JPS62437B2 - - Google Patents
Info
- Publication number
- JPS62437B2 JPS62437B2 JP57199765A JP19976582A JPS62437B2 JP S62437 B2 JPS62437 B2 JP S62437B2 JP 57199765 A JP57199765 A JP 57199765A JP 19976582 A JP19976582 A JP 19976582A JP S62437 B2 JPS62437 B2 JP S62437B2
- Authority
- JP
- Japan
- Prior art keywords
- electric furnace
- heat
- gap
- transparent
- transparent heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003779 heat-resistant material Substances 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 238000009413 insulation Methods 0.000 description 9
- 239000010409 thin film Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910000953 kanthal Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000005297 pyrex Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Furnace Details (AREA)
- Recrystallisation Techniques (AREA)
Description
本発明は電気炉、特に半導体材料を始めとしそ
の他各種化合物材料に対するそれらの気相合成及
びそれらの単結晶の気相成長、または気相及び液
相のエピタキシヤル成長、並びに凝固法及び溶液
析出法等による単結晶成長等に利用するのに適し
た電気炉に関するものである。
従来のこの種電気炉としては、
(1) 断熱材としてレンガ、カオール等の耐火物を
使用した電気炉
(2) ゴールドフアーネスと呼ばれる金の赤外線反
射膜による輻射断熱を施した直視可能な電気炉
が知られている。
しかしながら、前記(1)の電気炉は断熱材がレン
ガ、カオール等の耐火物であるため、炉内部は直
視観察することができず、また耐火物の熱容量が
大きいため、急熱、急冷等の急激な温度変化の制
御が不可能であり、特に気相及び液相エピタキシ
ヤル成長のような複雑な過程の制御を要する対象
に利用するには極めて不都合である欠点を有して
いた。
また、前記(2)の電気炉は直視可能な利点を有す
るが、二重構造を持つ透明耐熱材料の間隙が気密
に保持されていないため、その間隙は大気にさら
され、そのため伝導と対流による放熱が大きく、
そのために保温性並びに急熱特性が不十分である
欠点があつた。
本発明は従来電気炉における前記欠点をなくす
べくなされたもので、その目的は加熱部内を直視
可能であると同時に、急熱・急冷等の急激な温度
変化の制御が可能で、かつ断熱、保温性が優れ、
消費電力が少なくてすむ電気炉を提供するにあ
る。
次に本発明の電気炉の実施態様を第1図に基づ
いて説明する。発熱部分はらせん状に巻いたカン
タル線抵抗体1と、これを支える硬質アスベスト
製リング2からなつている。この加熱部分の外側
を、透明耐熱材料である透明石英ガラス製内管3
と、透明パイレツクスガラス製外管4からなる二
重管で囲んでいる。この両管の両端部において金
属製フランジ5によつて両管の間隙7は気密に連
結保持されている。6及び8はフランジ5に設け
られた真空排気管6及び気体導入管8である。間
隙7内部を真空排気管6より真空ポンプで排気す
ることにより10-2mmHg以上の真空状態にし断熱
層として作用させることができ、また気体導入管
8より熱伝達用アルゴン等の気体を導入すること
により放熱層として作用させることができる。9
は内管3の外側に被覆された選択的透過膜として
の蒸着金薄膜で、熱輻射断熱作用をする。10は
フランジ5に取付けられた冷却用パイプで、フラ
ンジ5の過熱を防止する作用をする。
発熱用抵抗体1としては、カンタル線のほか、
ニクロム線、シリコニツト等の発熱体はすべて使
用することができる。
内管3、外管4にはパイレツクスガラス、石英
ガラスのほか、透明アルミナ等の透明である耐熱
材料であればよい。また、内管3の外側に被覆さ
れた選択的透過膜としては、金薄膜のほか、酸化
スズ薄膜、酸化インジウム薄膜、酸化タングステ
ン薄膜のような赤外線を反射し、かつ可視光線を
透過する機能を持つ薄膜であれば同様に使用する
ことができる。
熱伝達用気体としては、アルゴンガスのほか、
窒素ガス、ヘリウムガス等も同様に使用し得られ
る。
本発明の電気炉は、加熱部分の外側を少なくと
も二重構造を持つ透明耐熱材料で気密に囲み、そ
の多重構造となつた透明耐熱材料間の間隙を10-2
〜10-7mmHgの真空にすることができ、またその
間隙に適宜気体を導入することができるように構
成し、かつ加熱部分を赤外線を反射し、可視光を
透過する選択的光透過膜で覆つたことを特徴とす
る電気炉にある。
本発明の電気炉によると、
(1) 透明耐熱材料による多重構造で形成された真
空断熱層と、選択的光透過膜による輻射断熱を
採用しているため、可視光に対して透明であ
る。従つて、加熱中炉内部を透視することがで
き、炉内部で進行する反応系及び結晶成長系の
動的観測が可能であり、またそれらの系の制御
が容易である。またこの利点は青色光照明下で
本電気炉を用いると、更に顕著になる。
(2) 真空断熱層と選択的透過膜による輻射断熱層
により断熱するためその断熱性が優れ、そのた
め消費電力が小さく経済効率が高い。
(3) また、上記の構成から熱容量も小さく、併せ
て気体導入と真空排気が可能であるため、優れ
た急熱、急冷効果を持つ。従つて所望の温度へ
の急激な変化に極めて早く追従させることがで
きる。
本発明の電気炉と従来型ゴールドフアーネスと
の消費電力及び急熱特性と比較すると次の通りで
あつた。
The present invention is applicable to electric furnaces, in particular to vapor phase synthesis of semiconductor materials and other various compound materials, vapor phase growth of single crystals thereof, epitaxial growth in vapor phase and liquid phase, solidification method and solution precipitation method. This article relates to an electric furnace suitable for use in single crystal growth, etc. Conventional electric furnaces of this type include: (1) electric furnaces that use refractory materials such as bricks and kaoru as insulation; (2) direct-visible electric furnaces with radiant insulation using gold infrared reflective coatings called gold furnaces; The furnace is known. However, since the electric furnace described in (1) above uses a refractory material such as brick or kaol as its insulation material, the inside of the furnace cannot be directly observed, and the heat capacity of the refractory material is large, so rapid heating, cooling, etc. It is impossible to control rapid temperature changes, and this method is extremely inconvenient for applications that require control of complex processes, such as gas phase and liquid phase epitaxial growth. In addition, although the electric furnace described in (2) above has the advantage of being directly visible, the gap between the transparent heat-resistant material with a double structure is not kept airtight, so the gap is exposed to the atmosphere, and as a result, conduction and convection Great heat dissipation,
As a result, they had the disadvantage of insufficient heat retention and rapid heating properties. The present invention was made to eliminate the above-mentioned drawbacks of conventional electric furnaces.The purpose of the present invention is to enable direct viewing of the inside of the heating section, to control rapid temperature changes such as rapid heating and cooling, and to provide heat insulation and heat retention. Excellent quality,
To provide an electric furnace that consumes less power. Next, an embodiment of the electric furnace of the present invention will be described based on FIG. The heat generating part consists of a spirally wound Kanthal wire resistor 1 and a ring 2 made of hard asbestos that supports it. The outside of this heating part is connected to an inner tube 3 made of transparent quartz glass, which is a transparent heat-resistant material.
It is surrounded by a double tube consisting of an outer tube 4 made of transparent Pyrex glass. A gap 7 between the two tubes is connected and maintained in an airtight manner by metal flanges 5 at both ends of the tubes. 6 and 8 are a vacuum exhaust pipe 6 and a gas introduction pipe 8 provided on the flange 5. By evacuating the inside of the gap 7 with a vacuum pump through the evacuation pipe 6, it can be brought into a vacuum state of 10 -2 mmHg or more and act as a heat insulating layer, and a gas such as argon for heat transfer can be introduced through the gas introduction pipe 8. This allows it to function as a heat dissipation layer. 9
is a vapor-deposited gold thin film as a selectively permeable membrane coated on the outside of the inner tube 3, which acts as a thermal radiation insulator. A cooling pipe 10 is attached to the flange 5 and serves to prevent the flange 5 from overheating. As the heating resistor 1, in addition to Kanthal wire,
Any heating element such as nichrome wire or siliconite can be used. In addition to Pyrex glass and quartz glass, the inner tube 3 and outer tube 4 may be made of transparent heat-resistant materials such as transparent alumina. In addition to the gold thin film, the selectively transparent film coated on the outside of the inner tube 3 includes a thin film of tin oxide, a thin film of indium oxide, and a thin film of tungsten oxide, which have the function of reflecting infrared rays and transmitting visible light. Any thin film that has the same properties can be used in the same way. In addition to argon gas, heat transfer gases include
Nitrogen gas, helium gas, etc. can also be used in the same manner. In the electric furnace of the present invention, the outside of the heating part is airtightly surrounded by a transparent heat-resistant material having at least a double structure, and the gap between the transparent heat-resistant materials in the multilayer structure is 10 -2
It is configured to be able to create a vacuum of ~10 -7 mmHg, and to introduce appropriate gas into the gap, and the heated part is made of a selective light-transmitting film that reflects infrared rays and transmits visible light. It is in an electric furnace that is characterized by being covered. According to the electric furnace of the present invention, (1) it is transparent to visible light because it employs a vacuum insulation layer formed of a multilayered structure of transparent heat-resistant materials and radiation insulation using a selective light-transmitting film; Therefore, it is possible to see through the inside of the furnace during heating, and it is possible to dynamically observe the reaction system and crystal growth system progressing inside the furnace, and it is easy to control these systems. Moreover, this advantage becomes even more remarkable when this electric furnace is used under blue light illumination. (2) Excellent thermal insulation properties due to insulation provided by a vacuum insulation layer and a radiation insulation layer made of a selectively permeable membrane, resulting in low power consumption and high economic efficiency. (3) Furthermore, because of the above structure, the heat capacity is small, and gas introduction and vacuum exhaust are possible, so it has excellent rapid heating and cooling effects. Therefore, rapid changes to the desired temperature can be followed extremely quickly. A comparison of the power consumption and rapid heating characteristics of the electric furnace of the present invention and a conventional gold furnace was as follows.
【表】
(4) 電気炉内部の透視及び急激に温度変化が可能
なことにより、エピタキシヤル結晶を始めと
し、その他結晶の成長に関する研究、結晶素材
の製造分野における作業能率の向上に寄与する
ことが大きい。
等の優れた作用効果を有する。[Table] (4) By being able to see through the inside of an electric furnace and make rapid temperature changes, it will contribute to research on the growth of epitaxial crystals and other crystals, as well as to improvements in work efficiency in the field of manufacturing crystalline materials. is large. It has excellent effects such as.
第1図は本発明における一実施態様の電気炉の
断面図を示す。
1:発熱用抵抗体、2:発熱用抵抗体の支えリ
ング、3:透明耐熱性材料からなる内管、4:透
明耐熱性材料からなる外管、5:フランジ、6:
真空排気管、7:間隙、8:気体導入管、9:選
択的透過膜、10:冷却用パイプ。
FIG. 1 shows a sectional view of an electric furnace according to one embodiment of the present invention. 1: Heat-generating resistor, 2: Support ring for heat-generating resistor, 3: Inner tube made of transparent heat-resistant material, 4: Outer tube made of transparent heat-resistant material, 5: Flange, 6:
Vacuum exhaust pipe, 7: Gap, 8: Gas introduction pipe, 9: Selective permeation membrane, 10: Cooling pipe.
Claims (1)
を透過する選択的光透過膜で覆い、少くとも二重
構造を持つ透明耐熱材料で囲んだ構造を持つ電気
炉において、それら透明耐熱材料の間隙を冷却機
構を設けたフランジにより気密に保持し、かつそ
の間隙につながつた真空排気管及び気体導入管を
設けたことを特徴とする電気炉。1. In an electric furnace that has a structure in which the outside of the heated part is covered with a selective light-transmitting film that reflects infrared rays and transmits visible light, and is surrounded by transparent heat-resistant materials that have at least a double structure, the gap between the transparent heat-resistant materials An electric furnace, which is airtightly held by a flange provided with a cooling mechanism, and is provided with a vacuum exhaust pipe and a gas introduction pipe connected to the gap.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19976582A JPS5989991A (en) | 1982-11-16 | 1982-11-16 | Electric furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19976582A JPS5989991A (en) | 1982-11-16 | 1982-11-16 | Electric furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5989991A JPS5989991A (en) | 1984-05-24 |
JPS62437B2 true JPS62437B2 (en) | 1987-01-07 |
Family
ID=16413241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19976582A Granted JPS5989991A (en) | 1982-11-16 | 1982-11-16 | Electric furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5989991A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01130840U (en) * | 1988-03-02 | 1989-09-06 | ||
JPH0460721U (en) * | 1990-10-04 | 1992-05-25 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6879125B2 (en) * | 2017-08-29 | 2021-06-02 | トヨタ自動車株式会社 | Double tube insulation furnace |
JP6988273B2 (en) * | 2017-08-30 | 2022-01-05 | トヨタ自動車株式会社 | Double pipe insulation wall structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53105739A (en) * | 1977-02-28 | 1978-09-14 | Clarion Co Ltd | Electric furnace of thermal radiation balancing type |
-
1982
- 1982-11-16 JP JP19976582A patent/JPS5989991A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53105739A (en) * | 1977-02-28 | 1978-09-14 | Clarion Co Ltd | Electric furnace of thermal radiation balancing type |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01130840U (en) * | 1988-03-02 | 1989-09-06 | ||
JPH0460721U (en) * | 1990-10-04 | 1992-05-25 |
Also Published As
Publication number | Publication date |
---|---|
JPS5989991A (en) | 1984-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4914276A (en) | Efficient high temperature radiant furnace | |
US3626154A (en) | Transparent furnace | |
WO2007043244A1 (en) | Fixed-point cell, fixed-point temperature realizing apparatus, and method of thermometer calibration | |
JPS62437B2 (en) | ||
JP2005086117A (en) | Cleaning super-high temperature heater for substrate heating | |
US3699309A (en) | Directional infrared heating element | |
GB1521231A (en) | Induction furnace | |
JPS60159591A (en) | Heating furnace | |
GB2258592A (en) | Inert gas protects carbon heating element | |
JPH0633387Y2 (en) | thermocouple | |
JPS61268442A (en) | Heat-resistant vessel having multilayer structure | |
JP2002310561A (en) | Heating furnace | |
JPS5917242A (en) | Quartz glass for manufacturing semiconductor | |
JPH0517143Y2 (en) | ||
Reed et al. | Electric Furnace for Operation in Oxidizing, Neutral, and Reducing Atmospheres to 2400° C | |
JPS62128974A (en) | Manufacture of tubular member | |
JPH04293768A (en) | Device and crucible for evaporation | |
JPH02225659A (en) | Vacuum depositing device | |
JP2005050604A (en) | Far-infrared-ray radiant body | |
JPH04233154A (en) | Light emitting tube for ceramic discharge lamp | |
JP3461811B2 (en) | Heating substrate for lamination and multi-stage electric furnace of infrared reflection type | |
JPH0778779A (en) | Radiation heat preventing plate and use thereof | |
Rhodes et al. | Lamp Envelopes | |
JPH0493026A (en) | Apparatus for forming insulating film | |
JPH0554691B2 (en) |