (en) | 2010-04-28 | 2011-11-17 | Daicel Polymer Ltd | Polypropylene composition and method for producing the same |
JP2014118525A (en) | 2012-12-19 | 2014-06-30 | Toyota Motor East Japan Inc | Resin for automotive member and automotive member |
JP2015183140A (en) | 2014-03-26 | 2015-10-22 | 日本ポリプロ株式会社 | Fiber reinforced polypropylene resin material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006051658A1 (en) * | 2004-11-12 | 2006-05-18 | Toray Industries, Inc. | Biaxially oriented polyarylene sulfide film and laminated polyarylene sulfide sheets comprising the same |
Also Published As
Publication number | Publication date |
---|---|
JP2019151692A (en) | 2019-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3081591B1 (en) | Carbon fiber-reinforced resin composition and molded article produced from same | |
US9428637B2 (en) | Polypropylene compositions containing glass fiber fillers | |
US20090321981A1 (en) | Cellulosic inclusion thermoplastic composition and molding thereof | |
US7482402B2 (en) | Fiber reinforced polypropylene compositions | |
JP2018501326A (en) | Thermoplastic composite material, method for preparing thermoplastic composite material, and injection molded article | |
JP2001316534A (en) | Long-fiber reinforced polypropylene resin composition and molded product | |
KR20150056577A (en) | High impact polypropylene compositions | |
JP7071842B2 (en) | Organic fiber reinforced resin composition and its manufacturing method | |
US20150315371A1 (en) | Pellet mixture, carbon fiber-reinforced polypropylene resin composition, molded body, and method for producing pellet mixture | |
JP2002241557A (en) | Long fiber-reinforced polypropylene resin composition | |
JP2007091792A (en) | Organic fiber-reinforced polypropylene resin composition | |
CN114364741B (en) | Compatible polymer compositions for fiber optic cable assemblies | |
KR101535398B1 (en) | Oxymethylene copolymer composition for stretching material, stretching material, structures, and process for producing the same | |
JPH07157626A (en) | Thermoplastic resin composition | |
EP3497162B1 (en) | Compositions comprising carbon fibers and at least one thermoplastic polyolefin elastomer | |
JPS60240748A (en) | Ultra-high-molecular-weight polyethylene composition | |
RU2356919C1 (en) | Polymer composition | |
JP5111694B2 (en) | Fiber reinforced polyolefin resin composition | |
KR101830552B1 (en) | Bio-polypropylene composite composition | |
JP2616877B2 (en) | Organic fiber-based propylene resin composition | |
Thakre et al. | Mechanical and thermal behavior of PP/PET blends | |
JP4345382B2 (en) | Fiber-containing resin composition | |
JP2020152811A (en) | Thermoplastic polymer composition and vibration-damping material | |
JPS632984B2 (en) | ||
KR20210066121A (en) | Polypropylene resin composition for pallets with improved balance between stiffness and impact strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180313 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220422 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220509 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7071842 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |