JPS6243821A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS6243821A
JPS6243821A JP18307985A JP18307985A JPS6243821A JP S6243821 A JPS6243821 A JP S6243821A JP 18307985 A JP18307985 A JP 18307985A JP 18307985 A JP18307985 A JP 18307985A JP S6243821 A JPS6243821 A JP S6243821A
Authority
JP
Japan
Prior art keywords
protective film
magnetic recording
recording medium
magnetic
boron carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18307985A
Other languages
Japanese (ja)
Other versions
JPH0715753B2 (en
Inventor
Shinichiro Saito
斎藤 真一郎
Koji Nishimura
孝司 西村
Masaaki Futamoto
二本 正昭
Yukio Honda
幸雄 本多
Kazuyoshi Yoshida
吉田 和悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP60183079A priority Critical patent/JPH0715753B2/en
Publication of JPS6243821A publication Critical patent/JPS6243821A/en
Publication of JPH0715753B2 publication Critical patent/JPH0715753B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To remarkably improve corrosion resistance, resistance to sliding with a head by forming a protective film consisting of boron carbide on the film surface of a magnetic recording medium. CONSTITUTION:The material of the boron carbide having the compsn. expressed by the general formula BxC1-x (where x denotes the positive number over 0.80 and 0.96 or below) is used as the protective film 3. The resistance to sliding with the head and the corrosion resistance are much improved as the size of B (boron) and C (carbon) atoms is substantially smaller than the size of ferromagnetic material atoms such as Fe, Ni and Co constituting a thin magnetic film and intrude easily into the micro-recesses of the thin magnetic film surface and the B and C atoms have high affinity to the metallic atoms of Fe, Ni and Co and are liable to attain the amorphous state by securely and tightly adhering to the thin magnetic film surface.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は磁気記録媒体に係り、特に耐食性なら。、。W
Ff ’z y )” fM ’fAfr In fl
 tL t: m ’i2t Me、* * # In
 Iu5 t    ”□る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to magnetic recording media, particularly if they are corrosion resistant. ,. W
Ff 'z y)" fM 'fAfr In fl
tL t: m 'i2t Me, * * # In
Iu5 t”□ru.

〔発明の背景〕[Background of the invention]

従来から高密度磁気記録化をはかるために、金属薄膜を
用いる磁気記録媒体の研究開発が積極的。
In order to achieve high-density magnetic recording, research and development of magnetic recording media using thin metal films has been actively conducted.

に進められている。この金属薄膜磁気記録媒体は。is being advanced. This metal thin film magnetic recording medium.

メンーV法、イオンプレー戸イング法、スパッタリ。Men-V method, ion play dooring method, spatter.

ング法、真空蒸着法などの手法によって、Co、 Fe
、。
Co, Fe
,.

N1などの強磁′I′1金属、またはこれらの元素をl
ニー成分とする強磁性合金からなる磁性薄膜を、品分」
′・フィルト、アルミニウド、カラスなどの非磁性材料
で(′1られた基板−にに形成させた磁気記録媒体であ
る。しかしながら、この金属または合金薄膜を用いた磁
気記録媒体は、耐食l!1′が悪く、磁気ヘッドなどを
摩耗し易く、また記録媒体自身も摩耗しりいとい・)欠
点があり、さらにはヘッドタッチが悪いなどの諸点から
実用化に際しではかなりの問題をfJシている。
Ferromagnetic 'I'1 metals such as N1, or these elements
A magnetic thin film made of a ferromagnetic alloy as a knee component.
This is a magnetic recording medium formed on a substrate coated with a non-magnetic material such as filtrate, aluminum, or glass. However, magnetic recording media using this metal or alloy thin film have corrosion resistance l!1. It has the disadvantages that the magnetic head etc. are easily worn out, and the recording medium itself is also easily worn out.Furthermore, the head touch is poor, which poses considerable problems when put into practical use.

このような問題を解決する下段そして、磁性薄膜」−に
耐酸化1ソ1を有する金属、例えばAu、 Pt。
To solve this problem, the magnetic thin film is made of a metal with a high oxidation resistance, such as Au or Pt.

Rh、 Pd、 Cr、 A/’、 Siなどの材料か
らなる保護膜を形成させる手法(特開昭53−4050
5 弓′公報、特開昭57 1765371’j公報)
や、磁性薄膜の表面を窒化あるいは酸化することによっ
て磁性薄膜を強化する1法(特開昭54−143目11
公報)、あるいは非金属系材料であるC系保護膜(特開
昭5ト−。
A method of forming a protective film made of materials such as Rh, Pd, Cr, A/', and Si (Japanese Unexamined Patent Publication No. 53-4050)
5 Yumi' Publication, Japanese Unexamined Patent Application Publication No. 1765371'j)
A method of strengthening a magnetic thin film by nitriding or oxidizing the surface of the magnetic thin film
Publications), or C-based protective films made of non-metallic materials (Japanese Patent Application Laid-Open No. 1983-1999).

14320(i弓公報)やB系材料であるr3.cの保
護膜(特開昭’、、)0− 104602シ;公報)を
1し成させる「、法などが提案されている。
14320 (i-yuki publication) and r3. which is a B-based material. A method has been proposed to form a protective film of c.

しかしながら、本発明者らの研究によると、1−記の金
属系あるいは合金系の保護膜の場合においては耐摩耗性
か1−分てなく、また保護膜の膜商内のピンホールを通
して磁性薄膜が少しずつ変質す。
However, according to the research conducted by the present inventors, in the case of the metal-based or alloy-based protective film described in 1-1, the wear resistance is not known, and the magnetic thin film can be passed through pinholes in the protective film. is gradually changing.

るなどの問題があって、必ずしも耐食1′/1を1・分
に。
Corrosion resistance of 1'/1 does not always have to be reduced to 1 min.

満足するとは菖−い難い点がある3、そして、−1,記
の磁性薄膜の表面を窒化もしくは酸化させるh法は、耐
ヘツド摺動1jlならびに耐酸化性は向−1する反面、
磁性薄膜の表面に形成される窒化層ならびに酸化層の厚
さによっては磁性薄膜の磁気的特性が変化したり、ある
いは窒化、酸化に際して磁f/l薄膜かかなりの高温に
さらされることになるので磁気的特性に変化が生じるな
どの問題がある。さらに、上記の非金屈系の材料である
C系の保J(li膜は磁気へラド摺動時に摩耗量が非常
に多いという欠点があり、B系のB、C保護膜は、この
化学量論的組成をもつ薄膜の形成が極めて困難であると
いう欠。
However, although the method described in -1, in which the surface of the magnetic thin film is nitrided or oxidized, has better head sliding resistance and oxidation resistance,
Depending on the thickness of the nitride layer and oxide layer formed on the surface of the magnetic thin film, the magnetic properties of the magnetic thin film may change, or the magnetic f/l thin film may be exposed to considerably high temperatures during nitridation or oxidation. There are problems such as changes in magnetic properties. Furthermore, the C-based J(Li) film, which is a non-metallic material mentioned above, has the disadvantage of being extremely abraded during magnetic helad sliding, and the B-based B and C protective films are The drawback is that it is extremely difficult to form thin films with stoichiometric composition.

点があった。There was a point.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した従来技術の問題点を解消し、
一般式BxC1−x(式中、Xは0.80を超え、09
6以下の正数を表わす。)で示される炭化ホウ素系の保
護膜を磁気記録媒体の膜面に形成させることにより、耐
食性ならびに耐ヘツド摺動性を大幅に改善した磁気記録
媒体を提供することにある。
The purpose of the present invention is to solve the problems of the prior art described above,
General formula BxC1-x (wherein, X exceeds 0.80, 09
Represents a positive number less than or equal to 6. An object of the present invention is to provide a magnetic recording medium with greatly improved corrosion resistance and head sliding resistance by forming a boron carbide-based protective film shown in ) on the film surface of the magnetic recording medium.

〔発明の概要〕[Summary of the invention]

本発明における磁気記録媒体の保護膜としての必要条件
は、耐食性があり媒体の磁性薄膜層を保護すること、磁
気ヘッドに対して滑り性があること、および電磁変換特
性の低下を抑えるために保護膜はできるだけ薄く、その
膜厚は1000 A以下とすることが基本である。そし
て、非磁性基板上に形成された磁性薄膜の表面にはミク
ロ的な起伏があるので、保護膜は上記条件を満たすこと
に加えて、このミクロ的な起伏の上に強固に密着してい
ることが必要であって、保護膜の形成に、Lリミクロ的
起伏が平担化されることが望ましい。そして、磁性薄膜
表面のミクロ的な起伏は、磁性薄膜を構成する微結晶粒
子が垂直に配向した村状晶からなる垂直磁化膜の場合に
おいて最も大きくなり、例えばCo基合金薄膜からなる
垂直磁化膜では、その表面に周期が200〜500 A
、深さが50〜200Aの起伏が存在する。また、上記
微結晶粒子の界面が表面に露出している部分には、原子
規模(IOA以下)の深さの孔も存在する。したがって
、保護膜は上記の磁性薄膜の表面のミクロ的な起伏のす
みずみにまで回り込んで強固に密着して形成されること
が必要である。
The necessary conditions for the protective film of the magnetic recording medium in the present invention are that it has corrosion resistance and protects the magnetic thin film layer of the medium, that it has slipperiness against the magnetic head, and that it is protected to prevent deterioration of electromagnetic conversion characteristics. Basically, the film should be as thin as possible, with a thickness of 1000 A or less. Since the surface of a magnetic thin film formed on a non-magnetic substrate has microscopic undulations, the protective film not only satisfies the above conditions but also firmly adheres to these microscopic undulations. This is necessary, and it is desirable that the L microscopic undulations be flattened in the formation of the protective film. The microscopic undulations on the surface of a magnetic thin film are greatest in the case of a perpendicularly magnetized film in which the microcrystalline grains constituting the magnetic thin film are composed of vertically oriented village crystals. Then, the surface has a period of 200 to 500 A.
, there are undulations with a depth of 50-200A. Further, in the portion where the interface of the microcrystalline particle is exposed on the surface, pores with a depth of atomic scale (IOA or less) also exist. Therefore, it is necessary for the protective film to be formed so as to wrap around every corner of the microscopic undulations on the surface of the magnetic thin film and to firmly adhere thereto.

本発明者らは、種々研究を重ねた結果、保護膜として、
一般式BXC1−x(式中、Xは0.80を超え、0.
96以下の正数を表わす。)で示される組成の炭化ホウ
素系の材料を用いると、耐ヘツド摺動性ならびに耐食性
が一段と向上することを知見して本発明を完成するに至
った。すなわち、B(ホウ素)。
As a result of various researches, the present inventors found that as a protective film,
General formula BXC1-x (wherein, X exceeds 0.80 and 0.
Represents a positive number of 96 or less. ) The present invention was completed based on the finding that head sliding resistance and corrosion resistance are further improved by using a boron carbide material having the composition shown in (a). That is, B (boron).

C(炭素)原子の大きさが、磁性薄膜を構成するFe、
 Ni、 Goなどの強磁性体原子の大きさに比べて。
The size of the C (carbon) atom makes up the magnetic thin film,
Compared to the size of ferromagnetic atoms such as Ni and Go.

十分に小さく、磁性薄膜面のミクロ的な窪みにま。It is small enough to fit into the microscopic depressions on the surface of the magnetic thin film.

で容易に浸入し易いこと、およびBおよびC原子。and B and C atoms.

はFe、 Ni、 Coなどの金属原子との親和性が高
<、。
has a high affinity with metal atoms such as Fe, Ni, and Co.

磁性薄膜面に強固に密看し、アモルファス状にな、り易
いからである。このアモルファス状の保護膜。
This is because it adheres tightly to the surface of the magnetic thin film and tends to become amorphous. This amorphous protective film.

の特長は、化学的な活性点が少ないので耐食性が。The feature is that there are few chemically active points, so it is corrosion resistant.

良く、また均質であるために機械的強度に優れるという
点であって、これに対し結晶質の保護膜においては、結
晶粒界や、結晶粒中の欠陥部分は化学的な活性点となり
易く、化学反応が優先的に進行し、耐食性劣化の原因と
なる。また、結晶質保護膜では、磁気ヘッドの荷重の応
力が結晶粒界に集中し、そのために機械的強度が悪化す
ることになる。
In contrast, in a crystalline protective film, grain boundaries and defective areas within the crystal grains tend to become chemically active sites. Chemical reactions proceed preferentially, causing corrosion resistance deterioration. Furthermore, in a crystalline protective film, the stress of the load of the magnetic head concentrates on the crystal grain boundaries, which deteriorates the mechanical strength.

本発明の一般式Bx C+ −x (0,80(x (
0,96)で示される組成の炭化ホウ素系のアモルファ
ス状の保護膜は、C保護膜と比べて硬度が高いためにヘ
ッド摺動時の摩耗量が少なく、またその保護膜の作製に
際しても、BとB、Cの混合物を蒸着源とするか、また
は上記の混合物をターゲットとして用。
General formula of the present invention Bx C+ -x (0,80(x (
The boron carbide-based amorphous protective film with the composition shown by 0.96) has higher hardness than the C protective film, so it has less wear when the head slides, and when producing the protective film, Use B and a mixture of B and C as a deposition source, or use the above mixture as a target.

いることにより比較的容易に本発明の保護膜を形。The protective film of the present invention can be formed relatively easily by

成させることができる。can be made.

本発明の炭化ホウ素系の保護膜である一般式 。General formula of the boron carbide-based protective film of the present invention.

BxCl−Xで示される組成のXの範囲は、第2図に。The range of X in the composition represented by BxCl-X is shown in Figure 2.

示すとと(、B単体保護膜(X = 1.0 >におけ
る耐。
The resistance at (, B single protective film (X = 1.0 >) is shown.

ヘッド摺動強度(回)よりも大きい値を示す炭化。Carbonization shows a value larger than the head sliding strength (times).

ホウ素系保護膜組成、すなわち、X= 0.96と、 
Boron-based protective film composition, that is, X = 0.96,
.

84C保護膜組成(x−0,80)を含まない炭化ホウ
素。
Boron carbide without 84C protective film composition (x-0,80).

系保護膜組成、すなわち、X)0.80との間で示さ、
system protective film composition, i.e., X) shown between 0.80,
.

れる組成範囲のBxC1−x保護膜とした。したがって
、BXCl−X組成におけるXの範囲は、0.80を超
え、0.96以下(0,80< X < 0.96 )
である。そして。
A BxC1-x protective film having a composition range of Therefore, the range of X in the BXCl-X composition is greater than 0.80 and less than or equal to 0.96 (0.80<X<0.96)
It is. and.

より高い耐ヘツド摺動性ならびにその再現性の点からい
って、第2図に示す特性カーブから、より、−1好まし
いXの範囲は0.81〜0.91である。
From the viewpoint of higher head sliding resistance and its reproducibility, from the characteristic curve shown in FIG. 2, the -1 preferred range of X is 0.81 to 0.91.

本発明のBx C1−x (0,80< X< 0.9
6 )で示される組成の保護膜は、真空蒸着法、スパッ
タリング法。
Bx C1-x of the present invention (0,80<X<0.9
The protective film having the composition shown in 6) is formed by vacuum evaporation method or sputtering method.

イオンブレーティング法などの物理蒸着法であるいわゆ
る乾式法によって形成された磁性薄膜上に。
On a magnetic thin film formed by a so-called dry method, which is a physical vapor deposition method such as ion blating method.

・ 7 ・ 本発明の保護膜を設けると、特に強固な付着力が。・ 7 ・ The protective film of the present invention provides particularly strong adhesion.

得られる。また、本発明のBxC1□(0,80<X<
  。
can get. Moreover, BxC1□(0,80<X<
.

0.96 )で示される保護膜を、磁性薄膜の表面に、
0.96) on the surface of the magnetic thin film,
.

上記の乾式法によって、50〜1000 Aの膜厚に形
 。
By the dry method described above, a film thickness of 50 to 1000 A is formed.

成させると、磁性薄膜の表面のミクロ的な起伏が。When formed, microscopic undulations appear on the surface of the magnetic thin film.

平担化される。Flattened.

本発明のBx C+ −x (0,80< x < 0
.96 ) テ示され。
Bx C+ −x (0,80<x<0
.. 96) Te is shown.

る組成の保護膜の膜厚は、50A未満では保護膜として
の効果が少なく、1000 Aを超えると磁気記録再生
特性が劣化するから、50〜1000 Aの範囲が好ま
しく、より好ましい膜厚範囲は100〜800Aであり
、最も好ましい膜厚範囲は150〜300 Aである。
If the thickness of the protective film with the composition is less than 50A, the effect as a protective film will be small, and if it exceeds 1000A, the magnetic recording and reproducing characteristics will deteriorate. The thickness range is 100-800A, and the most preferable film thickness range is 150-300A.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例を挙げ、図面を参照しながらさら
に具体的に説明する。
Embodiments of the present invention will be described below in more detail with reference to the drawings.

(実施例 l) 基板としてポリイミドフィルムを用い、真空蒸着法によ
って第1図に示す構造の磁気記録媒体を作製した。真空
蒸着装置の試料室をI X 10 ’ Torr8 ・ まで真空排気した後、基板1の温度を150℃とな。
(Example 1) A magnetic recording medium having the structure shown in FIG. 1 was manufactured by vacuum evaporation using a polyimide film as a substrate. After the sample chamber of the vacuum evaporation apparatus was evacuated to I.times.10' Torr8.times., the temperature of the substrate 1 was set to 150.degree.

し、Go−20wt(重量)%Crの組成をもつ磁性薄
A magnetic thin film having a composition of Go-20 wt% Cr.

膜2を0.2μmの厚さに真空蒸着した。ついで、試。Membrane 2 was vacuum deposited to a thickness of 0.2 μm. Next, try it.

料室の真空を破らずに蒸着源をBとB、Cの混合物。A mixture of B, B, and C can be used as the evaporation source without breaking the vacuum in the chamber.

に変換して、上記と同様の条件で200A膜厚の保護膜
3を形成した。この場合、蒸着源であるBと。
A protective film 3 having a thickness of 200A was formed under the same conditions as above. In this case, B is the vapor deposition source.

84Cの混合比を変えることにより、保護膜3の組。By changing the mixing ratio of 84C, a set of protective film 3 was obtained.

成であるBXCl、、、、XのXを0.81〜0.99
の範囲に自在に調製することができた。なお、保護膜3
の組成はオージェ電子分光分析によって決定した。
BXCl, which is composed of
It was possible to freely prepare within the range of . In addition, the protective film 3
The composition was determined by Auger electron spectroscopy.

比較例として、保護膜を設けない試料と、B単体を保護
膜として設けた試料とを作製した。
As comparative examples, a sample without a protective film and a sample with B alone as a protective film were prepared.

上記のそれぞれの試料について、以下に示す耐ヘツド摺
動性および耐食性のテストを行なった。
Each of the above samples was tested for head sliding resistance and corrosion resistance as shown below.

耐ヘツド摺動性テストは、各試料からディスク試料を切
り出して、ディスク回転装置にセットした後、荷重18
gのヘッドを接触させて、ディスクを2m/sの速度で
連続回転させ、試料である磁気記録媒体に傷が生じるま
での回転数によってその耐ヘツド摺動強度(回)を判定
した。また、耐食pl (1) テストは、各試料を関
係湿度9)C)グ、温度6゜°(゛の環境中に]カ月放
置した後、その表向を光学顕微鏡で観察することにより
耐食性を判定した。
The head sliding resistance test was performed by cutting out a disk sample from each sample, setting it on a disk rotation device, and then applying a load of 18
The disk was continuously rotated at a speed of 2 m/s with the head of No. g in contact with the disk, and the head sliding strength (number of times) was determined based on the number of rotations until scratches appeared on the sample magnetic recording medium. In addition, the corrosion resistance test was carried out by leaving each sample in an environment of relative humidity 9) C) and temperature 6 °C for a month, and then observing its surface with an optical microscope to determine its corrosion resistance. I judged it.

耐へ・、ド摺動性テストの♀11.王を第2図に示す。♀11 of the durability and sliding test. The king is shown in Figure 2.

、1に1から明らかなごとく、保護膜の組成である  
−1’、xC,−8は(’1.80 < X < 0.
96の什囲テ1(れた耐ヘット摺動+’lがあることを
示している1、ここで、Xの士、 IU(値は、B l
it体保:’! 膜(X−’ 1.0 ) lコ’J3
 ケル1)jJ ヘッド摺動強度(l111)よりも大
きい値を示すB、、:C+−x組成のX値、すなわち0
.96 ’;cとり、):の下限値は、1(、C保護膜
(x 、、 080 )を除< BxC,y組成のX値
すなわちX>080をと−〕でいる。
, as is clear from 1 to 1, the composition of the protective film is
-1', xC, -8 is ('1.80 < X < 0.
It shows that there is a head sliding resistance +'l of 96, where the value is B l
It body protection:'! Membrane (X-' 1.0) lco'J3
Kel 1)
.. The lower limit value of 96'; c, ): is 1 (excluding the C protective film (x,, 080) < BxC, the X value of the y composition, that is, X>080).

なお、B、C+−X(0,80<X< 0416 )組
成ノ(LJ膜を2C)OAの膜厚に形成した試ネ1と保
護膜を形成しなし)試料の表1f1)を走査ハリ顕微鏡
で観察し比較したところ、保護膜を形成した試料の表向
の方が起伏が少なく宇滑であることがわかった。そして
、耐食1f1テストの結果については、保護膜を設けな
か−)だ比較例における試料たけに変色が観察され、保
護膜を設けた試料においては、いずれも変色がなく腐食
は全く認められなか−2だ1、また、本実施例における
保護71ぐσ)膜厚が大きい。
In addition, Table 1f1) of samples with B, C+-X (0,80 < When observed under a microscope and compared, it was found that the surface of the sample on which the protective film was formed had fewer undulations and was smoother. Regarding the results of the corrosion resistance 1f1 test, discoloration was observed only in the samples in the comparative example without a protective film, while in the samples with a protective film, there was no discoloration and no corrosion was observed at all. 2) Also, the protection 71 in this embodiment has a large thickness.

はど、耐ヘツド摺動P(は向)する傾11すが12.夕
めら第1るが、磁気記録媒体と磁気へ、ド間の距離が増
大。
Head, head sliding resistance P (face direction) tilt 11 but 12. First of all, the distance between magnetic recording media and magnetism has increased.

するために電磁変換!l″I−1ソ1が低ドした1、こ
の電磁変換性14Fの低下がなく、耐−\、1・払)動
f’lの良々fな膜厚の範囲は、50〜+000 Aで
、より望1−シい・色囲は100〜800Aであり、最
も望ましい範囲は151)〜300Aてあった。
Electromagnetic conversion to! 1, the electromagnetic transmissibility 14F does not deteriorate, and the film thickness range with good resistance to -\, 1, The most desirable color range was 100-800A, and the most desirable range was 151-300A.

さらに、本実施例においては磁゛ビ1薄jjQを形成し
た後に、同−装(?1内で連続して保護膜を形成させる
方法について述べたが、磁性、j9膜の形成の後に別の
装置に試料を移してから保護膜を形成させてもよい。し
かし、接ン7強度の大きい保護11;・左形成させるた
めには磁性薄膜の表1(11に空へ(が接触して酸化し
ないようにする必要があり、このτ、′1.1こおいて
は本実施例に示すごとく連キ、゛。して保護膜を1し成
させる方法が望ましい。
Furthermore, in this example, a method was described in which a protective film was formed continuously within the same device (?1) after forming a magnetic film. It is also possible to form a protective film after transferring the sample to the apparatus. However, in order to form a protective film with high contact 7 strength, it is necessary to In this case, it is desirable to form the protective film in one continuous manner as shown in this embodiment.

また、本実施例1こおいて1:【、Co−Cr合金のり
よ性薄膜を用いたが、それ以外のCn基合づ〒、 I”
c基11 ・ 合金、N+基合金なとを磁性薄膜として用いた場合ニオ
イテモ、I3x C1−x (0,80< X< 0.
96 )組成が。
In addition, in this Example 1, 1: [, a Co-Cr alloy adhesive thin film was used, but other Cn-based alloys were used]
When a c-based 11. alloy or an N+-based alloy is used as a magnetic thin film, I3x C1-x (0,80<X<0.
96) Composition.

らなる保護膜を設けることによって、耐ヘツド摺動性な
らびに耐食性をへ′シク向1−させることができた。。
By providing a protective film of this type, it was possible to improve head sliding resistance and corrosion resistance. .

(実施例 2) アルミニラj、基板を用しビC、スパッタリング法によ
り第3図に示す構造の磁気記録媒体を作製した1、スパ
ッタリング装置ざぜ゛の試料室をI X 1O−6To
rrまて」°!空υl気した後、Arカスを導入してA
r圧を5×川−・’ Torrに調整し、アルミニラl
、基板4の温度を120′(:となし、lj″1”4周
波スパッタリング法により、]!1wt % Fc−N
iの組成をもつ高透磁率薄膜5を0571mの厚さに形
成した。ついて、同じ試料室(こおいて、Jl(板4の
ン、11.’1度を100’Cとし、Co−201%C
丁−の組成をもつ磁i’l薄膜6を0.27unの膜厚
にスパッタリングした。
(Example 2) A magnetic recording medium having the structure shown in FIG. 3 was fabricated by a bicarbonate sputtering method using an aluminum foil substrate.
rr wait”°! After airing, introduce Ar scum and
Adjust the r pressure to 5 × river-・' Torr, and
, the temperature of the substrate 4 was set to 120' (:, by the 4-frequency sputtering method, ]!1wt% Fc-N
A high magnetic permeability thin film 5 having a composition of i was formed to a thickness of 0571 m. Then, in the same sample chamber (Jl) (plate 4, 11.'1 degree is 100'C,
A magnetic i'l thin film 6 having a composition of 0.5 mm was sputtered to a thickness of 0.27 nm.

保護1摸7は、11+にB4Cを配置したターゲットま
たはB4C上にBを配置したターゲットを用いて、基板
温度ε〕OTで200人の厚さに形成した。この場1? 合、ターゲットを構成するBど)34Cの(7在比を変
えることにより、BXCl、、−X (0,80< X
 <(i、9’″i)なる組成の保護膜7を得ることが
できf二、。
Protection 1 and 7 were formed to a thickness of 200 mm at a substrate temperature ε]OT using a target with B4C placed on 11+ or a target with B placed on B4C. This place 1? By changing the (7 ratio of B, etc.) that constitutes the target, BXCl, , -X (0,80<
A protective film 7 having a composition <(i, 9'''i) can be obtained.

比較例として、保護膜を1設けない試料と、I3甲体を
保護膜として設けた試料とを作製し、実施例−1と同様
の耐食性テストならびに耐ヘット゛琵j動イノ(テスト
を行な−、たところ、実施例1の真空蒸盾法。
As a comparative example, a sample without a protective film and a sample with an I3 shell as a protective film were prepared, and a corrosion resistance test and a heat resistance test were conducted in the same manner as in Example-1. However, the vacuum evaporation shield method of Example 1 was used.

における場合と[「1様に、耐食性は保護膜を護けたす
べての磁気記録媒体において優れた値を示し、耐ヘツド
摺動f1は、保護膜組成13yCl−、、yのyが0.
80を超え、0.96以下の範囲において、比較例であ
るB保護膜よりも優れた値を示した。
In the case of [1], the corrosion resistance showed excellent values in all the magnetic recording media protected by the protective film, and the head sliding resistance f1 was the same when the protective film composition was 13yCl-, y was 0.
In the range of more than 80 and less than 0.96, it showed a value superior to that of the comparative example B protective film.

また、イオンブレーティング法によ、って保護膜を)h
e成した場合においても、本実施例と同様に優れた効果
を認めることができた。
In addition, a protective film can be formed using the ion blating method.
Even in the case of e-formation, excellent effects similar to those of this example could be observed.

(実施例 3) 基板としてN1−P/Al基根を用い、第4図に示す構
造の磁気記録媒体を、マグネトロンスパッタリング法に
より作製した3、スパッタリング装置の試料室をI X
 1O−6To+”rまで真空υ1気した後、Arカス
を導入してAr圧を5×1O−3TOrrとなし、マグ
ネトロンスパッタリング法により、基板温度120℃で
、N1−P/M!基板8上に中間層9としてCrを。
(Example 3) A magnetic recording medium having the structure shown in FIG. 4 was fabricated by magnetron sputtering using an N1-P/Al radical as a substrate.
After vacuuming to 1O-6To+"r, Ar gas was introduced to make the Ar pressure 5 x 1O-3Torr, and N1-P/M! was deposited on the N1-P/M! substrate 8 at a substrate temperature of 120°C by magnetron sputtering. Cr is used as the intermediate layer 9.

500 Aの膜厚に形成した。ついて、その上に磁性薄
膜10として、25wt%Co−Ni合金を、基板温度
100’Cで02μmの厚さに形成させた。保護膜11
゜は、B上に84Cを配置したターゲットもしくはB4
C上にBを配置したターゲットを用いて、基板温度90
℃で、上記と同じマグネトロンスパッタリング法により
200Aの膜厚に形成した。
The film thickness was 500A. Then, a 25 wt % Co--Ni alloy was formed thereon as a magnetic thin film 10 to a thickness of 0.2 μm at a substrate temperature of 100'C. Protective film 11
゜ is the target with 84C placed on B or B4
Using a target with B placed on C, the substrate temperature is 90
The film was formed to a thickness of 200 Å at a temperature of 200° C. by the same magnetron sputtering method as above.

本実施例によって作製した磁気記録媒体は、上述の実施
例〕および2と同等の優れた耐食性ならびに耐ヘツド摺
動性を示した。
The magnetic recording medium produced according to this example exhibited excellent corrosion resistance and head sliding resistance equivalent to those of the above-mentioned examples] and 2.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく、本発明による一般式BxC
1−x (0,80< x < 0.96 )で示され
る組成の炭化ホウ素系のアモルファス状の保護膜は、磁
性薄膜の表面に強固に密着し易く、化学的に活性点が少
ないために耐食性が良く、かつ均質であるために機械的
強度が大であるので、これを保護膜として用いた磁気記
録媒体は、耐食性に優れることは。
As explained in detail above, the general formula BxC according to the present invention
An amorphous boron carbide-based protective film with a composition expressed by 1-x (0,80<x<0.96) easily adheres firmly to the surface of a magnetic thin film, and has few chemically active sites. Since it has good corrosion resistance and is homogeneous, it has high mechanical strength, so magnetic recording media using it as a protective film have excellent corrosion resistance.

もちろんのこと、特に耐ヘツド摺動強度が高くな。Of course, the head sliding resistance is especially high.

す、高密度磁気記録再生に際して極めて耐用寿命。Extremely durable for high-density magnetic recording and reproduction.

の長い記録媒体が得られる。A long recording medium can be obtained.

そして、本発明の炭化ホウ素系の保護膜は乾式。The boron carbide-based protective film of the present invention is a dry method.

法である物理蒸着法によって容易に形成させるこ。It can be easily formed by physical vapor deposition method.

とができるので、工業上の利用価値は極めて大き。It has extremely great industrial value.

い。stomach.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1における磁気記録媒、。 体の構造を示す断面図、第2図は本発明に関する保護膜
BxC1−Xの組成範囲と耐へ・ンド摺動強度との関係
を示すグラフ、第3図は本発明の実施例2゜における磁
気記録媒体の構造を示す断面図、第4゜図は本発明の実
施例3における磁気記録媒体の構造を示す断面図である
。 1・・・ポリイミド基板 2・・・磁性薄膜 3・・・保護膜 4・・・A/基板 ・ 15・ 5・・・高透磁率薄膜 6・・・磁性薄膜 7・・・保護膜 8・・・N1−P/kI!基板 9・・・中間薄膜 10・・・磁性薄膜 11・・・保護膜 代理人弁理士 中村純之助  、。 ・ 16・ ′(
FIG. 1 shows a magnetic recording medium in Example 1 of the present invention. FIG. 2 is a graph showing the relationship between the composition range of the protective film BxC1-X and the bending resistance against sliding strength of the protective film BxC1-X according to the present invention, and FIG. FIG. 4 is a sectional view showing the structure of a magnetic recording medium in Example 3 of the present invention. 1... Polyimide substrate 2... Magnetic thin film 3... Protective film 4... A/substrate 15. 5... High magnetic permeability thin film 6... Magnetic thin film 7... Protective film 8. ...N1-P/kI! Substrate 9...Intermediate thin film 10...Magnetic thin film 11...Protective film Junnosuke Nakamura, patent attorney.・16・′(

Claims (1)

【特許請求の範囲】 1、基板上に磁性薄膜層を設けた磁気記録媒体において
、上記磁性薄膜の上に、一般式B_xC_1_−_x(
式中、xは0.80を超え、0.96以下の正数を表わ
す。)で示される組成の炭化ホウ素系保護膜を形成させ
ることを特徴とする磁気記録媒体。 2、一般式B_xC_1_−_xで示される組成の炭化
ホウ素系保護膜において、xが0.81〜0.91の範
囲であることを特徴とする特許請求の範囲第1項に記載
の磁気記録媒体。 3、一般式B_xC_1_−_xで示される組成の炭化
ホウ素系保護膜は、アモルファス状であることを特徴と
する特許請求の範囲第1項または第2項に記載の磁気記
録媒体。 4、一般式B_xC_1_−_xで示される組成の炭化
ホウ素系保護膜の膜厚が、50〜1000Åの範囲であ
ることを特徴とする特許請求の範囲第1項ないし第3項
のいずれか1項に記載の磁気記録媒体。 5、一般式B_xC_1_−_xで示される組成の炭化
ホウ素系保護膜の膜厚が、100〜800Åであること
を特徴とする特許請求の範囲第1項ないし第3項のいず
れか1項に記載の磁気記録媒体。 6、一般式B_xC_1_−_xで示される組成の炭化
ホウ素系保護膜の膜厚が、150〜300Åであること
を特徴とする特許請求の範囲第1項ないし第3項のいず
れか1項に記載の磁気記録媒体。 7、一般式B_xC_1_−_xで示される組成の炭化
ホウ素系保護膜は、物理蒸着法によって形成されること
を特徴とする特許請求の範囲第1項ないし第6項のいず
れか1項に記載の磁気記録媒体。
[Claims] 1. In a magnetic recording medium in which a magnetic thin film layer is provided on a substrate, the general formula B_xC_1_-_x(
In the formula, x represents a positive number greater than 0.80 and less than or equal to 0.96. ) A magnetic recording medium characterized by forming a boron carbide-based protective film having a composition represented by: 2. The magnetic recording medium according to claim 1, characterized in that in the boron carbide-based protective film having a composition represented by the general formula B_xC_1_-_x, x is in the range of 0.81 to 0.91. . 3. The magnetic recording medium according to claim 1 or 2, wherein the boron carbide-based protective film having a composition represented by the general formula B_xC_1_-_x is amorphous. 4. Any one of claims 1 to 3, characterized in that the thickness of the boron carbide-based protective film having the composition represented by the general formula B_xC_1_-_x is in the range of 50 to 1000 Å. The magnetic recording medium described in . 5. According to any one of claims 1 to 3, the boron carbide protective film having a composition represented by the general formula B_xC_1_-_x has a thickness of 100 to 800 Å. magnetic recording media. 6. According to any one of claims 1 to 3, the boron carbide protective film having a composition represented by the general formula B_xC_1_-_x has a thickness of 150 to 300 Å. magnetic recording media. 7. The boron carbide-based protective film having the composition represented by the general formula B_xC_1_-_x is formed by a physical vapor deposition method, according to any one of claims 1 to 6. magnetic recording medium.
JP60183079A 1985-08-22 1985-08-22 Magnetic recording medium Expired - Lifetime JPH0715753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60183079A JPH0715753B2 (en) 1985-08-22 1985-08-22 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60183079A JPH0715753B2 (en) 1985-08-22 1985-08-22 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6243821A true JPS6243821A (en) 1987-02-25
JPH0715753B2 JPH0715753B2 (en) 1995-02-22

Family

ID=16129389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60183079A Expired - Lifetime JPH0715753B2 (en) 1985-08-22 1985-08-22 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0715753B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028703A1 (en) * 1994-04-19 1995-10-26 Saint-Gobain/Norton Industrial Ceramics Corporation Improved disk substrate
US5552204A (en) * 1995-01-13 1996-09-03 International Business Machines Corporation Magnetic disk with boron carbide overcoat layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018817A (en) * 1983-07-12 1985-01-30 Nec Corp Magnetic storage medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018817A (en) * 1983-07-12 1985-01-30 Nec Corp Magnetic storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028703A1 (en) * 1994-04-19 1995-10-26 Saint-Gobain/Norton Industrial Ceramics Corporation Improved disk substrate
US5552204A (en) * 1995-01-13 1996-09-03 International Business Machines Corporation Magnetic disk with boron carbide overcoat layer
US5750231A (en) * 1995-01-13 1998-05-12 International Business Machines Corporation Magnetic disk with boron carbide overcoat layer
US5897931A (en) * 1995-01-13 1999-04-27 International Business Machines Corporation Magnetic disk with boron carbide overcoat layer
US6010601A (en) * 1995-01-13 2000-01-04 International Business Machines Corporation Method of making magnetic disk with boron carbide overcoat layer and adhesion layer

Also Published As

Publication number Publication date
JPH0715753B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US4840844A (en) Magnetic recording medium
EP0120413B1 (en) Perpendicular magnetic-recording medium and method of manufacturing the same
EP0238047B1 (en) Magnetic storage medium with perpendicular anisotropy
JPS6243821A (en) Magnetic recording medium
JPS6329330B2 (en)
JP2950917B2 (en) Soft magnetic thin film
EP1170758B1 (en) Magnetic thin film and magnetic device using the same
JPH09306733A (en) Magnetoresistive effect film
JP3244068B2 (en) Magnetic head and its production
JPH0867966A (en) Magnetoresistance effect film
JPH0817032A (en) Magnetic recording medium and its production
JPH053048B2 (en)
JP2557381B2 (en) Perpendicular magnetic recording media
JPS61110331A (en) Magnetic recording medium
JPS63814A (en) Magnetic recording medium
JPH0778869B2 (en) Protective film for magnetic recording media
JP2621133B2 (en) Magnetic recording medium and method of manufacturing the same
JPS6330691B2 (en)
JPH04155618A (en) Perpendicular magnetic recording medium
JPS63193322A (en) Magnetic recording medium
JP2527623B2 (en) Magnetic layer protective film structure of magnetic recording medium and film forming method
JPH065574B2 (en) Magnetic recording medium
JPH01143312A (en) Amorphous soft magnetic laminated film
JPS62128016A (en) Magnetic recoding medium
JPS61184725A (en) Magnetic recording medium and its production