JPS6244432B2 - - Google Patents

Info

Publication number
JPS6244432B2
JPS6244432B2 JP53087358A JP8735878A JPS6244432B2 JP S6244432 B2 JPS6244432 B2 JP S6244432B2 JP 53087358 A JP53087358 A JP 53087358A JP 8735878 A JP8735878 A JP 8735878A JP S6244432 B2 JPS6244432 B2 JP S6244432B2
Authority
JP
Japan
Prior art keywords
layer
gaas
semiconductor layer
junction
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53087358A
Other languages
Japanese (ja)
Other versions
JPS5513957A (en
Inventor
Kenshin Taguchi
Yoshinari Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8735878A priority Critical patent/JPS5513957A/en
Publication of JPS5513957A publication Critical patent/JPS5513957A/en
Publication of JPS6244432B2 publication Critical patent/JPS6244432B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 本発明は逆バイアス動作で使用するダイオード
等の素子に関するものでいわゆるガードリング効
果を有するpn接合からなる半導体装置、特に光
通信用光検出器として、高速、高感度、低雑音で
信頼性の高いフオトダイオード(以下PDと呼
ぶ)、あるいはアバランシ・フオトダイオード
(以下APDと呼ぶ)として供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to elements such as diodes used in reverse bias operation, and is suitable for use as a semiconductor device consisting of a pn junction having a so-called guard ring effect, particularly as a photodetector for optical communication. It is used as a low-noise and highly reliable photodiode (hereinafter referred to as PD) or avalanche photodiode (hereinafter referred to as APD).

高速、高感度特性をそなえた光検出器として
PDあるいはAPDはきわめて重要なものであるこ
とは良く知られており、光通信用の受光器とし
て、光源としての半導体レーザと共にその開発が
活発に進められている。半導体レーザは現在実用
化が急速に進歩しており、発振波長は0.8μmか
ら1.5μmのもの、たとえばGaAs−AlGaAs系あ
るいはInGaAsP−InP系の半導体レーザがその主
流となつていることは良く知られている。現在
GaAs−AlGaAs系レーザ発振の主な波長域0.8〜
0.87μmに対する光検出器としてはSi結晶を用い
たPDあるいはAPDが最も広く使われており優れ
た特性を示しているが、光を有効に吸収するため
には空乏層が数10μm必要でありキヤリアの走行
時間が長くなるために1GHz以上の高速応答を得
ることは困難である。また光通信の伝送系である
光フアイバーの伝送損失の低い1.1μm〜1.5μm
波長域においてはSi結晶を用いた光検出器の感度
度が低下し、使うことができない。また1.1μm
以上の波長用としてGe−APDもあるが、暗電流
と過剰雑音が大きいために光通信用としては最適
な検出器ではなく、−化合物半導体材料等に
よるAPDが要求されている。しかし化合物半導
体材料では表面安定化技術の発達がきわめて未熟
であり、アバランシ動作を行なわしめるに必要な
高い逆バイアス電圧に耐えられないのが現状であ
り、この解決が化合物半導体材料による光検出器
の成否の鍵となつている。表面安定化のなされて
いないpn接合をアバランシ増倍を得るためにブ
レークダウン近傍に逆バイアス電圧を印加すると
いわゆるソフト・ブレークダウンを起し暗電流が
増加する。また表面状態の経時変化により信頼性
にとぼしいものしか得られておらず高い信頼性の
要求される光通信等のシステムにおける光検出器
としては、はなはだ不満足なものとなつている。
As a photodetector with high speed and high sensitivity characteristics
It is well known that PDs or APDs are extremely important, and their development is actively progressing as photo receivers for optical communications, along with semiconductor lasers as light sources. It is well known that the practical application of semiconductor lasers is currently progressing rapidly, and that semiconductor lasers with an oscillation wavelength of 0.8 μm to 1.5 μm, such as GaAs-AlGaAs or InGaAsP-InP semiconductor lasers, are the mainstream. ing. the current
Main wavelength range of GaAs-AlGaAs laser oscillation from 0.8 to
PDs or APDs using Si crystals are the most widely used photodetectors for 0.87 μm and exhibit excellent characteristics, but in order to effectively absorb light, a depletion layer of several tens of μm is required and the carrier It is difficult to obtain a high-speed response of 1 GHz or higher due to the long running time. In addition, optical fiber, which is a transmission system for optical communication, has a low transmission loss of 1.1 μm to 1.5 μm.
In this wavelength range, the sensitivity of photodetectors using Si crystals decreases, making them unusable. Also 1.1μm
Although Ge-APDs are available for use with the above wavelengths, they are not optimal detectors for optical communications due to their large dark current and excessive noise, and APDs made of compound semiconductor materials are required. However, the development of surface stabilization technology for compound semiconductor materials is extremely underdeveloped, and the current situation is that they cannot withstand the high reverse bias voltage required to perform avalanche operation. It is the key to success or failure. When a reverse bias voltage is applied near the breakdown of a pn junction without surface stabilization in order to obtain avalanche multiplication, a so-called soft breakdown occurs and dark current increases. Further, due to changes in the surface condition over time, reliability is poor, making it extremely unsatisfactory as a photodetector for systems such as optical communications that require high reliability.

本発明の目的は高い逆バイアス電圧下での動作
を要求されるAPD等の構造を工夫し、逆方向特
性、特にブレークダウン特性の向上を成し、かつ
動作状態での信頼性に優れた半導体装置を与える
ものである。すなわち本発明の半導体装置は第1
の導電型を示し、凸部領域を有する第1の半導体
層上に、この第1の半導体層よりも不純物濃度が
低く、禁制帯幅が大きく、かつ第1の半導体層と
同一導電型を示す第2の半導体層を、第1の半導
体層の凸部領域が第2の半導体層中に埋没するよ
うに設け、さらに第2の半導体層の表面から凸部
領域内部にまで第2の導電型を示す領域を設けた
構造となつている。
The purpose of the present invention is to improve the structure of APDs, etc. that are required to operate under high reverse bias voltage, to improve reverse characteristics, especially breakdown characteristics, and to create semiconductors with excellent reliability under operating conditions. equipment. That is, the semiconductor device of the present invention has a first
on the first semiconductor layer having a convex region, the impurity concentration is lower than that of the first semiconductor layer, the forbidden band width is larger, and the conductivity type is the same as that of the first semiconductor layer. The second semiconductor layer is provided such that the convex region of the first semiconductor layer is buried in the second semiconductor layer, and further has a second conductivity type from the surface of the second semiconductor layer to the inside of the convex region. It has a structure with an area indicating the area.

以下本発明を一実施例に基づいて説明する。 The present invention will be explained below based on one embodiment.

図は本発明の構造を採用したAPDの横断面図
である。この実施例ではGaAs−AlGaAs系材料
を用いたものであり、まず(100)面を有するn+
型GaAs基板11の上にエピタキシヤル成長法
(例えば液相エピタキシヤル法)により数μmか
ら数10μm厚のn+型Al0.2Ga0.8As層12を形成
する。次に膜厚5μm、不純物濃度5×1015cm-3
のn型GaAs層13をエピタキシヤル成長した
後、フオトレジスト技術を用いてn型GaAs層1
3の表面に円状パターンを形成し、円状パターン
の周辺をたとえばH3PO4:H2O2:CH3OH=10:
10:50の組成比混液により約3.5分エツチングを
ほどこし4μm程度GaAs層13を取り除き台地
状GaAsエピタキシヤル層13′を作る。次に再び
エピタキシヤル成長技術を用いてn型
Al0.2Ga0.8As層14を作る。この場合
Al0.2Ga0.8As層14の表面は図に示すごとく容易
にほぼ平坦になることは良く知られた事実であ
る。実施例では台地状GaAs層13′の上のn型
Al0.2Ga0.8As層14aの厚みを1μm不純物濃度
を5×1014cm-3とした。
The figure is a cross-sectional view of an APD employing the structure of the present invention. In this example, a GaAs-AlGaAs-based material is used, and first, an n +
An n + type Al 0.2 Ga 0.8 As layer 12 having a thickness of several μm to several tens of μm is formed on the GaAs substrate 11 by an epitaxial growth method (for example, liquid phase epitaxial method). Next, the film thickness is 5 μm, and the impurity concentration is 5×10 15 cm -3
After epitaxially growing the n-type GaAs layer 13, the n-type GaAs layer 1 is grown using photoresist technology.
A circular pattern is formed on the surface of 3, and the periphery of the circular pattern is, for example, H 3 PO 4 :H 2 O 2 :CH 3 OH=10:
Etching is performed for about 3.5 minutes using a mixed solution with a composition ratio of 10:50, and about 4 μm of the GaAs layer 13 is removed to form a plateau-like GaAs epitaxial layer 13'. Next, epitaxial growth technology is used again to form an n-type
An Al 0.2 Ga 0.8 As layer 14 is formed . in this case
It is a well-known fact that the surface of the Al 0.2 Ga 0.8 As layer 14 easily becomes substantially flat as shown in the figure. In the embodiment, the n-type layer on the plateau-like GaAs layer 13'
The thickness of the Al 0.2 Ga 0.8 As layer 14a was set to 1 μm , and the impurity concentration was set to 5×10 14 cm −3 .

次に上記のようにして作製したウエハの表面に
気相成長法やスパツタ法等によりSi3N4膜やSiO2
膜を形成し再びフオトレジスト、目合せ技術等を
用いて台地状GaAs層13′の表面積より広くかつ
これを中心とするように前記Si3N4あるはSiO2
の薄膜15を選択的に円状に除去する。次に
GaAs表面にZn薄膜を5μg以上配したGaAs:
Zn擬二元系拡散源を、排気した閉管中に上記ウ
エーハと共に配し566℃の熱処理を加えてZnを選
択拡散するとZn拡散領域16を得る。ここで熱
処理時間を2時間行なうと台地状GaAsエピタキ
シヤル層13′にZn拡散フロントは0.2μm入り、
ここでpn接合17aが得られる。一方
Al0.2Ga0.8As層14ではGaAsにくらべZn拡散の
速度が早いので表面より1.8μmの深さにpn接合
17bができるためZn拡散フロントは図に示す
ように台地状GaAsエピタキシヤル層部において
浅くなる。またこのときZn拡散フロントでのZn
濃度はAlGaAsではAl組成増加に伴いZnの溶解度
が減少するために台地状GaAsエピタキシヤル層
13′内pn接合17a近傍では約2×1018cm-3
のに対しAl0.2Ga0.8As層14b中では約7×1017
cm-3となる。次に再びSi3N4膜あるいはSiO2膜等
の薄膜15を被うようにSi3N4膜あるいはSiO2
等の薄膜15′を形成し電極取出し窓を前記15
の窓より小さく形成する。さらにp型電極18を
第1図に示すようにpn接合面から外側に出ない
ようにフオトレジスト技術等を用いて形成する。
次にn型電極用金属19を蒸着後、フオトレジス
ト、目合せ技術等により台地状GaAs13′下部に
位置する領域の金属を除去し、この後例えば、容
量比H2SO4:H2O2:H2O=3:1:1の液ある
いはH3PO4:H2O2:CH3OH=10:10:50の液を
用いて基板11を除去する。上記のようにして作
製したウエーハをペレツトに切断することにより
図に示した本発明による構造の半導体装置を得る
ことができる。
Next, a Si 3 N 4 film or SiO 2 film is deposited on the surface of the wafer prepared as described above using a vapor phase growth method or a sputtering method.
After forming the film, the thin film 15 of Si 3 N 4 or SiO 2 is selectively formed so as to be wider than the surface area of the plateau-like GaAs layer 13' and centered on the surface area using photoresist, alignment technology, etc. Remove in a circle. next
GaAs with 5 μg or more of Zn thin film placed on the GaAs surface:
A Zn pseudo-binary diffusion source is placed together with the wafer in an evacuated closed tube, heat treatment is applied at 566° C., and Zn is selectively diffused to obtain a Zn diffusion region 16. If the heat treatment is carried out for 2 hours, the Zn diffusion front will be 0.2 μm deep in the plateau-like GaAs epitaxial layer 13'.
Here, a pn junction 17a is obtained. on the other hand
In the Al 0 . 2 Ga 0 . 8 As layer 14, the speed of Zn diffusion is faster than that in GaAs, so a pn junction 17b is formed at a depth of 1.8 μm from the surface, so the Zn diffusion front forms a plateau-like GaAs epitaxial layer as shown in the figure. It becomes shallower in the layers. Also, at this time, Zn at the Zn diffusion front
In AlGaAs, the solubility of Zn decreases as the Al composition increases, so the concentration is approximately 2×10 18 cm -3 near the pn junction 17a in the plateau -like GaAs epitaxial layer 13', whereas it is Al 0.2 Ga 0.8 As . Approximately 7×10 17 in layer 14b
cm -3 . Next, a thin film 15' such as a Si 3 N 4 film or SiO 2 film is formed again to cover the thin film 15 such as the Si 3 N 4 film or SiO 2 film, and the electrode extraction window is
Form smaller than the window. Furthermore, as shown in FIG. 1, a p-type electrode 18 is formed using a photoresist technique or the like so that it does not extend outside the p-n junction surface.
Next, after depositing the metal 19 for the n-type electrode, the metal in the region located below the plateau-like GaAs 13' is removed by photoresist, alignment technology, etc., and then, for example, the capacitance ratio H 2 SO 4 :H 2 O 2 The substrate 11 is removed using a solution of :H 2 O=3:1:1 or a solution of H 3 PO 4 :H 2 O 2 :CH 3 OH=10:10:50. By cutting the wafer produced as described above into pellets, a semiconductor device having the structure according to the present invention shown in the figure can be obtained.

なおアバランシ増倍雑音を軽減するためには光
吸収領域の導電型をイオン化率の大きい方のキヤ
リアが小数キヤリアとなるようにする必要があり
GaAs(100)面のイオン化率は正孔の方が電子の
それより大きいことが知られているので光吸収領
域となるGaAs層13′の導電型をn型とした。ま
たアバランシ領域(高電界領域)で光励起による
キヤリアが生成されると、生成電子と正孔が増倍
に寄与し低雑音化できないので低電界領域で光を
吸収するように基板側から光を入射させる構造と
し、GaAs層13′層凸部下に位置するGaAs基板
11は、光吸収領域となる半導体層13′と同一
材料(禁制帯幅が同じ)であるためにこの領域で
の吸収を除外するために取り除いた。さらに
GaAs層13′の濃度と厚みをブレークダウン前に
空乏層が充分拡がつて光を有効に吸収するように
決定した。
In order to reduce avalanche multiplication noise, it is necessary to set the conductivity type of the light absorption region so that the carrier with a higher ionization rate becomes a decimal carrier.
Since it is known that the ionization rate of holes on the GaAs (100) plane is higher than that of electrons, the conductivity type of the GaAs layer 13' serving as the light absorption region was set to be n type. Furthermore, when carriers are generated due to optical excitation in the avalanche region (high electric field region), the generated electrons and holes contribute to multiplication and it is not possible to reduce the noise, so light is input from the substrate side so that the light is absorbed in the low electric field region. The GaAs substrate 11 located under the convex portion of the GaAs layer 13' layer is made of the same material (has the same forbidden band width) as the semiconductor layer 13' which becomes the light absorption region, so absorption in this region is excluded. removed for. moreover
The concentration and thickness of the GaAs layer 13' were determined so that the depletion layer would sufficiently expand before breakdown and absorb light effectively.

次に図に示した実施例による素子の優れた特性
と特性向上の理由について説明する。前記したよ
うにAl0.2Ga0.8As層n〓5×1014cm-314aの厚
みを1μmとし、台地状GaAsエピタキシヤル層
n〓5×1015cm-313′の内、台地状GaAs表面よ
り0.2μmの深さにpn接合を持ち、台地状表面径
200μφ、Zn拡散部17の表面径250μφの半導
体装置の暗電流は数10pA以下ときわめて小さく
ブレークダウン特性もきわめて急峻でブレークダ
ウン電圧は約100Vとなり、アバランシ増倍率は
103倍以上ときわめて高い値を示した。これらの
優れた特性は次に示す理由により理解できる。す
なわち台地状GaAs層13′中に形成されたpn接
合17aのブレークダウン電圧は常に
Al0.2Ga0.8As層14中に作られたpn接合17bの
それより低いため、ブレークダウンは結晶中に作
られたpn接合17aのみで起こる。なぜなら
Al0.2Ga0.8As層14の禁制帯幅はGaAs層13の
それより大きいこと、およびAl0.2Ga0.8As層14
の不純物濃度がGaAs層13の不純物濃度より小
さいこと、さらにpn接合17b近傍でのZn濃度
がGaAs層13′中のpn接合17a近傍でのそれ
に較べて小さいためである。従つてpn接合17
aに高電圧を加えてもpn接合17bではブレー
クダウンを生じることなく、またAl0.2Ga0.8As層
14中で結晶表面に露出したpn接合もpn接合部
17aのブレークダウン電圧に対して安定であ
る。すなわちAl0.2Ga0.8As層14中に作られたpn
接合17bはきわめて良好ないわゆるガードリン
グ構造となつているわけである。本発明の利点は
製造技術的にもきわめて簡便なことは前記製作法
の説明からもあきらかである。すなわち、1回の
拡散プロセスによりアバランシ領域となるGaAs
層13′内のpn接合とガードリングとしてはたら
くAl0.2Ga0.8As層内のpn接合が得られるという利
点を同時に持つておりプロセスの簡略化に伴う素
子の信頼性向上ならびに製造コストの低下がなさ
れる。
Next, the excellent characteristics of the device according to the example shown in the figure and the reason for the improved characteristics will be explained. As mentioned above , the thickness of the Al 0 . 2 Ga 0 . There is a pn junction at a depth of 0.2 μm from the plateau-like GaAs surface, and the plateau-like surface diameter
The dark current of a semiconductor device with a surface diameter of 200μφ and a surface diameter of Zn diffusion part 17 of 250μφ is extremely small, less than a few tens of pA, and the breakdown characteristic is also extremely steep, the breakdown voltage is approximately 100V, and the avalanche multiplication factor is
It showed an extremely high value of more than 10 3 times. These excellent properties can be understood for the following reasons. In other words, the breakdown voltage of the pn junction 17a formed in the plateau-like GaAs layer 13' is always
Since it is lower than that of the pn junction 17b made in the Al 0.2 Ga 0.8 As layer 14 , breakdown occurs only in the pn junction 17a made in the crystal. because
The forbidden band width of the Al 0.2 Ga 0.8 As layer 14 is larger than that of the GaAs layer 13 ;
This is because the impurity concentration in the GaAs layer 13 is lower than that in the GaAs layer 13, and the Zn concentration near the pn junction 17b is lower than that near the pn junction 17a in the GaAs layer 13'. Therefore, p-n junction 17
Even if a high voltage is applied to a, no breakdown occurs in the pn junction 17b, and the pn junction exposed on the crystal surface in the Al 0.2 Ga 0.8 As layer 14 also reaches the breakdown voltage of the pn junction 17a . It is stable. That is, the pn formed in the Al 0.2 Ga 0.8 As layer 14
The joint 17b has an extremely good so-called guard ring structure. It is clear from the above description of the manufacturing method that the advantage of the present invention is that it is extremely simple in terms of manufacturing technology. In other words, GaAs becomes an avalanche region through a single diffusion process.
It has the advantage of simultaneously obtaining a pn junction in the layer 13' and a pn junction in the Al 0.2 Ga 0.8 As layer that functions as a guard ring, improving device reliability and reducing manufacturing costs due to process simplification. A reduction is made.

この実施例では光はGaAs基板11側から入射
する構造としているが、これと反対側、すなわち
Zn拡散領域16側から光を入射する構造として
もよい。この場合には上記の実施例で示したp型
電極18にフオトレジスト技術により、台地状
GaAs13′頂上の径以下の径の孔を設けて入射窓
とする。このような構造では、GaAs基板11を
一部除去する工程及びn型電極19に開孔部を設
ける工程が省略でき、プロスの簡略化と製造コス
トの低下がなされる。
In this embodiment, the structure is such that the light enters from the GaAs substrate 11 side, but from the opposite side, i.e.
It is also possible to adopt a structure in which light enters from the Zn diffusion region 16 side. In this case, the p-type electrode 18 shown in the above embodiment is coated with a plateau shape using photoresist technology.
A hole having a diameter less than the diameter of the top of the GaAs 13' is provided to serve as an entrance window. In such a structure, the step of partially removing the GaAs substrate 11 and the step of providing an opening in the n-type electrode 19 can be omitted, simplifying the process and reducing manufacturing costs.

以上、GaAs−AlGaAsを材料とする半導体装
置の実施例について述べたが本発明は他の半導体
材料、たとえばInGaAsP−InP,InGaAs−InP,
InGaAs−GaAs等の材料を用い、逆バイアスで動
作する半導体装置全てに対してガードリング効果
を有することは明らかであり、他の化合物半導体
結晶にも適用できることはいうまでもない。
The embodiments of the semiconductor device made of GaAs-AlGaAs have been described above, but the present invention also applies to other semiconductor materials such as InGaAsP-InP, InGaAs-InP,
It is clear that this method has a guard ring effect on all semiconductor devices that use materials such as InGaAs-GaAs and operate under reverse bias, and it goes without saying that this method can also be applied to other compound semiconductor crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す概略横断面図で、
11はn+型(100)面を有するGaAs基板、12
はn+型Al0.2Ga0.8As層、13と13′はn型
GaAs層、14はn型Al0.2Ga0.8As層、15と1
5′はSiO2膜あるいはSi3N4膜等の薄膜、16は
Zn拡散層、17と17aと17bはpn接合面、
18はp型電極、19はn型電極、20は基板エ
ツチング面である。
The figure is a schematic cross-sectional view showing one embodiment of the present invention.
11 is a GaAs substrate having an n + type (100) plane; 12
is n + type Al 0.2 Ga 0.8 As layer, 13 and 13' are n type
GaAs layer , 14 is n-type Al 0.2 Ga 0.8 As layer, 15 and 1
5' is a thin film such as SiO 2 film or Si 3 N 4 film, and 16 is a thin film such as SiO 2 film or Si 3 N 4 film.
Zn diffusion layer, 17, 17a and 17b are pn junction surfaces,
18 is a p-type electrode, 19 is an n-type electrode, and 20 is an etched surface of the substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の導電型を示し、凸部領域を有する第1
の半導体層と、この第1の半導体層の凸部領域が
存在する側の表面上に前記凸部領域を包含するよ
うに設けられ、前記第1の半導体層の不純物濃度
よりも低い不純物濃度を有し、さらに前記第1の
半導体層よりも禁制帯幅が大きく、かつ前記第1
の半導体層と同一導電型を示す第2の半導体層
と、前記凸部領域より広い面積を有し、前記第2
の半導体層の表面から前記凸部領域内にまで達し
た、第2の導電型を示す領域とから成ることを特
徴とした半導体装置。
1 exhibiting a first conductivity type and having a convex region
and a semiconductor layer provided on the surface of the first semiconductor layer on the side where the convex region is present so as to encompass the convex region, and having an impurity concentration lower than the impurity concentration of the first semiconductor layer. and further has a forbidden band width larger than that of the first semiconductor layer and the first semiconductor layer.
a second semiconductor layer having the same conductivity type as the semiconductor layer; and a second semiconductor layer having a larger area than the convex region;
and a region exhibiting a second conductivity type extending from the surface of the semiconductor layer to the inside of the convex region.
JP8735878A 1978-07-17 1978-07-17 Semiconductor device Granted JPS5513957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8735878A JPS5513957A (en) 1978-07-17 1978-07-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8735878A JPS5513957A (en) 1978-07-17 1978-07-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5513957A JPS5513957A (en) 1980-01-31
JPS6244432B2 true JPS6244432B2 (en) 1987-09-21

Family

ID=13912655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8735878A Granted JPS5513957A (en) 1978-07-17 1978-07-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5513957A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572084A (en) * 1978-11-27 1980-05-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photo-detector
JPS55162280A (en) * 1979-06-01 1980-12-17 Mitsubishi Electric Corp Photodiode
JPS56158488A (en) * 1980-05-12 1981-12-07 Mitsubishi Electric Corp Semiconductor device
JPS5723277A (en) * 1980-07-17 1982-02-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-receiving element and manufacture thereof
JPS611064A (en) * 1984-05-31 1986-01-07 Fujitsu Ltd Semiconductor photodetector
EP0216572B1 (en) * 1985-09-24 1995-04-05 Kabushiki Kaisha Toshiba Semiconductor photo-detector having a two-stepped impurity profile

Also Published As

Publication number Publication date
JPS5513957A (en) 1980-01-31

Similar Documents

Publication Publication Date Title
EP0053513B1 (en) Avalanche photodiodes
US4442444A (en) Avalanche photodiodes
US5157473A (en) Avalanche photodiode having guard ring
US4656494A (en) Avalanche multiplication photodiode having a buried structure
US4949144A (en) Semiconductor photo-detector having a two-stepped impurity profile
JPH051628B2 (en)
US4761383A (en) Method of manufacturing avalanche photo diode
JPH05160426A (en) Semiconductor light receiving element
Campbell et al. InP/InGaAsP/InGaAs avalanche photodiodes with 70 GHz gain‐bandwidth product
JPS63955B2 (en)
JPS6244432B2 (en)
KR100509355B1 (en) Photo-diode and method for fabricating the same
US4801990A (en) HgCdTe avalanche photodiode
JPS6244433B2 (en)
JPS60110177A (en) Manufacture of semiconductor photodetector
KR20040032026A (en) Avalanche Photodiode and Method for Fabricating the Same
JP3074574B2 (en) Manufacturing method of semiconductor light receiving element
JPS6222474B2 (en)
GB2029639A (en) Infra-red photodetectors
JPH05102517A (en) Avalanche photodiode and its manufacturing method
JPH0621503A (en) Semiconductor photodetector and manufacture thereof
JPS6244710B2 (en)
JPS6180875A (en) Semiconductor device
JPH0157509B2 (en)
JPS6157716B2 (en)