JPS6243661Y2 - - Google Patents

Info

Publication number
JPS6243661Y2
JPS6243661Y2 JP4161786U JP4161786U JPS6243661Y2 JP S6243661 Y2 JPS6243661 Y2 JP S6243661Y2 JP 4161786 U JP4161786 U JP 4161786U JP 4161786 U JP4161786 U JP 4161786U JP S6243661 Y2 JPS6243661 Y2 JP S6243661Y2
Authority
JP
Japan
Prior art keywords
solder
flow
board
guide plate
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4161786U
Other languages
Japanese (ja)
Other versions
JPS6210953U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4161786U priority Critical patent/JPS6243661Y2/ja
Publication of JPS6210953U publication Critical patent/JPS6210953U/ja
Application granted granted Critical
Publication of JPS6243661Y2 publication Critical patent/JPS6243661Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Molten Solder (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

産業上の利用分野 本考案は回路部品の基板への半田付け装置に係
り、半田を噴出させて形成した1対の半田分流に
対し回路部品を仮取り付けした基板を移送しつつ
接触させて半田付けを行なう回路部品の基板への
半田付け装置に関する。 従来の技術 従来の回路部品の基板への半田付け装置として
は、半田を噴出させて形成した1対の半田分流に
対し、回路部品を仮取付けした基板を傾けて該傾
き方向へ移送して各半田分流に逐次接触させて回
路部品の端子を基板に半田付けするものがある。 考案が解決しようとする問題点 これによれば端子先端に半田のツララ、ピー
ク、ブリツジ等が形成され難く比較的良好な半田
付けを行ないうるが、可動成分(基板、各半田分
流)が多いためその値設定が難かしく実際には末
だ半田付け結果が不安定であるという問題があつ
た。 本考案は上記問題点を解決した回路部品の基板
への半田付け装置を提供することを目的とする。 問題点を解決するための手段 本考案は半田液を噴出させ相反する略水平方向
へ分流させ1対の半田分流を形成する手段と、回
路部品を仮取付けした基板がまず一の半田分流に
流れと対向する方向に接触した後他の半田分流に
流れと同一方向に接触し該移送速度が該流れ速度
に一致する時点で該基板を該他の半田分流から離
間するように、該基板を水平方向に対し、所定角
度傾けた状態で該傾けた方向へ移送する手段とよ
りなり、該半田分流形成手段を、該半田液を上方
に噴出させるノズルと、該ノズルより噴出した半
田液を案内して上記一の半田分流を形成する前方
ガイド板と、該ノズルより噴出した半田液を案内
して上記他の半田分流を形成すると共に上下方向
に位置調整可能な後方ガイド板とよりなる構成と
し、該後方ガイド板の位置を調整することによ
り、該一の半田分流の流れ速度を該他の半田分流
の該移送速度に一致する流れ速度の7〜16倍の範
囲で且つ該基板の移送速度を0.8〜3.2m/分の範
囲で、夫々該基板の半田付条件に対応させて設定
して使用される構成としたものである。 作 用 一の半田分流の流れ速度を他の半田分流の移送
速度に一致する流れ速度の7〜16倍の範囲で且つ
基板の移送速度を0.8〜3.2m/分の範囲で、夫々
基板の半田付条件に対応させて設定して作用され
ることは、端子部分に半田のツララ、ピーク、ブ
リツジ等のない良好な半田付けを可能とする。上
下に変位可能な位置調整可能な後方ガイド板は、
半田の分流の流速を半田付けしようとする基板の
半田付け条件に対応した速度に、半田に淀みを発
生させることなくしかも迅速に調整し得る。 実施例 以下本考案になる回路部品の基板への半田付け
装置の1実施例を第1図を使用して説明する。 図中1は半田噴出用ノズルで、例えば断面四角
形のノズル本体2上端の一の辺を円弧状に水平方
向へ折曲されて前方ガイド板2aとされ、且つそ
の対向辺にL字状の後方ガイド板3を図中上下方
向位置調整自在に取付けられている。 ノズル1は所定容器に貯溜された高温の半田4
液内に直立状に浸漬されており、所定のポンプ手
段(図示せず)により半田4はノズル1の本体2
を介してノズル1上端開口部へ噴き出され、更に
図中左右に分流されて前方ガイド板2aへの比較
的高速の分流4aと後方ガイド板3への比較的低
速の分流4bとを形成される。尚半田4の流れは
定常的なものであり、しかも図示の如く半田4の
噴出圧力及びガイド板2a,3の効果により略中
央部分が盛上り状平滑面とされ、分流4a,4b
は夫々再び下方の貯溜半田4へ注ぎ込まれ循環す
るものである。 5は基板で、その上面に複数の回路部品6を
夫々その単位6aを基板を挿通し基板下面へ比較
的短寸法突出して仮取付けされている。基板5は
所定のコンベヤ手段(図示せず)に取付けられて
水平方向より角度θ(θ=4〜7゜)傾いた状態
で該傾き方向、即ち図中矢印A方向へ一定速度で
移送される。 基板5が第1図中左方より半田分流4aにその
流れ方向と対向する方向に移送され近接すると、
常温の基板5及び回路部品6の所定部が、まず分
流4aの左方のゾーン(ここでは分流4aは最
高速である)に対応され、高温の分流4aにより
半田付け温度まで予熱される。 続いて上記所定部は図中右方へ移送されてゾー
ンに至る。これにより基板5下面が分流4aの
主要平滑面に接触開始し、漸次移送方向所定長に
わたり接触し、端子6aも完全に分流4aに浸さ
れる。尚基板5下面の半田4に対する接触長さ及
び接触時間は、後方ガイド板3の上下方向位置調
整及び基板5の傾斜角度θの調整により適宜調節
可能である。又基板5が導通を必要とするスルー
ホール(図示せず)を有する場合には、スルーホ
ールがゾーンの図中右方部に至ると、ここでは
分流4aの速度が遅く静圧が比較的大となつてい
るため、スルーホール内に良好に半田4が吹上り
適切な導通を得ることができる。 続いて所定部は更に右方へ移送されてゾーン
に至ると、分流4aに代わり他の分流4bを対応
される。しかるに分流4bは基板5移送方向と同
一方向へ流れ、しかもゾーンにおいては基板5
移送速度と略同一の低速で流れている。従つて基
板5下面及び端子6a突出部分はゾーンにおい
て図示の如く分流4bより斜め上方へ離脱する。
基板5は半田4面の流れに対し相対的に静止した
状態で徐々に離れることになるので基板5下面及
び端子6aに滴状に付着し難い。従つて端子6a
は基板5下面のパターンに良好に半田付けされ、
この部分に半田4のツララ、ピーク、ブリツジ等
ができることはない。 続いて上記所定部はゾーンに移送され、分流
4bの右方部に対応され分流4bにより幾分加熱
されて良好に徐冷される。基板5の上記所定部以
外も同様の要領で順次良好に半田付けを施され図
中右方へ離脱される。 尚種々の基板A〜Dとこれに対応する適正な半
田付け条件との関係が実際の数多くの試みにより
次表の如く得られた。但し、 基板A…回路部品は突出端子が短、
実装密度は小。 基板B… 〃 長、
〃 小。 基板C… 〃 短、
〃 大。 基板D… 〃 長、
〃 大。
Industrial Application Field The present invention relates to an apparatus for soldering circuit components to a board, in which a board on which a circuit component is temporarily attached is transferred and brought into contact with a pair of solder branches formed by jetting solder. The present invention relates to an apparatus for soldering circuit components to a board. BACKGROUND TECHNOLOGY A conventional device for soldering circuit components onto a board tilts a board on which circuit components are temporarily attached and transfers the circuit components in the direction of the tilt to a pair of solder branches formed by jetting solder. There is a method in which terminals of circuit components are soldered to a board by sequentially contacting a solder branch. Problems that the invention aims to solve According to this method, it is difficult to form solder icicles, peaks, bridges, etc. at the tip of the terminal, and it is possible to perform relatively good soldering, but since there are many moving components (board, various solder branches), There was a problem that it was difficult to set the value and the soldering result was unstable. An object of the present invention is to provide an apparatus for soldering circuit components to a board, which solves the above-mentioned problems. Means for Solving the Problems The present invention includes a means for spouting solder fluid and dividing it in opposite substantially horizontal directions to form a pair of solder divisions, and a circuit board on which a circuit component is temporarily attached first flows into the first solder division. The substrate is horizontally moved so as to separate the substrate from the other solder branch when the solder branch contacts the other solder branch in the same direction as the flow and the transfer velocity matches the flow velocity. The solder flow forming means includes a nozzle for spouting the solder liquid upward and a nozzle for guiding the solder liquid spouted from the nozzle. and a rear guide plate that guides the solder liquid ejected from the nozzle to form the other solder branch and whose position is adjustable in the vertical direction, By adjusting the position of the rear guide plate, the flow velocity of the one solder branch is set to a range of 7 to 16 times the flow velocity corresponding to the transfer velocity of the other solder branch, and the transfer velocity of the substrate is adjusted. The speed is set within the range of 0.8 to 3.2 m/min depending on the soldering conditions of the board. Effect: Set the flow velocity of one solder branch in the range of 7 to 16 times the flow velocity corresponding to the transfer velocity of the other solder branch, and set the board transfer velocity in the range of 0.8 to 3.2 m/min. By being set and operated in accordance with the application conditions, it is possible to achieve good soldering at the terminal portion without solder icicles, peaks, bridges, etc. The position-adjustable rear guide plate can be moved up and down.
To quickly adjust the flow speed of a branched flow of solder to a speed corresponding to the soldering conditions of a board to be soldered, without causing stagnation in the solder. Embodiment Hereinafter, one embodiment of the apparatus for soldering circuit components to a board according to the present invention will be described with reference to FIG. In the figure, reference numeral 1 denotes a solder spouting nozzle, for example, one side of the upper end of the nozzle body 2, which has a square cross section, is bent horizontally into an arc shape to form a front guide plate 2a, and an L-shaped rear part is formed on the opposite side. A guide plate 3 is attached so that its position can be adjusted in the vertical direction in the figure. A nozzle 1 emits high-temperature solder 4 stored in a predetermined container.
The solder 4 is immersed upright in the liquid, and the solder 4 is pumped into the body 2 of the nozzle 1 by means of a predetermined pump (not shown).
The water is ejected to the upper end opening of the nozzle 1 through the flow, and is further divided to the left and right in the figure to form a relatively high-speed divided flow 4a to the front guide plate 2a and a relatively low-speed divided flow 4b to the rear guide plate 3. Ru. The flow of the solder 4 is steady, and as shown in the figure, due to the jetting pressure of the solder 4 and the effects of the guide plates 2a and 3, approximately the central portion is formed into a raised smooth surface, and the divided flows 4a and 4b are formed.
The solder solder is respectively poured into the solder pool 4 below and circulated. Reference numeral 5 designates a board, on the upper surface of which a plurality of circuit components 6 are temporarily attached, each unit 6a of which is inserted through the board and protrudes in a relatively short dimension to the lower surface of the board. The substrate 5 is attached to a predetermined conveyor means (not shown) and is transported at a constant speed in the tilted direction, that is, in the direction of arrow A in the figure, while being tilted at an angle θ (θ = 4 to 7 degrees) from the horizontal direction. . When the substrate 5 is transferred from the left side in FIG. 1 to the solder branch flow 4a in a direction opposite to the flow direction thereof and approaches it,
Predetermined portions of the board 5 and circuit components 6 at normal temperature are first addressed to the left zone of the branch flow 4a (here the branch flow 4a has the highest speed) and are preheated to the soldering temperature by the high temperature branch flow 4a. Subsequently, the predetermined portion is transferred to the right in the figure and reaches the zone. As a result, the lower surface of the substrate 5 starts to come into contact with the main smooth surface of the shunt 4a, and gradually comes into contact over a predetermined length in the transport direction, and the terminals 6a are also completely immersed in the shunt 4a. The contact length and contact time of the lower surface of the substrate 5 with the solder 4 can be adjusted as appropriate by adjusting the vertical position of the rear guide plate 3 and adjusting the inclination angle θ of the substrate 5. In addition, if the substrate 5 has a through hole (not shown) that requires conduction, when the through hole reaches the right side of the zone in the figure, the speed of the branch flow 4a is slow here and the static pressure is relatively large. Therefore, the solder 4 can be blown up well into the through hole to obtain appropriate conduction. Subsequently, when the predetermined portion is further transferred to the right and reaches the zone, it is treated with another branched flow 4b instead of the branched flow 4a. However, the branched flow 4b flows in the same direction as the substrate 5 transfer direction, and moreover, in the zone, the substrate 5
It is flowing at a low speed that is approximately the same as the transport speed. Therefore, the lower surface of the substrate 5 and the protruding portions of the terminals 6a depart obliquely upward from the branch flow 4b in the zone as shown in the figure.
Since the substrate 5 gradually separates while remaining stationary relative to the flow of solder 4, it is difficult for the substrate 5 to adhere in droplets to the lower surface of the substrate 5 and the terminals 6a. Therefore, terminal 6a
is well soldered to the pattern on the bottom surface of the board 5,
There will be no icicles, peaks, bridges, etc. of the solder 4 in this part. Subsequently, the above-mentioned predetermined portion is transferred to a zone, which corresponds to the right side of the branch flow 4b, and is somewhat heated by the branch flow 4b, and is slowly cooled appropriately. The parts of the board 5 other than the above-mentioned predetermined parts are successively soldered in a similar manner and removed to the right in the figure. The relationships between various substrates A to D and their corresponding appropriate soldering conditions were obtained through numerous actual trials as shown in the following table. However, board A...circuit components have short protruding terminals,
The packaging density is small. Board B… 〃 length,
〃 Small. Board C... 〃 Short,
〃 Big. Board D... 〃 long,
〃 Big.

【表】 上記表によれば、回路部品のリード線が長くな
る程、又実装密度が大なる程、基板の移送速度及
び半田の各流速を夫々小とすればよい傾向にある
ことがわかり、上記種々の条件によれば、上記実
施例及び後述する長寸法の突出端子6aの場合で
も半田4のツララ、ピーク、ブリツジを実際上略
完全に防止して良好な半田付けができることがわ
かつた。又上記種々の条件によれば基板5の回路
部品6の密度の大小にかかわらず良好な半田付け
ができることがわかつた。尚上記適切な条件によ
れば基板5の移送速度及び半田4の基板送出し側
流速は夫々0.8〜3.2m/分であり、且つ半田4の
基板進入側流速は上記流速の略7〜16倍であるこ
とがわかる。 上記装置によれば、半田4は定常流であり、し
かも分流4a,4bはガイド板2a,3により半
田4液面に近接した個所より注がれ半田液を殆ど
乱さないため、半田酸化防止用のオイルは不要で
あり、基板5はオイル汚染がないと共に洗浄作業
も不要となり、装置全体の保守も容易となる。ま
た、ガイド板3を調整して上方に上げると、半田
4はガイド板2a方向に流れ易くなり、分流4a
の流速が増し、分流4bの流速が減る。ガイド板
3を調整して下方に下げると半田4はガイド板3
方向に流れ易くなり、分流4bの流速が増し、分
流4aの流速が減る。このように、ガイド板3の
高さ位置を調整することにより、分流4a,4b
の流速を前記の範囲に亘つて可変設定し得、分流
の流速は半田付けしようとする基板に最適の流速
に設定される。 またガイド板3を上下させることにより分流4
a,4bの液面の高さが変化するも、分流4a,
4bは淀む状態とはならず、淀みに因る半田液の
不均質化は起らない。即ち分流4a,4bの流速
の調整は、半田4の品質を何ら損なわず、上記調
整を行なつても半田付けの品質は不変である。 上記実施例では端子6aの突出長さが短寸法で
あつたが、長寸法の実施例を第2図に示す。図中
ノズル7は前方ガイド板7aと長寸法の後方ガイ
ド板7bとを有している。従つて半田4はノズル
7より上方へ噴き出され分流4c,4dに分流さ
れるがガイド板7bの上方へ移動することにより
分流4c,4dの深さは大となる。 従つて長寸法の端子8aを下方へ突出された回
路部品8を有する基板9を上記実施例の場合と同
様に移送させて分流4cに接触させると、端子8
aは十分に分流4c,4dの深さ内に収納され、
移送速度と同一流れ速度の分流4dより離脱され
る。その効果については上記実施例と同様であ
る。尚ガイド板7bを位置調整することにより、
分流4c,4dの深さを容易に可変しうる。 次に第3図及び第4図により、上記半田付け方
法を行なう装置を説明する。第3図、第4図中、
第1図と同一部分には同一符号を附す。図中、1
1はチエーンで、半田4液面と平行に張設され、
所定の駆動手段(図示せず)により第3図中ノズ
ル1上方を矢印B方向へ所定速度で走行される。
12は基板保持ブロツクで、一の保持板13下面
に左右各1対のロツド14をネジ締め固定し、且
つ各1対のロツド14下端に夫々スライド板15
を可動自在に保持してなる。即ち各スライド板1
5は第3図中左右に設けた1対の長孔15aを
夫々1対のロツド14に遊嵌的に嵌合されロツド
14下端の頭部14aに当接して通常水平に位置
決めされており、更に各スライド板15の支持ア
ーム15b間に上記半田付けをなされる基板5が
一体的に取付固定され、同様に水平に位置決めさ
れる。尚基板ブロツク12は保持板13中央部を
チエーン11にボルト締めして固定され、この要
領で複数のブロツク12が等ピツチでチエーン1
1に取付けられる。 16は1対のガイド板で、夫々上記ノズル1の
左右において前後1対の調整具17a,17b間
に傾斜角調整自在に固定される。即ち各ガイド板
16は上面にガイド面16aを有し又両端に孔1
6b、長孔16cを有し、第3図に示す如く孔1
6b、長孔16cに夫々調整具17a,17bに
設けたボルト18a,18bを挿通され締付けら
れて調整具17a,17b間に固定される。 尚ガイド板16は長孔16cの機能により孔1
6bを支点として傾斜角度θを適宜調整自在とさ
れるが、この場合1対のガイド板16は夫々第3
図中右方部を持上げられ角度θ=4〜7゜なるよ
う対称に設定される。 従つて、第3図中チエーン11の矢印B方向走
行に伴ない、基板ブロツク12(基板5)は一体
的に同方向へ移行され、所定位置にて1対のスラ
イド板15が夫々1対のガイド板16の各ガイド
面16aに当接して漸次乗上げ、ロツド14に対
し組対的に上方へ移動しつつ、やがて完全にガイ
ド面16aに載置される。従つて、これ以後はチ
エーン11が矢印B方向へ走行するに伴ない、1
対のガイド板16及びこれと一体の基板5はガイ
ド面16aによりガイドされて水平に対し角度θ
だけ傾いた矢印A方向へ移送されることになる。
従つて基板5はこの傾き移送中に第1図に示す如
く半田4の分流4c,4dに逐次接して良好な半
田付けをなされる。尚基板5が半田付けを終了し
てガイド面16aを抜け切つたとき、スライド板
15を他のガイド面(図示せず)により更にガイ
ドしてロツド14下端位置へ戻すようにすれば戻
しシヨツクを除去することができる。基板5の代
わりに第2図に示す基板9を使用する場合も同様
である。 上記装置によれば、半田4液面に対する基板5
の移送傾斜角度θをチエーン11の走行方向とは
無関係に、スライド板15及びガイド板16の相
互作用により得ているため、角度θの変更が容易
であり精度も高く、作業コストを低減しうる。 考案の効果 上述の如く、本考案になる回路部品の基板への
半田付け装置によれば、一の半田分流の流れ速度
を他の半田分流の基板移送速度に一致する流れ速
度の7〜16倍の範囲で且つ基板の移送速度を0.8
〜3.2m/分の範囲で、夫々該基板の半田付条件
に対応させて設定するようにしてあるため、例え
ば、上記回路部品の端子の下面よりの突出寸法が
長くなる程又回路部品の実装密度が大となる程、
上記一の半田分流の流れ速度及び上記基板の移送
速度が夫々上記範囲内で小なる側となり、上記突
出寸法が短くなる程又上記実装密度が小となる
程、上記一の半田分流の流れ速度及び上記基板の
移送速度が夫々上記範囲内で大なる側となるよう
に基板の回路部品の端子の突出長さの大小及び回
路部品の密度の大小に応じて上記流れ速度及び移
送速度を上記数値の範囲内で設定すれば如何なる
場合も最適の半田付け条件を得ることができて便
利であり、しかも端子部分に半田のツララ、ピー
ク、ブリツジ等のない良好な半田付けを行ないえ
外観及び性能を向上し得、更には後方ガイド板高
さ位置を調整することにより分流の流速を可変す
る構成であるため、調整に伴う半田の淀みが発生
せず、然して半田は初期の品質を維持し、分流の
流速を変えた場合にも高品質の半田付けを行ない
得、また後方ガイド板を調整するとこれに追従し
て分流の流速が変化するため、所望の流速にすば
やく調整し得る等の特長を有するものである。
[Table] According to the above table, it can be seen that the longer the lead wire of the circuit component and the higher the mounting density, the smaller the board transfer speed and solder flow speed tend to be. It has been found that, according to the various conditions described above, even in the case of the above-mentioned embodiment and the case of the long protruding terminal 6a described later, icicles, peaks, and bridging of the solder 4 can be virtually completely prevented and good soldering can be achieved. It has also been found that under the above various conditions, good soldering can be achieved regardless of the density of the circuit components 6 on the board 5. According to the above-mentioned appropriate conditions, the transfer speed of the board 5 and the flow speed of the solder 4 on the board delivery side are 0.8 to 3.2 m/min, respectively, and the flow speed of the solder 4 on the board entry side is approximately 7 to 16 times the above flow speed. It can be seen that it is. According to the above device, the solder 4 is a steady flow, and the divided flows 4a and 4b are poured from points close to the solder 4 liquid level by the guide plates 2a and 3, so that the solder liquid is hardly disturbed. This eliminates the need for oil, and the substrate 5 is free from oil contamination and requires no cleaning work, making maintenance of the entire device easier. Moreover, when the guide plate 3 is adjusted and raised upward, the solder 4 will flow more easily in the direction of the guide plate 2a, and the solder 4 will flow into the divided flow 4a.
The flow velocity of the branch stream 4b increases, and the flow velocity of the branch stream 4b decreases. When the guide plate 3 is adjusted and lowered, the solder 4 is attached to the guide plate 3.
The flow rate of the branch stream 4b increases and the flow rate of the branch stream 4a decreases. In this way, by adjusting the height position of the guide plate 3, the divided flows 4a, 4b
The flow rate of the branched flow can be set variably over the above-mentioned range, and the flow rate of the branched flow is set to the optimum flow rate for the board to be soldered. Also, by moving the guide plate 3 up and down, the shunt 4
Although the height of the liquid level in a and 4b changes, the divided flows 4a and 4b
4b does not become stagnant, and the solder liquid does not become inhomogeneous due to stagnation. That is, the adjustment of the flow velocity of the branched flows 4a and 4b does not impair the quality of the solder 4 in any way, and the quality of soldering remains unchanged even after the above adjustment. In the above embodiment, the protruding length of the terminal 6a was short, but an embodiment in which the protruding length of the terminal 6a is long is shown in FIG. In the figure, the nozzle 7 has a front guide plate 7a and a long rear guide plate 7b. Therefore, the solder 4 is ejected upward from the nozzle 7 and is divided into branch streams 4c and 4d, but the depth of the branch streams 4c and 4d increases by moving above the guide plate 7b. Therefore, when the board 9 having the circuit component 8 protruding downward with the long terminal 8a is transferred and brought into contact with the shunt 4c in the same manner as in the above embodiment, the terminal 8a
a is sufficiently accommodated within the depth of the branches 4c and 4d,
It is separated from the branch stream 4d whose flow velocity is the same as the transfer velocity. The effect is similar to that of the above embodiment. By adjusting the position of the guide plate 7b,
The depth of the branch streams 4c and 4d can be easily varied. Next, an apparatus for performing the above soldering method will be explained with reference to FIGS. 3 and 4. In Figures 3 and 4,
The same parts as in FIG. 1 are given the same reference numerals. In the figure, 1
1 is a chain, which is stretched parallel to the solder 4 liquid level.
It is driven by a predetermined driving means (not shown) above the nozzle 1 in FIG. 3 in the direction of arrow B at a predetermined speed.
Reference numeral 12 designates a board holding block, in which a pair of right and left rods 14 are screwed and fixed to the lower surface of one holding plate 13, and a slide plate 15 is attached to the lower end of each pair of rods 14.
It is held movably. That is, each slide plate 1
The rods 5 are normally positioned horizontally by being loosely fitted into the pair of rods 14 through a pair of elongated holes 15a provided on the left and right sides in FIG. Further, the board 5 to be soldered is integrally attached and fixed between the support arms 15b of each slide plate 15, and similarly positioned horizontally. The substrate block 12 is fixed by bolting the center part of the holding plate 13 to the chain 11, and in this manner, a plurality of blocks 12 are attached to the chain 1 at equal pitches.
Attached to 1. Reference numeral 16 denotes a pair of guide plates, which are fixed between a pair of front and rear adjustment tools 17a and 17b on the left and right sides of the nozzle 1, respectively, so as to be able to adjust the inclination angle. That is, each guide plate 16 has a guide surface 16a on the upper surface and holes 1 at both ends.
6b, and a long hole 16c, as shown in FIG.
Bolts 18a and 18b provided on the adjusters 17a and 17b are inserted into the elongated holes 16c and 6b, respectively, and tightened to be fixed between the adjusters 17a and 17b. Note that the guide plate 16 has a hole 1 due to the function of the elongated hole 16c.
6b as a fulcrum, the inclination angle θ can be adjusted as appropriate, but in this case, the pair of guide plates 16 are
The right side in the figure is lifted and set symmetrically so that the angle θ=4 to 7 degrees. Therefore, as the chain 11 moves in the direction of arrow B in FIG. It comes into contact with each guide surface 16a of the guide plate 16 and gradually rides on it, moves upward relative to the rod 14 as a pair, and is eventually completely placed on the guide surface 16a. Therefore, from now on, as the chain 11 travels in the direction of arrow B, 1
The pair of guide plates 16 and the substrate 5 integrated therewith are guided by the guide surface 16a at an angle θ with respect to the horizontal.
It will be transferred in the direction of arrow A, which is tilted by a certain amount.
Therefore, during this tilted transfer, the substrate 5 successively comes into contact with the branched flows 4c and 4d of the solder 4, as shown in FIG. 1, and is properly soldered. When the board 5 completes soldering and passes through the guide surface 16a, the slide plate 15 can be further guided by another guide surface (not shown) to return to the lower end position of the rod 14, thereby preventing the return shock. Can be removed. The same applies to the case where the substrate 9 shown in FIG. 2 is used instead of the substrate 5. According to the above-mentioned apparatus, the substrate 5 with respect to the solder 4 liquid level
Since the transfer inclination angle θ is obtained by the interaction between the slide plate 15 and the guide plate 16 regardless of the running direction of the chain 11, it is easy to change the angle θ, the accuracy is high, and the work cost can be reduced. . Effects of the Invention As described above, according to the apparatus for soldering circuit components to a board according to the present invention, the flow velocity of one solder branch is 7 to 16 times the flow velocity of the other solder branch, which corresponds to the board transfer velocity. and the substrate transfer speed is 0.8
~3.2 m/min, and is set in accordance with the soldering conditions of the board, so for example, the longer the protruding dimension of the terminal of the above circuit component from the bottom surface, the faster the mounting speed of the circuit component. The higher the density,
The flow speed of the first solder branch flow and the transfer speed of the board become smaller within the above ranges, and the shorter the protrusion dimension and the lower the mounting density, the lower the flow speed of the first solder branch flow. The flow speed and the transfer speed are set to the above values according to the protruding length of the terminal of the circuit component of the board and the density of the circuit component so that the transfer speed of the board is on the larger side within the above range. It is convenient to set the settings within the range of 1 to 1000, because it is possible to obtain the optimal soldering conditions in any case, and it is possible to perform good soldering without icicles, peaks, or bridges of solder on the terminal area, and to improve the appearance and performance. Moreover, since the flow velocity of the branch flow can be varied by adjusting the height position of the rear guide plate, stagnation of solder does not occur due to adjustment, and the solder maintains its initial quality, and the flow velocity of the branch flow can be changed by adjusting the rear guide plate height position. High-quality soldering can be achieved even when the flow velocity of the split flow is changed, and as the rear guide plate is adjusted, the flow velocity of the branch flow changes accordingly, making it possible to quickly adjust the flow velocity to the desired flow rate. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々本考案になる回路部品
の基板への半田付け装置の1実施例及び他の実施
例の縦断面図、第3図及び第4図は夫々上記半田
付け装置の側面図及び正面図である。 1,7……ノズル、2a,7a……前方ガイド
板、3,7b……後方ガイド板、4……半田、4
a〜4d……半田分流、5,9……基板、6,8
……回路部品、6a,9a……端子、11……チ
エーン、12……基板保持ブロツク、15……ス
ライド板、16……ガイド板、16a……ガイド
面、17a,17b……調整具。
1 and 2 are longitudinal cross-sectional views of one embodiment and another embodiment of the soldering apparatus for circuit components to a board according to the present invention, respectively, and FIGS. 3 and 4 respectively show the above-mentioned soldering apparatus. They are a side view and a front view. 1, 7... Nozzle, 2a, 7a... Front guide plate, 3, 7b... Rear guide plate, 4... Solder, 4
a to 4d... Solder branch, 5, 9... Board, 6, 8
...Circuit parts, 6a, 9a...Terminal, 11...Chain, 12...Board holding block, 15...Slide plate, 16...Guide plate, 16a...Guide surface, 17a, 17b...Adjustment tool.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 半田液を噴出させ相反する略水平方向へ分流さ
せ1対の半田分流を形成する手段と、回路部品を
仮取付けした基板がまず一の半田分流に流れと対
向する方向に接触した後他の半田分流に流れと同
一方向に接触し該移送速度が該流れ速度に一致す
る時点で該基板を該他の半田分流から離間するよ
うに、該基板を水平方向に対し、所定角度傾けた
状態で該傾けた方向へ移送する手段とよりなり、
該半田分流形成手段を、該半田液を上方に噴出さ
せるノズルと、該ノズルより噴出した半田液を案
内して上記一の半田分流を形成する前方ガイド板
と、該ノズルより噴出した半田液を案内して上記
他の半田分流を形成すると共に上下方向に位置調
整可能な後方ガイド板とよりなる構成とし、該後
方ガイド板の位置を調整することにより、該一の
半田分流の流れ速度を該他の半田分流の該移送速
度に一致する流れ速度の7〜16倍の範囲で且つ該
基板の移送速度を0.8〜3.2m/分の範囲で、夫々
該基板の半田付条件に対応させて設定して使用さ
れる回路部品の基板への半田付け装置。
A means for spouting solder fluid and dividing it in opposite substantially horizontal directions to form a pair of solder divisions, and a means for forming a pair of solder divisions by spouting solder liquid and dividing the solder liquid in opposite substantially horizontal directions; The substrate is tilted at a predetermined angle with respect to the horizontal direction so that the substrate is separated from the other solder branches when the branch comes into contact with the solder branch in the same direction as the flow and the transfer speed matches the flow velocity. It becomes a means of transferring in the tilted direction,
The solder flow forming means includes a nozzle that spouts the solder fluid upward, a front guide plate that guides the solder fluid spouted from the nozzle to form the first solder shunt, and a front guide plate that guides the solder fluid spouted from the nozzle to form the solder fluid spouted from the nozzle. The configuration includes a rear guide plate that guides the other solder branches and is adjustable in position in the vertical direction, and by adjusting the position of the rear guide plate, the flow velocity of the one solder branch can be adjusted as desired. The transfer speed of the board is set in a range of 7 to 16 times the flow speed corresponding to the transfer speed of the other solder branches, and the transfer speed of the board is set in a range of 0.8 to 3.2 m/min, each corresponding to the soldering conditions of the board. Equipment used to solder circuit components to boards.
JP4161786U 1986-03-20 1986-03-20 Expired JPS6243661Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4161786U JPS6243661Y2 (en) 1986-03-20 1986-03-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4161786U JPS6243661Y2 (en) 1986-03-20 1986-03-20

Publications (2)

Publication Number Publication Date
JPS6210953U JPS6210953U (en) 1987-01-23
JPS6243661Y2 true JPS6243661Y2 (en) 1987-11-13

Family

ID=30856781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4161786U Expired JPS6243661Y2 (en) 1986-03-20 1986-03-20

Country Status (1)

Country Link
JP (1) JPS6243661Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073786A (en) * 2005-09-08 2007-03-22 Tamura Seisakusho Co Ltd Soldering method

Also Published As

Publication number Publication date
JPS6210953U (en) 1987-01-23

Similar Documents

Publication Publication Date Title
EP0083680B1 (en) Wavesoldering of chips
US4402448A (en) Mass soldering system
US4410126A (en) Mass soldering system
KR101880599B1 (en) Anode moving type horizontal plating machine
EP2611564B1 (en) Soldering nozzle for delivering molten solder to the underside of a pcb
KR100738499B1 (en) Soldering method and automatic soldering apparatus
JPS6243661Y2 (en)
US5782400A (en) Substrate carrier for a soldering machine
JPS63268563A (en) Device for matrix-binding printed wiring circuit board by solder
JP3860355B2 (en) Method of forming solder bump
US5611480A (en) Soldering process
EP1222988B1 (en) Dip soldering method and apparatus
JP2005177845A (en) Jet type soldering device
KR940002308B1 (en) Method and apparatus for preventing substrate from warping
USRE32982E (en) Mass soldering system
JPS58209471A (en) Automatic soldering device
KR920006677B1 (en) Method and device for automatic soldering
KR930008291B1 (en) Coating device of flux and brazing metal
JPH08162750A (en) Partial soldering machine
JPS63137571A (en) Automatic soldering device
JPH0442058Y2 (en)
JPH06232542A (en) Flux applicator
JPS63248566A (en) Method and device for soldering printed circuit board
JP2005236000A (en) Automatic soldering equipment
JPH0373156B2 (en)