JPS6243449B2 - - Google Patents

Info

Publication number
JPS6243449B2
JPS6243449B2 JP10309380A JP10309380A JPS6243449B2 JP S6243449 B2 JPS6243449 B2 JP S6243449B2 JP 10309380 A JP10309380 A JP 10309380A JP 10309380 A JP10309380 A JP 10309380A JP S6243449 B2 JPS6243449 B2 JP S6243449B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
vinyl
monomer
present
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10309380A
Other languages
Japanese (ja)
Other versions
JPS5728124A (en
Inventor
Katsuo Mitani
Takashi Maehara
Yukio Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP10309380A priority Critical patent/JPS5728124A/en
Publication of JPS5728124A publication Critical patent/JPS5728124A/en
Publication of JPS6243449B2 publication Critical patent/JPS6243449B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱安定化された塩化ビニル重合体の製
造方法に関するものである。さらに詳しくは、ス
ルフイド基を有する塩化ビニル系重合体の水性分
散体に負のe値をもつビニルモノマーを添加して
加熱処理することによつて着色の少ない熱安定性
に優れた塩化ビニル重合体を製造する方法に関す
る。 塩化ビニル樹脂の加工性は重合度依存性が大き
く、比較的重合度の低い塩化ビニル樹脂は高流動
性を要求される加工方法によく用いられる。加工
性を改善する方法として、連鎖移動効果の大きい
有機メルカプタン化合物の存在下で重合を行い、
塩化ビニル樹脂の平均重合度を低下する方法は公
知である。しかしながら、有機メルカプタン類の
ような連鎖移動剤の存在下に重合して得られた塩
化ビニル樹脂は、該塩化ビニル樹脂に結合したス
ルフイド基に起因し、或いは塩化ビニル樹脂中に
残存する有機メルカプタン化合物に起因し、僅か
の加熱でさえ着色する傾向がある。特に多量の有
機メルカプタン化合物の存在下に重合して得られ
た重合度の低い塩化ビニル樹脂は、残存する有機
メルカプタン化合物が多くなるだけでなく、軟化
温度が低下するため僅かの加熱でさえも著しく着
色する欠点がある。したがつて、例えば乾燥工
程、安定剤とのホツトミキシング工程において、
着色したりあるいは加熱成形品に着色がみられ
る。 これらの欠点を解決するために、本発明者らは
長年研究を重ねた結果、スルフイド基を有する塩
化ビニル系重合体の水性媒体中に特定のビニルモ
ノマーを添加して加熱処理することにより上記欠
点が著しく改善されることを見い出し、本発明を
完成するに至つた。すなわち、本発明はスルフイ
ド基を有する塩化ビニル系重合体の水性分散体に
負のe値をもつビニルモノマーを添加して加熱処
理することを特徴とする熱安定化塩化ビニル系重
合体の製造方法を提供するものである。 本発明に規定するビニルモノマーのe値とは、
AlfreyとPriceらによつて唱えられたラジカル共
重合反応におけるモノマーの反応性を示す極性因
子である〔ジヤーナルオブポリマーサイエンス2
巻;P101(1947)、3巻;P772(1948)〕。すなわ
ち、スチレンモノマーを基準モノマーとし、e=
−0.80として他の多くのモノマーについてe値が
求められている〔ジヤーナルオブポリマーサイエ
ンス2巻;P101(1947)及びJ.Brandrup他“ポ
リマーハンドブツク”インターサイエンス
(1966)〕。本発明で使用するビニルモノマーはe
値が負であれば特に限定されず用いうる。一般に
は該e値が−0.20〜−1.50のビニルモノマーが特
に好適に使用される。本発明で好適に使用される
ビニルモノマーを具体的に例示すれば、例えばス
チレン、α−メチルスチレン、ビニルトルエン、
エチルビニルエーテル、イソブチルビニルエーテ
ル、1−ヘキセン、プロピレン、酢酸ビニルなど
が好適に用いられる。e値が負に大きいビニルモ
ノマーを用いるほど本発明の効果が発揮されるた
め、特にe値が−0.5以上(負に大)のビニルモ
ノマーが好ましい。 本発明において塩化ビニル系重合体としては、
ポリ塩化ビニル、塩化ビニルと他のビニルモノマ
ー、例えば酢酸ビニル、アクリル酸、メタアクリ
ル酸、アクリル酸エステル、メタアクリル酸エス
テル、アクリロニトリル、無水マレイン酸、エチ
レン、プロピレンなどの共重合体等があげられ
る。 本発明における前記e値が負になるビニルモノ
マーの処理対象となる塩化ビニル系重合体は、前
記した如く乾燥工程、ホツトミキシング工程或い
は加熱成形で着色が起りやすいスルフイド基を結
合して有する塩化ビニル系重合体である。該スル
フイド基を有する塩化ビニル系重合体は、熱安定
性の塩化ビニル系重合体、低分子量の塩化ビニル
系重合体等を得る目的で、有機メルカプタン化合
物の存在下に塩化ビニルモノマー又は塩化ビニル
モノマーと共重合しうる他のモノマーと塩化ビニ
ルモノマーとの混合物を重合して得られるものが
その代表的なものである。勿論本発明において対
象となるスルフイド基を有する塩化ビニル系重合
体は、如何なる方法によつて得られたものであつ
てもよいが、以下説明を簡略化するため、上記有
機メルカプタン化合物の存在下に塩化ビニル系モ
ノマーを重合して得た塩化ビニル系重合体を代表
的として説明する。 前記有機メルカプタン化合物としては、オクチ
ルメルカプタン、ドデシルメルカプタン等のアル
キルメルカプタン類;エタンジチオール、プロパ
ンジチオール等のアルキルジチオール類;チオグ
リコール酸、チオ乳酸等のチオカルボン酸類;チ
オグリコール酸n−ブチルエステル、チオグリコ
ール酸n−ヘキシルエステル等のチオグリコール
酸アルキルエステル類;2−メルカプトエタノー
ル、α−チオグリセロールメルカプトプロパノー
ル等のメルカプトアルカノール類が一般に好適に
使用される。 本発明の実施にあたり、スルフイド基を有する
塩化ビニル系重合体例えば有機メルカプタン化合
物の存在下に重合して得られた塩化ビニル系重合
体に対して負のe値をもつビニルモノマーは、一
般に水性媒体の重合反応工程で塩化ビニル重合の
転化率が50重量%に達した時から該塩化ビニル系
重合体の水性分散体が濃縮もしくは塩析処理に至
る間に随時添加するのが一般に好ましい。好適に
は、塩化ビニル重合の転化率が60重量%に達した
時から、重合反応を終了し未反応塩化ビニル単量
体を常圧まで自圧でパージする前あるいはパージ
後の間に添加されるのが最も好ましい。 なお、有機メルカプタン化合物存在下に水性媒
体中で塩化ビニル単量体を重合する方法の中で、
まず水性媒体中での重合の転化率が10〜60wt%
に達してから有機メルカプタン化合物を添加して
重合反応を継続する方法がある。このような方法
で得られた塩化ビニル系重合体の水性分散体に
も、本発明の方法は好適に使用される。 本発明の負のe値をもつビニルモノマーの添加
量は、塩化ビニル系重合体の重合に用いた有機メ
ルカプタン化合物の種類、添加量に依存するので
必ずしも限定的でないが、塩化ビニル系重合体
100重量部に対して0.3乃至20重量部、好ましくは
0.5乃至10重量部である。さらに負のe値をもつ
ビニルモノマーの添加に際して、ラウリルパーオ
キサイド、ターシヤリーブチルパーオキシピバレ
ート、ベンゾイルパーオキサイド等の油溶性ラジ
カル開始剤、過硫酸カリウム等に水溶性ラジカル
開始剤を添加することも可能である。 本発明における負のe値をもつビニルモノマー
の作用機構は必ずしも明らかではないが本発明者
らは、塩化ビニル系重合体に結合するスルフイド
基と負のe値をもつビニルモノマーとが反応し、
熱的不安定の原因となつたスルフイド基が安定化
されるのではないかと推定している。本発明は特
に前記有機メルカプタン化合物の存在下に重合し
て得た塩化ビニル系重合体が、有機メルカプタン
化合物を完全に分離できず含有する場合は、該有
機メルカプタン化合物と該ビニルモノマーとが反
応して熱的に安定化するので、該有機メルカプタ
ン化合物を含むスルフイド基を有する塩化ビニル
系重合体へ適応すると最も工業的に効果的であ
る。したがつて、本発明の目的は負のe値をもつ
ビニルモノマーの使用と加熱処理温度の調整とを
組みあわせることによつて、初めて有利な状態で
達成されるのである。本発明の加熱処理温度は40
℃乃至80℃、好ましくは50℃乃至75℃が採用され
る。 本発明において加熱処理時間は、重合温度、ス
ルフイド基の結合量、有機メルカプタン化合物の
含有量、負のe値をもつビニルモノマーの種類と
添加量及び加熱処理温度などに依存するので必ず
しも限定的でないが、15分乃至10時間、好ましく
は30分乃至5時間が採用される。比較的高い温
度、即ち塩化ビニル樹脂の軟化温度に近接する温
度で長時間の加熱処理をすると、しばしば塩化ビ
ニル樹脂の着色、劣化をきたすことがあるので好
ましくない。 一方、後述する実施例、比較例にも示す如く、
本発明においてe値が正のビニルモノマーを添加
して加熱処理しても、本発明の効果が効果的に得
られない。 本発明の実施により、塩化ビニル系重合体に負
のe値をもつビニルモノマーの一部グラフト重合
が得られる。塩化ビニル系重合体存在下にビニル
モノマーのグラフト重合に関しては、例えばジヤ
ーナルオブマクロモレキユラーサイエンスA22
627(1978)に塩化ビニル系重合体にエチルビニ
ルモノマーの放射線照射によるグラフト重合があ
る。この場合水の存在はグラフト生成率を減少す
る。放射線照射は塩化ビニル系重合体の分解を促
進するため、熱安定性を減少させる可能性があ
る。特開昭53−65725、米国特許第3991135号等に
塩化ビニル系重合体の存在下にアクリル酸エステ
ルモノマー、重合開始剤を加えて懸濁重合するこ
とにより加工性に優れた塩化ビニルグラフト共重
合体を得る方法が記載されている。 しかしながら、本発明の効果は、前述の如く、
有機メルカプタン化合物と負のe値をもつビニル
モノマーとの反応を実施させることができる
し、、スルフイド基を有する塩化ビニル系重合体
と負のe値をもつビニルモノマーとの反応を実施
させるので、これらの相乗効果により塩化ビニル
系重合体の着色、熱安定性をより効果的に改善す
るのである。 本発明方法により得られた塩化ビニル系重合体
には、熱安定剤、光安定剤、可塑剤、滑剤、顔
料、充填剤等の少量をその用途に応じて用いるこ
とができる。 本発明を更に具体的に説明するため、以下に実
施例及び比較例をあげて説明するが、本発明はこ
れらの実施例に限定されるものではない。 なお、実施例で表示された測定値は以下の測定
方法によつた。 (1) 平均重合度 JIS K−6721の方法に準じて求めた。 (2) 熱安定性 ロール混練りシートを180℃のヂヤーオーブ
ン中で熱劣化試験を行い、黒化時間を測定し
た。 (2) 着色 サンプルを日本電色(株)製DN−K5型色差計を
用いて、明度(L)、彩度(a)及び色相(b)を測定す
る。次いで標準試料である酸化マグネシウム板
を用いた標準のL0、a0及びb0の値、即ち、L0
90.8、a0=0.4及びb0=4.0を用いて、下記ハン
ター色差式によつてサンプルの色差(△E)を
NBS(National Bureau Standards)単位で求
めた。 △E(NBS) =√(0−)+(0−)+(0−)
実施例 1 撹拌機付2ステンレス製オートクレーブに部
分鹸化ポリビニルアルコール1.6g(鹸度80%)
とメチルセルロース0.7gを溶解したイオン交換
水1Kgと第1表に示す割合の有機メルカプタン化
合物とターシヤリーブチルパーオキシピバレート
を仕込んだ後、オートクレーブを脱気後塩化ビニ
ル単量体350gを仕込み、60℃で4時間重合し
た。次いで第1表に示す割合の本発明のビニルモ
ノマーを窒素圧力で圧入し、60℃で1時間撹拌処
理した。得られた塩化ビニル重合体を多量のメタ
ノールで充分洗浄した後、減圧乾燥した。比較例
に用いる塩化ビニル重合体として本発明のビニル
モノマーを添加しなかつた塩化ビニル重合体及び
本発明以外のビニルモノマーを添加して60℃で1
時間撹拌処理した塩化ビニル重合体の重合結果を
第1表に示した。 かくして得られた塩化ビニル樹脂と、鉛系安定
剤、滑剤を秤量し、ヘンシエルミキサーでブレン
ドした。 混合割合は次の如くである。 塩化ビニル樹脂 100重量部 三塩基性硫酸鉛 2重量部 ステアリン酸鉛 2重量部 ステアリン酸 0.2重量部 次に、混合試料をミキシングロールを用いて
150℃で2分間混練りして厚さ1mmのシートを作
成した。このシートの着色を色差計を用いて測定
した。また熱安定性は上記シートをギヤーオーブ
ン中180℃で熱劣化試験を行い、黒化時間を測定
した。これらの結果を第1表に示す。 第1表の結果から、本発明の塩化ビニル樹脂
は、着色、熱安定性に著しく優れていることがわ
かる。
The present invention relates to a method for producing heat-stabilized vinyl chloride polymers. More specifically, by adding a vinyl monomer with a negative e value to an aqueous dispersion of a vinyl chloride polymer having a sulfide group and heat-treating it, a vinyl chloride polymer with excellent thermal stability with little coloring can be obtained. Relating to a method of manufacturing. The processability of vinyl chloride resin is highly dependent on the degree of polymerization, and vinyl chloride resins with a relatively low degree of polymerization are often used in processing methods that require high fluidity. As a method to improve processability, polymerization is carried out in the presence of an organic mercaptan compound with a large chain transfer effect.
Methods for lowering the average degree of polymerization of vinyl chloride resins are known. However, vinyl chloride resin obtained by polymerization in the presence of a chain transfer agent such as organic mercaptans is caused by sulfide groups bonded to the vinyl chloride resin, or organic mercaptan compounds remaining in the vinyl chloride resin. Due to this, even slight heating tends to cause coloration. In particular, vinyl chloride resin with a low degree of polymerization obtained by polymerization in the presence of a large amount of organic mercaptan compounds not only has a large amount of residual organic mercaptan compounds, but also has a lower softening temperature, so even slight heating can cause significant damage. It has the disadvantage of being colored. Therefore, for example, in a drying process, a hot mixing process with a stabilizer,
Coloring or coloring can be seen on the heat-molded product. In order to solve these drawbacks, the present inventors have conducted many years of research and found that by adding a specific vinyl monomer to an aqueous medium of a vinyl chloride polymer having a sulfide group and heat-treating it, the above-mentioned drawbacks can be solved. The present inventors have discovered that this can be significantly improved, and have completed the present invention. That is, the present invention provides a method for producing a heat-stabilized vinyl chloride polymer, which is characterized by adding a vinyl monomer having a negative e value to an aqueous dispersion of a vinyl chloride polymer having a sulfide group, and then heat-treating the dispersion. It provides: The e value of the vinyl monomer defined in the present invention is
It is a polarity factor that indicates the reactivity of monomers in radical copolymerization reactions advocated by Alfrey and Price et al. [Journal of Polymer Science 2
Volume; P101 (1947), Volume 3; P772 (1948)]. That is, the styrene monomer is used as the reference monomer, and e=
-0.80 has been determined for many other monomers [Journal of Polymer Science Vol. 2; P101 (1947) and J. Brandrup et al., "Polymer Handbook" Interscience (1966)]. The vinyl monomer used in the present invention is e
If the value is negative, it can be used without particular limitation. In general, vinyl monomers having an e value of -0.20 to -1.50 are particularly preferably used. Specific examples of vinyl monomers preferably used in the present invention include styrene, α-methylstyrene, vinyltoluene,
Ethyl vinyl ether, isobutyl vinyl ether, 1-hexene, propylene, vinyl acetate and the like are preferably used. Since the effect of the present invention is exhibited more effectively when a vinyl monomer with a negative e value is used, vinyl monomers with an e value of -0.5 or more (negatively large) are particularly preferred. In the present invention, the vinyl chloride polymer includes:
Polyvinyl chloride, copolymers of vinyl chloride and other vinyl monomers, such as vinyl acetate, acrylic acid, methacrylic acid, acrylic esters, methacrylic esters, acrylonitrile, maleic anhydride, ethylene, propylene, etc. . In the present invention, the vinyl chloride polymer to be treated as a vinyl monomer having a negative e value is vinyl chloride having a sulfide group bonded thereto, which tends to be colored during the drying process, hot mixing process, or heat molding, as described above. It is a type polymer. The vinyl chloride polymer having a sulfide group is prepared by adding vinyl chloride monomer or vinyl chloride monomer in the presence of an organic mercaptan compound for the purpose of obtaining a heat-stable vinyl chloride polymer, a low molecular weight vinyl chloride polymer, etc. A typical example is one obtained by polymerizing a mixture of a vinyl chloride monomer and another monomer that can be copolymerized with the vinyl chloride monomer. Of course, the vinyl chloride polymer having a sulfide group, which is the object of the present invention, may be obtained by any method, but in order to simplify the explanation below, it will be obtained in the presence of the above organic mercaptan compound. A vinyl chloride polymer obtained by polymerizing a vinyl chloride monomer will be explained as a representative example. The organic mercaptan compounds include alkyl mercaptans such as octyl mercaptan and dodecyl mercaptan; alkyl dithiols such as ethanedithiol and propanedithiol; thiocarboxylic acids such as thioglycolic acid and thiolactic acid; thioglycolic acid n-butyl ester and thioglycol. Thioglycolic acid alkyl esters such as acid n-hexyl ester; mercaptoalkanols such as 2-mercaptoethanol and α-thioglycerol mercaptopropanol are generally preferably used. In carrying out the present invention, a vinyl monomer having a negative e-value relative to a vinyl chloride polymer having a sulfide group, such as a vinyl chloride polymer obtained by polymerization in the presence of an organic mercaptan compound, is generally used in an aqueous medium. It is generally preferable to add the aqueous dispersion of the vinyl chloride polymer at any time from when the conversion rate of vinyl chloride polymerization reaches 50% by weight in the polymerization reaction step until the aqueous dispersion of the vinyl chloride polymer is subjected to concentration or salting-out treatment. Preferably, it is added between the time when the conversion rate of vinyl chloride polymerization reaches 60% by weight and before or after the polymerization reaction is completed and unreacted vinyl chloride monomer is purged to normal pressure under autopressure. most preferably. In addition, among the methods of polymerizing vinyl chloride monomer in an aqueous medium in the presence of an organic mercaptan compound,
First, the conversion rate of polymerization in an aqueous medium is 10 to 60 wt%.
There is a method of continuing the polymerization reaction by adding an organic mercaptan compound after reaching . The method of the present invention can also be suitably used for aqueous dispersions of vinyl chloride polymers obtained by such methods. The amount of the vinyl monomer with a negative e value of the present invention is not necessarily limited as it depends on the type and amount of the organic mercaptan compound used in the polymerization of the vinyl chloride polymer.
0.3 to 20 parts by weight per 100 parts by weight, preferably
0.5 to 10 parts by weight. Furthermore, when adding a vinyl monomer with a negative e value, an oil-soluble radical initiator such as lauryl peroxide, tert-butyl peroxypivalate, benzoyl peroxide, or a water-soluble radical initiator such as potassium persulfate may be added. is also possible. Although the mechanism of action of the vinyl monomer with a negative e value in the present invention is not necessarily clear, the present inventors have discovered that the vinyl monomer with a negative e value reacts with the sulfide group bonded to the vinyl chloride polymer.
It is speculated that the sulfide group, which caused thermal instability, may be stabilized. The present invention particularly provides that when the vinyl chloride polymer obtained by polymerization in the presence of the organic mercaptan compound contains an organic mercaptan compound that cannot be completely separated, the organic mercaptan compound and the vinyl monomer may react. Since the organic mercaptan compound is thermally stabilized, it is most industrially effective when applied to a vinyl chloride polymer having a sulfide group containing the organic mercaptan compound. The object of the invention is therefore achieved only advantageously by the combination of the use of vinyl monomers with negative e-values and the adjustment of the heat treatment temperature. The heat treatment temperature of the present invention is 40
The temperature range is between 80°C and 50°C, preferably between 50°C and 75°C. In the present invention, the heat treatment time is not necessarily limited because it depends on the polymerization temperature, the amount of sulfide group bonded, the content of the organic mercaptan compound, the type and amount of vinyl monomer with a negative e value, and the heat treatment temperature. However, the time period is 15 minutes to 10 hours, preferably 30 minutes to 5 hours. Prolonged heat treatment at a relatively high temperature, that is, at a temperature close to the softening temperature of the vinyl chloride resin, is not preferred because it often causes discoloration and deterioration of the vinyl chloride resin. On the other hand, as shown in the examples and comparative examples described later,
In the present invention, even if a vinyl monomer with a positive e value is added and heat-treated, the effects of the present invention cannot be effectively obtained. By carrying out the present invention, partial graft polymerization of a vinyl monomer having a negative e value onto a vinyl chloride polymer can be obtained. Regarding graft polymerization of vinyl monomers in the presence of vinyl chloride polymers, see, for example, Journal of Macromolecular Science A22 ,
627 (1978) describes the graft polymerization of ethyl vinyl monomer onto vinyl chloride polymers by radiation irradiation. In this case the presence of water reduces the grafting rate. Irradiation accelerates the decomposition of vinyl chloride-based polymers and may reduce their thermal stability. A vinyl chloride graft copolymer with excellent processability is obtained by adding an acrylic acid ester monomer and a polymerization initiator in the presence of a vinyl chloride polymer and carrying out suspension polymerization according to Japanese Patent Application Laid-Open No. 53-65725, U.S. Patent No. 3991135, etc. A method for obtaining coalescence is described. However, the effects of the present invention are as described above.
Since it is possible to carry out the reaction between an organic mercaptan compound and a vinyl monomer having a negative e value, and to carry out the reaction between a vinyl chloride polymer having a sulfide group and a vinyl monomer having a negative e value, These synergistic effects more effectively improve the coloration and thermal stability of vinyl chloride polymers. The vinyl chloride polymer obtained by the method of the present invention may contain small amounts of heat stabilizers, light stabilizers, plasticizers, lubricants, pigments, fillers, etc. depending on the intended use. EXAMPLES In order to explain the present invention more specifically, Examples and Comparative Examples will be given below, but the present invention is not limited to these Examples. Note that the measured values shown in the examples were based on the following measuring method. (1) Average degree of polymerization Determined according to the method of JIS K-6721. (2) Thermal stability The roll-kneaded sheet was subjected to a thermal deterioration test in a 180°C dry oven, and the blackening time was measured. (2) Coloring Measure the lightness (L), chroma (a), and hue (b) of the sample using a DN-K5 color difference meter manufactured by Nippon Denshoku Co., Ltd. Next, the standard values of L 0 , a 0 and b 0 using a magnesium oxide plate as a standard sample, that is, L 0 =
90.8, a 0 = 0.4 and b 0 = 4.0, calculate the color difference (△E) of the sample using the Hunter color difference formula below.
Calculated in NBS (National Bureau Standards) units. △E(NBS) =√( 0 −) 2 + ( 0 −) 2 + ( 0 −)
2 Examples 1 1.6 g of partially saponified polyvinyl alcohol (saponity 80%) in a stainless steel autoclave with a stirrer
After charging 1 kg of ion-exchanged water with 0.7 g of methylcellulose dissolved therein, an organic mercaptan compound and tert-butyl peroxypivalate in the proportions shown in Table 1, and degassing the autoclave, 350 g of vinyl chloride monomer was charged. Polymerization was carried out at ℃ for 4 hours. Next, the vinyl monomer of the present invention in the proportions shown in Table 1 was introduced under nitrogen pressure, and the mixture was stirred at 60° C. for 1 hour. The obtained vinyl chloride polymer was thoroughly washed with a large amount of methanol and then dried under reduced pressure. As vinyl chloride polymers used in comparative examples, vinyl chloride polymers without the vinyl monomer of the present invention and vinyl monomers other than the present invention were added at 60°C for 1
Table 1 shows the polymerization results of vinyl chloride polymers subjected to time-stirring treatment. The vinyl chloride resin thus obtained, a lead-based stabilizer, and a lubricant were weighed and blended using a Henschel mixer. The mixing ratio is as follows. Vinyl chloride resin 100 parts by weight Tribasic lead sulfate 2 parts by weight Lead stearate 2 parts by weight Stearic acid 0.2 parts by weight Next, the mixed sample was mixed using a mixing roll.
A sheet with a thickness of 1 mm was prepared by kneading at 150°C for 2 minutes. The coloration of this sheet was measured using a color difference meter. Thermal stability was determined by conducting a heat deterioration test on the sheet at 180°C in a gear oven and measuring the blackening time. These results are shown in Table 1. From the results in Table 1, it can be seen that the vinyl chloride resin of the present invention is extremely excellent in coloration and thermal stability.

【表】【table】

【表】 実施例 2 撹拌機付2ステンレス製オートクレーブに部
分鹸化ポリビニルアルコール1.6g(鹸化度80
%)とメチルセルロース0.7gを溶解したイオン
交換水1Kgと2−メルカプトエタノール1.6g及
びターシヤルーブチルパーオキシピバレート0.85
gを仕込んだ後、オートクレーブを脱気後、塩化
ビニル単量体350gを仕込み60℃で6時間重合し
た。次いで第2表に示した如くの操作を行つた後
ターシヤリーブチルパーオキシピバレートと本発
明のビニルモノマーであるスチレンを第2表に示
す割合でオートクレーブに窒素圧力で圧入し、65
℃で2時間撹拌処理した。得られた塩化ビニル重
合体を多量のメタノールで充分洗浄した後減圧乾
燥した。 かくして得られた塩化ビニル重合体を実施例1
と同様の方法で安定剤、滑剤をブレンドした後、
シートを作成し、熱安定性、ロールシートの着色
を調べた。それらの結果を第2表に示す。
[Table] Example 2 1.6 g of partially saponified polyvinyl alcohol (saponification degree 80
%) and 1 kg of ion-exchanged water in which 0.7 g of methyl cellulose was dissolved, 1.6 g of 2-mercaptoethanol, and 0.85 g of tert-butyl peroxypivalate.
After degassing the autoclave, 350 g of vinyl chloride monomer was charged and polymerized at 60° C. for 6 hours. Next, after carrying out the operations shown in Table 2, tert-butyl peroxypivalate and styrene, which is the vinyl monomer of the present invention, were pressurized into an autoclave under nitrogen pressure in the proportions shown in Table 2.
The mixture was stirred at ℃ for 2 hours. The obtained vinyl chloride polymer was thoroughly washed with a large amount of methanol and then dried under reduced pressure. The vinyl chloride polymer thus obtained was prepared in Example 1.
After blending the stabilizer and lubricant in the same manner as
A sheet was prepared and the thermal stability and coloring of the rolled sheet were examined. The results are shown in Table 2.

【表】 実施例 3 撹拌機付2ステンレス製オートクレーブに部
分鹸化ポリビニルアルコール1.5g(鹸化度80
%)をメチルセルロース0.6gを溶解したオン交
換水1Kgとターシヤリーブチルパーオキシピバレ
ート0.55gを仕込んだ後、オートクレーブを脱気
後塩化ビニル単量体350gを仕込み、57℃で3時
間20分重合した。次いで、2−メルカプトエタノ
ール1gを窒素圧力でオートクレーブに圧入し57
℃で1時間重合を続けた。その後、本発明のビニ
ルモノマーであるスチレンを20g窒素圧力でオー
トクレーブに圧入し、57℃で1時間撹拌した。得
られた塩化ビニル重合体を多量の水で充分洗浄し
た後減圧乾燥した。 かくして得られた塩化ビニル樹脂を実施例1と
同様の方法で安定剤、滑剤をブレンドした後、シ
ートを作成し、熱安定性、ロールシートの着色を
調べた結果、ロールシートの着色は8.8(NBS単
位)であり、熱安定性は120分であつた。なお、
本発明のスチレンモノマーを添加しなかつた比較
試料のロールシートの着色は16.3(NBS単位)で
あり熱安定性は110分であつた。 実施例 4 撹拌機付2ステンレス製オートクレーブに部
分鹸化ポリビニルアルコール1.2g(鹸化度80
%)とメチルセルロース0.6gを溶解したイオン
交換水1Kgと第3表に示す割合のドデシルメルカ
プタン、共重合モノマー及びターシヤリーブチル
パーオキシピバレートを仕込んだ後、オートクレ
ーブを脱気後塩化ビニル単量体250gを仕込み、
55℃で3時間重合した。次いで、第2表に示す割
合の本発明のビニルモノマーを窒素圧力で圧入し
60℃で1時間撹拌処理した。得られた塩化ビニル
樹脂を多量のメタノールで充分洗浄した後、減圧
乾燥した。 かくして得られた塩化ビニル樹脂を実施例1と
同様の方法で安定剤、滑剤をブレンドした後、シ
ートを作成し、ロールシートの着色、熱安定性を
調べた。それらの結果を第3表に示す。
[Table] Example 3 1.5 g of partially saponified polyvinyl alcohol (saponification degree 80) was placed in a stainless steel autoclave equipped with a stirrer.
After charging 1 kg of on-exchange water in which 0.6 g of methylcellulose (%) was dissolved and 0.55 g of tertiary butyl peroxypivalate, the autoclave was degassed, 350 g of vinyl chloride monomer was charged, and polymerization was carried out at 57°C for 3 hours and 20 minutes. did. Next, 1 g of 2-mercaptoethanol was introduced into the autoclave under nitrogen pressure.
Polymerization was continued for 1 hour at °C. Thereafter, 20 g of styrene, which is the vinyl monomer of the present invention, was introduced into the autoclave under nitrogen pressure and stirred at 57° C. for 1 hour. The obtained vinyl chloride polymer was thoroughly washed with a large amount of water and then dried under reduced pressure. After blending the thus obtained vinyl chloride resin with a stabilizer and a lubricant in the same manner as in Example 1, a sheet was prepared and the thermal stability and coloring of the rolled sheet were examined. As a result, the coloring of the rolled sheet was 8.8 ( (NBS units) and thermal stability was 120 minutes. In addition,
A roll sheet of a comparative sample to which the styrene monomer of the present invention was not added had a coloration of 16.3 (NBS units) and a thermal stability of 110 minutes. Example 4 1.2 g of partially saponified polyvinyl alcohol (saponification degree 80) was placed in a stainless steel autoclave equipped with a stirrer.
%) and 1 kg of ion-exchanged water in which 0.6 g of methylcellulose was dissolved, and dodecyl mercaptan, copolymer monomer, and tert-butyl peroxypivalate in the proportions shown in Table 3 were charged, and after degassing the autoclave, vinyl chloride monomer was added. Prepare 250g,
Polymerization was carried out at 55°C for 3 hours. Next, the vinyl monomer of the present invention in the proportions shown in Table 2 was injected under nitrogen pressure.
The mixture was stirred at 60°C for 1 hour. The obtained vinyl chloride resin was thoroughly washed with a large amount of methanol and then dried under reduced pressure. After blending the vinyl chloride resin thus obtained with a stabilizer and a lubricant in the same manner as in Example 1, a sheet was prepared, and the coloring and thermal stability of the rolled sheet were examined. The results are shown in Table 3.

【表】【table】

【表】 実施例 5 撹拌機付2ステンレス製オートクレーブに蒸
留水1.2Kg、ドデシルベンゼンスルホン酸ソーダ
2.0g、過硫酸カリ0.3g及びドデシルメルカプタ
ン2.5gを仕込んだ後、オートクレーブを脱気後
塩化ビニル単量体体350gを仕込み、60℃で5時
間重合した。次いで、本発明のビニルモノマーで
あるステレン10gを窒素圧力で圧入し、60℃で1
時間撹拌処理した。得られた乳濁液に約5%の食
塩水を加えて、微粉状の塩化ビニル重合体を回収
した後、塩素イオンが検出されなくなるまで水洗
し、次いで減圧乾燥した。 かくして得られた塩化ビニル樹脂100重量部に
ステアリン酸カルシウム1.0重量部、ステアリン
酸亜鉛1.0重量部、エポキシ化大豆油(ダイセル
社製;ダイマツクS300K)3重量部、キレーター
(城北化学社製;JPP1100)0.5重量部及び滑剤
(ヘキスト社製;ワツクスOPパウダー)0.5重量
部を配合し、150℃で2分間ロール混練りして厚
さ1mmのシートを作成した。ロールシートの着色
は14.3(NBS単位)、熱安定性は45分であつた。
なお、比較例として、本発明のスチレンを添加、
加熱処理を行なわなかつた塩化ビニル樹脂のロー
ル混練りシートの着色は28.5(NBS単位)であ
り、熱安定性は30分であつた。
[Table] Example 5 1.2 kg of distilled water and sodium dodecylbenzenesulfonate in a stainless steel autoclave with a stirrer
After charging 2.0 g of potassium persulfate, 0.3 g of potassium persulfate, and 2.5 g of dodecyl mercaptan, the autoclave was degassed, and 350 g of vinyl chloride monomer was charged, followed by polymerization at 60° C. for 5 hours. Next, 10 g of sterene, which is the vinyl monomer of the present invention, was introduced under nitrogen pressure and heated at 60°C for 10 minutes.
The mixture was stirred for hours. About 5% saline was added to the resulting emulsion to recover a finely divided vinyl chloride polymer, which was then washed with water until no chlorine ions were detected, and then dried under reduced pressure. To 100 parts by weight of the vinyl chloride resin thus obtained, 1.0 parts by weight of calcium stearate, 1.0 parts by weight of zinc stearate, 3 parts by weight of epoxidized soybean oil (manufactured by Daicel Corporation; Daimatsu S300K), and 0.5 parts by weight of chelator (manufactured by Johoku Kagaku Co., Ltd.; JPP1100). parts by weight and 0.5 parts by weight of a lubricant (manufactured by Hoechst; Wax OP Powder) were blended and roll-kneaded at 150°C for 2 minutes to prepare a sheet with a thickness of 1 mm. The coloration of the roll sheet was 14.3 (NBS units) and the thermal stability was 45 minutes.
In addition, as a comparative example, the styrene of the present invention was added,
The coloration of a roll-kneaded sheet of vinyl chloride resin that was not heat-treated was 28.5 (NBS unit), and the thermal stability was 30 minutes.

Claims (1)

【特許請求の範囲】[Claims] 1 スルフイド基を有する塩化ビニル系重合体の
水性分散体に負のe値をもつビニルモノマーを添
加して加熱処理することを特徴とする熱安定化塩
化ビニル系重合体の製造方法。
1. A method for producing a heat-stabilized vinyl chloride polymer, which comprises adding a vinyl monomer having a negative e-value to an aqueous dispersion of a vinyl chloride polymer having a sulfide group and heat-treating the mixture.
JP10309380A 1980-07-29 1980-07-29 Production of thermally stabilized vinyl chloride polymer Granted JPS5728124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10309380A JPS5728124A (en) 1980-07-29 1980-07-29 Production of thermally stabilized vinyl chloride polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10309380A JPS5728124A (en) 1980-07-29 1980-07-29 Production of thermally stabilized vinyl chloride polymer

Publications (2)

Publication Number Publication Date
JPS5728124A JPS5728124A (en) 1982-02-15
JPS6243449B2 true JPS6243449B2 (en) 1987-09-14

Family

ID=14345013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10309380A Granted JPS5728124A (en) 1980-07-29 1980-07-29 Production of thermally stabilized vinyl chloride polymer

Country Status (1)

Country Link
JP (1) JPS5728124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319462A (en) * 1986-07-11 1988-01-27 Fuji Heavy Ind Ltd Centrifugal hydraulic pressure correcting device for belt type continuously variable transmission

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3936066A1 (en) * 1989-10-28 1991-05-02 Huels Chemische Werke Ag METHOD FOR PRODUCING A VINYL CHLORIDE BUTYL ACRYLATE GRAFT COPOLYMER FOR INJECTION MOLDING

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319462A (en) * 1986-07-11 1988-01-27 Fuji Heavy Ind Ltd Centrifugal hydraulic pressure correcting device for belt type continuously variable transmission

Also Published As

Publication number Publication date
JPS5728124A (en) 1982-02-15

Similar Documents

Publication Publication Date Title
CA2589790C (en) Polymerisation of vinyl chloride monomer
JPH0788415B2 (en) Transparency and impact improver for polyvinyl chloride
US4151226A (en) Process for producing thermoplastic resin highly resistant to impact and weather
JP2515014B2 (en) Vinyl chloride resin composition
JPS6243449B2 (en)
US4699948A (en) Vinyl chloride polymer resin composition
CA2012602C (en) Vinyl chloride resin composition
JPH062792B2 (en) Lubricants for thermoplastics
JP2515013B2 (en) Vinyl chloride resin composition
KR20140093873A (en) Method for preparing vinyl chloride based resin having superior heat-resistance
JPS61266421A (en) Production of vinyl chloride resin excellent in flow and heat stability
JPH07149847A (en) Production of vinyl chloride-based copolymer
US5227390A (en) Polyvinyl halide ionomers
JPS629123B2 (en)
JP3174126B2 (en) Method for producing vinyl chloride copolymer composition
JPH0250137B2 (en)
JPH0361697B2 (en)
JPS6291517A (en) Thermoplastic graft polymer
JPH07252393A (en) Vinyl chloride resin composition
KR800000283B1 (en) Process for removing residual mercaptan from high nitrile polymers
JPH0774254B2 (en) Heat resistant vinyl chloride copolymer resin
JPH0639490B2 (en) Method for producing easily chlorinated vinyl chloride resin
JPH1087934A (en) Vinyl chloride-based resin composition
JPH0227363B2 (en) ENKABINIRUKEIJUGOTAINOSEIZOHOHO
JPS61250046A (en) Stabilization of chlorinated polyvinyl chloride resin